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ABSTRACT. In this paper generator algorithms for prime k-tuples based on the the divisibility

properties of binomial coefficients are introduced. The mathematical foundation lies in the connec-

tion that exists between binomial coefficients and the number of carries that result in the sum in

different bases of the variables that form the binomial coefficent and, characterizations of k-tuple

primes in terms of binomial coefficients.

AMS (MOS) Subject Classification. 11A41, 11B65, 11Y05, 11Y11, 11Y16

1. INTRODUCTION

In this paper generator algorithms of prime k-tuples based on the divisibility

properties of binomial coefficients are presented. Their mathematical justification

results from the work done by Kummer in 1852 [1] in relation to the connection that

exists between binomial coefficients and the number of carries that result in the sum

in different bases of the variables that form the binomial coefficient. The necessary

and sufficient conditions provided for k-tuple primes verification in terms of binomial

coefficients were inspired in the work presented in [2], however its proof is based on

generating functions which is distinct to the argument provided here to prove it, for

another characterization of this type see [3]. The mathematical approach applied

to prove the presented results is novice, and the algorithms are new. The paper

is organized as follows. Section 1, gives the mathematical preliminaries needed to

understand the rest of the paper. Section 2, deals with the prime generator algo-

rithm which is used in the next section. Section 3, with the prime k-tuple generator

algorithms. Finally, some concluding remarks are presented.

2. PRELIMINARIES

Definition 1. Let n and p be integers, the p-adic expansion of n (which is the

representation of n in base p) is given by,

(2.1) n = a0 + a1p + a2p
2 + · · ·+ ampm
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where the digits ai ∈ {o, . . . , p − 1} and m is an integer. Alternatively n is said to

have the p-adic expansion,

(2.2) n = (amam−1 · · ·a1a0)p

Definition 2. Let n and k be integers, the p-adic addition of n and k consists in,

the addition of its respective p-adic representations in base p. The number of carries

in the p-adic addition of n and k will be denoted by τ = cp(n, k).

The next stated result, is due to Kummer 1852 [1], (for completeness purposes

the proof is supplied).

Theorem 3. Let τ = cp(n, k) be the number of carries in the p-adic addition of n

and k then,

(

n + k

k

)

is divisible by the prime power pτ but not by pτ+1.

In order to derive this beautiful theorem the following result, called Legendre’s

formula (1808), is used.

Lemma 4. Let µ(n) be the largest exponent of the prime power pµ(n) which divides

n! then,

(2.3) µ(n) =
n − σ

p − 1

where σ is the sum of the p-adic coefficients of ai ∈ {0, . . . , p − 1} of n.

Proof. From the identity µ(n) =
∑

∞

i=1

⌊

n
pi

⌋

Legendre’s formula is equivalent to
∑

∞

i=1

⌊

n
pi

⌋

(p − 1) = n − σ which is next established. Using the p-adic representation

of n and the definition of the floor function
⌊

n
pi

⌋

= ai + ai+1p + a2p
2 + · · ·+ ampm−i,

i ≤ m. Next, computing the two sums one gets

∞
∑

i=1

⌊

n

pi

⌋

(p) =
∞
∑

i=1

(aip + ai+1p
2 + · · ·+ amp(m−i+1))

= a1p + a2p
2 + a3p

3 + · · · + ampm

+ a2p + a3p
2 + · · · + ampm−1

+ a3p + . . . + ampm−2

...

+ amp

∞
∑

i=1

⌊

n

pi

⌋

=
∞
∑

i=1

(ai + ai+1p + · · ·+ amp(m−i))
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= a1 + a2p + a3p
2 + · · · + ampm−1

+ a2 + a3p + · · · + ampm−2

+ a3 + . . . + ampm−3

...

+ am.

Finally performing the difference between the two sums
∞
∑

i=1

⌊

n

pi

⌋

(p − 1) = (a1p + a2p
2 + · · ·+ ampm) − (a1 + a2 + · · ·+ am)

= (n − a0) − (σ − a0) = n − σ,

which proves the formula.

Next, the theorem is proved.

Proof. Let the p-adic expansion of n and k be n = a0 + a1p + a2p
2 + · · ·+ ampm, and

k = b0 + b1p + b2p
2 + · · ·+ bmpm where ai, bi ∈ {o, . . . , p− 1}. Now if pτ is the largest

prime power which divides

(

n + k

k

)

then ν = µ(n + k) − µ(n) − µ(k). Therefore,

it remains to prove that the following identity holds

(2.4) cp(n, k) = µ(n + k) − µ(n) − µ(k).

Carrying out the p-adic addition of n and k produces carries ǫ0, ǫ1, . . . (obtained from

ǫ0 =
⌊

a0+b0
p

⌋

and ǫi =
⌊

ai+bi+ǫi−1

p

⌋

, i = 1, 2, . . . ), therefore, the sum of carries takes

the form cp(n, k) =
∑

∞

i=0 ǫi. On the other hand, the p-adic representation of the sum

n + k can be expressed as n + k =
∑

∞

i=0 cip
i where ci ∈ {0, . . . , p− 1}. Moreover, the

ci digits of this addition in terms of those of n and k and the carries ǫi is given by the

formula ci = ai + bi + ǫi−1 − ǫip, ǫ−1 = 0 for i = 0, 1, . . . Finally, employing this last

formula and Legendre‘s identity, 2.4 is shown to be true as can be seen in the next

computation,

ν = µ(n + k) − µ(n) − µ(k)

=
n + k −

∑

∞

i=0 ci

p − 1
−

n −
∑

∞

i=0 ai

p − 1
−

k −
∑

∞

i=0 bi

p − 1

=
1

p − 1

(

∞
∑

i=0

ai +

∞
∑

i=0

bi −
∑

(ai + bi + ǫi−1 − ǫip)

)

=
1

p − 1

(

∞
∑

i=0

ǫip − ǫi−1

)

=
1

p − 1

(

∞
∑

i=0

ǫi(p − 1)

)

=
∞
∑

i=0

ǫi = cp(n, k).

Therefore, Theorem 3 is established.
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Corollary 5. Let n be any integer and p a prime number (≤ n). Set τ = cp(n−1, 1)

then, n is divided by the prime power pτ but not by pτ+1.

In number theory, a prime k-tuple is an ordered set of values (i.e. a vector)

representing a repeatable pattern of prime numbers, being some of the most common:

• Twin primes, a set of two prime numbers that differ by two except for the pair

(2, 3).

• Cousin primes, a set of two prime numbers that differ by four.

• Sexy primes, a set of pairs of prime numbers that differ by six

• Prime triplets, a set of three prime numbers of the form (p, p + 2, p + 6) or

(p, p + 4, p + 6) with the exceptions of (2, 3, 5) and (3, 5, 7).

• Prime quadruplets, a set of four primes of the form (p, p + 2, p + 6, p + 8).

Notice that a prime triplet contains a pair of twin primes (p and p + 2, or p + 4

and p + 6), a pair of cousin primes (p and p + 4, or p + 2 and p + 6), and a pair of

sexy primes (p and p+6) and also that a prime quadruplet contains two pairs of twin

primes and two overlapping prime triplets.

Theorem 6 ([4]). Let 2n + 1 be any number with n ≥ 2 and consider the set ΠT =

{p : p is a prime such that 3 ≤ p < 2n + 1}. Then the number 2n + 1 is a prime

number if and only if ∀p ∈ ΠT , p |

(

n + p−1
2

p − 1

)

.

Theorem 7. Let 2n− 1 and 2n + 1 be any two numbers with n ≥ 3 and consider the

set ΠT = {p : p is a prime such that 3 ≤ p < 2n− 1}. Then the pair (2n− 1, 2n + 1)

is a twin prime pair if and only if ∀p ∈ ΠT , p |

(

n + p−3
2

p − 2

)

.

Proof. First, assume that the pair (2n− 1, 2n+ 1) is a twin prime pair we must show

that ∀p ∈ Π, p |

(

n + p−3
2

p − 2

)

. Since each one of them is a prime number, from

Theorem 6: p |

(

n + p−3
2

p − 1

)

and p | −

(

n + p−1
2

p − 1

)

but

(2.5)

(

n + p−3
2

p − 2

)

=

(

n + p−1
2

p − 1

)

−

(

n + p−3
2

p − 1

)

> 0

Therefore p |

(

n + p−3
2

p − 2

)

as desired.

Now let us prove the converse. Assume that the pair (2n−1, 2n+1) is not a twin

prime. If p | (2n− 1) ⇒ 2n− 1 = p(2m + 1) with m ≥ 1. Then n + p−3
2

= p− 1 + mp

and the binomial coefficient becomes

(p − 1 + mp)(p − 2 + mp) · · · (2 + mp)

(p − 2)!
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In case p | (2n + 1) we get that

(p − 2 + mp)(p − 1 + mp) · · · (1 + mp)

(p − 2)!

In either case p does not divide

(

n + p−3
2

p − 2

)

.

Remark 8. The characterization given in theorem 7 for twin primes is expressed

in terms of one binomial coefficient thanks to the recursive formula for binomial

coefficients (2.5) applied to the binomial coefficient conditions for each one of the

primes 2n − 1 and 2n + 1 (this can be interpreted as a linear combination with

coefficients equal to one). Unfortunately, it is not possible to obtain a similar recursive

formula when the difference between the pair of primes is higher than two (as can be

proved by direct computation). This will be seen in the next results whose proofs are

obtained straightforwardly by applying Theorems 6 and 7.

Theorem 9. Let 2n + 1 and 2n + 5 be any two numbers with n ≥ 2 and consider the

sets ΠT1 = {p : p is a prime such that 3 ≤ p < 2n + 1} and ΠT2 = {p : p is a prime

such that 3 ≤ p < 2n + 5}. Then the pair (2n + 1, 2n + 5) is a cousin prime pair if

and only if ∀p ∈ ΠT1, p |

(

n + p−1
2

p − 1

)

and ∀p ∈ ΠT2, p |

(

n + p+3
2

p − 1

)

.

Theorem 10. Let 2n + 1 and 2n + 7 be any two numbers with n ≥ 2 and consider

the sets ΠT1 = {p : p is a prime such that 3 ≤ p < 2n + 1} and ΠT2 = {p : p is a

prime such that 3 ≤ p < 2n + 7}. Then the pair (2n + 1, 2n + 7) is a sexy prime pair

if and only if ∀p ∈ ΠT1, p |

(

n + p−1
2

p − 1

)

and ∀p ∈ ΠT2, p |

(

n + p+5
2

p − 1

)

.

Theorem 11. Let 2n − 1, 2n + 1, 2n + 3 and 2n + 5 be any four numbers with

n ≥ 3 and consider the sets ΠT1 = {p : p is a prime such that 3 ≤ p < 2n − 1},

ΠT2 = {p : p is a prime such that 3 ≤ p < 2n + 3}. Then (2n − 1, 2n + 1, 2n + 5) or

(2n − 1, 2n + 3, 2n + 5) are a prime triplet if and only if ∀p ∈ ΠT1, p |

(

n + p−3
2

p − 2

)

and ∀p ∈ ΠT2, p |

(

n + p+3
2

p − 1

)

or ∀p ∈ ΠT1, p |

(

n + p−3
2

p − 1

)

and ∀p ∈ ΠT2,

p |

(

n + p+1
2

p − 2

)

.

Theorem 12. Let 2n−1, 2n+1, 2n+5 and 2n+7 be any four numbers with n ≥ 3 and

consider the sets ΠT1 = {p : p is a prime such that 3 ≤ p < 2n − 1} and ΠT2 = {p : p

is a prime such that 3 ≤ p < 2n+5}. Then (2n− 1, 2n+1, 2n+5, 2n+7) is a prime

quadruplet if and only if ∀p ∈ ΠT1, p |

(

n + p−3
2

p − 2

)

and ∀p ∈ ΠT2, p |

(

n + p+3
2

p − 2

)

.
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Remark 13. Notice that the conditions given in Theorem 12 are not unique since a

prime quadruplet can be considered as two pairs of twin primes (as was done here),

or as two overlapping prime triplets. This means, that Theorem 12 could have been

stated in terms of prime triplets however, the characterization provided here results

to be more economical.

3. GENERATOR ALGORITHMS FOR PRIMES

This section provides an algorithm for generation of primes whose proof follows di-

rectly from Theorems 3 and 6. The algorithm proposed works in such a way that at

the same time that generates the primes gives a factorization of the input n in terms

of prime numbers in case of existing.

Algorithm

Step 1. Enter n = 2 and the set of primes Π = {3}.

Step 2. Do ∀p ∈ ΠF = {p : p is a prime < 2n+1} (where a numeration of the elements

of ΠF will be denoted by {qki
}

#(ΠF )
i=1 and ΠF denotes the restriction of the set of primes

Π to the condition specified in ΠF ) the qki
adic addition of n+ p−1

2
− (p−1) and p−1,

compute the number of carries cqki
. Set k = q

cqk1
k1

· q
cqk2
k2

· · · · · q
cqk#(ΠF )

k√

n
.

Step 3. If k = 1 then n is prime, set Π = {n}
⋃

Π and n = n + 2 otherwise, n is

composite and its prime factorization is given by n = kq with q = n
k
, set n = n + 1.

Step 4. Go to step 2.

4. GENERATOR ALGORITHMS FOR PRIME k-TUPLES

In this section the primes k-tuple generator algorithms, based on Theorems 3, 7,

9, 10, 11 and 12 for prime k-tuples are presented.

Twin primes generator algorithm

Step 1. Enter n = 3, Π and the set of twin primes ΠTP = {(2, 3), (3, 5)}.

Step 2. Do ∀p ∈ ΠT = {p : p is a prime such that 3 ≤ p < 2n − 1} (where a

numeration of the elements of ΠT will be denoted by {qki
}

#(ΠT )
i=1 and ΠT denotes the

restriction of the set of primes Π to the condition specified in ΠT ) the qki
adic addition

of n + p−3
2

− (p − 2) and p − 2, compute the number of carries cqki
.

Step 3. If the number of carries is such that cqki
≥ 1 ∀p ∈ ΠT then, the pair of

integers (2n − 1, 2n + 1) is a twin prime pair, include the twin prime pair in the set

ΠTP otherwise is not and p divides either 2n − 1 or 2n + 1.

Step 4. Set n = n + 1 and go to step 2.

Cousin primes generator algorithm

Step 1. Enter n = 2, Π and the set of cousin primes ΠCP = {(3, 7)}.

Step 2. Do ∀p ∈ ΠT1 = {p : p is a prime such that 3 ≤ p < 2n + 1} and ∀p ∈ ΠT2 =

{p : p is a prime such that 3 ≤ p < 2n + 5} (where a numeration of the elements of
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ΠT1 will be denoted by {q1
ki
}

#(ΠT1
)

i=1 and a numeration of the elements of ΠT2 will be

denoted by {q2
ki
}

#(ΠT2
)

i=1 and ΠT1 and ΠT2 denote the restriction of the set of primes

Π to the conditions specified in ΠT1 and ΠT2 respectively) the q1
ki

adic addition of

n + p−1
2

− (p − 1) and p − 1, and the q2
ki

adic addition of n + p+3
2

− (p − 1) and p − 1,

compute the number of carries c1
qki

and c2
qki

.

Step 3. If the number of carries is such that c1
qki

≥ 1 ∀p ∈ ΠT1 and c2
qki

≥ 1 ∀p ∈ ΠT2

then, the pair of integers (2n + 1, 2n + 5) is a cousin prime, include the cousin prime

in the set ΠCP otherwise is not and p divides either 2n + 1 or 2n + 5.

Step 4. Set n = n + 1 and go to step 2.

Sexy primes generator algorithm

Step 1. Enter n = 2, Π and the set of sexy primes ΠSP = {∅}.

Step 2. Do ∀p ∈ ΠT1 = {p : p is a prime such that 3 ≤ p < 2n + 1} and ∀p ∈ ΠT2 =

{p : p is a prime such that 3 ≤ p < 2n + 7} (where a numeration of the elements of

ΠT1 will be denoted by {q1
ki
}

#(ΠT1
)

i=1 and a numeration of the elements of ΠT2 will be

denoted by {q2
ki
}

#(ΠT2
)

i=1 and ΠT1 and ΠT2 denote the restriction of the set of primes

Π to the conditions specified in ΠT1 and ΠT2 respectively) the q1
ki

adic addition of

n + p−1
2

− (p − 1) and p − 1, and the q2
ki

adic addition of n + p+5
2

− (p − 1) and p − 1,

compute the number of carries c1
qki

and c2
qki

.

Step 3. If the number of carries is such that c1
qki

≥ 1 ∀p ∈ ΠT1 and c2
qki

≥ 1 ∀p ∈ ΠT2

then, the pair of integers (2n + 1, 2n + 7) is a sexy prime, include the sexy prime in

the set ΠSP otherwise is not and p divides either 2n + 1 or 2n + 7.

Step 4. Set n = n + 1 and go to step 2.

Prime triplets generator algorithm

Case a) Prime triplets of the form (2n − 1, 2n + 1, 2n + 5).

Step 1. Enter n = 3, Π and the set of prime triplets ΠTP = {(2, 3, 5), (3, 5, 7)}.

Step 2. Do ∀p ∈ ΠT1 = {p : p is a prime such that 3 ≤ p < 2n − 1} and ∀p ∈ ΠT2 =

{p : p is a prime such that 3 ≤ p < 2n + 5} (where a numeration of the elements of

ΠT1 will be denoted by {q1
ki
}

#(ΠT1
)

i=1 and a numeration of the elements of ΠT2 will be

denoted by {q2
ki
}

#(ΠT2
)

i=1 and ΠT1 and ΠT2 denote the restriction of the set of primes

Π to the conditions specified in ΠT1 and ΠT2 respectively) the q1
ki

adic addition of

n + p−3
2

− (p − 2) and p − 2, and the q2
ki

adic addition of n + p+3
2

− (p − 1) and p − 1,

compute the number of carries c1
qki

and c2
qki

.

Step 3. If the number of carries is such that c1
qki

≥ 1 ∀p ∈ ΠT1 and c2
qki

≥ 1 ∀p ∈ ΠT2

then, the triplet of integers (2n − 1, 2n + 1, 2n + 5) is a prime triplet, include the

prime triplet in the set ΠTP otherwise is not and p divides 2n− 1 or 2n+1 or 2n+5.

Step 4. Set n = n + 1 and go to step 2.

Case b) Prime triplets of the form (2n − 1, 2n + 3, 2n + 5).

Step 1. Enter n = 3, Π and the set of prime triplets ΠTP = {(2, 3, 5), (3, 5, 7)}.
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Step 2. Do ∀p ∈ ΠT1 = {p : p is a prime such that 3 ≤ p < 2n − 1} and ∀p ∈ ΠT2 =

{p : p is a prime such that 3 ≤ p < 2n + 3} (where a numeration of the elements of

ΠT1 will be denoted by {q1
ki
}

#(ΠT1
)

i=1 and a numeration of the elements of ΠT2 will be

denoted by {q2
ki
}

#(ΠT2
)

i=1 and ΠT1 and ΠT2 denote the restriction of the set of primes

Π to the conditions specified in ΠT1 and ΠT2 respectively) the q1
ki

adic addition of

n + p−3
2

− (p − 1) and p − 1, and the q2
ki

adic addition of n + p+1
2

− (p − 2) and p − 2,

compute the number of carries c1
qki

and c2
qki

.

Step 3. If the number of carries is such that c1
qki

≥ 1 ∀p ∈ ΠT1 and c2
qki

≥ 1 ∀p ∈ ΠT2

then, the triplet of integers (2n − 1, 2n + 3, 2n + 5) is a prime triplet, include the

prime triplet in the set ΠTP otherwise is not and p divides 2n− 1 or 2n+3 or 2n+5.

Step 4. Set n = n + 1 and go to step 2.

Prime quadruplets generator algorithm

Step 1. Enter n = 3, Π and the set of prime quadruplet ΠQP = {∅}.

Step 2. Do ∀p ∈ ΠT1 = {p : p is a prime such that 3 ≤ p < 2n − 1} and ∀p ∈ ΠT2 =

{p : p is a prime such that 3 ≤ p < 2n + 5} (where a numeration of the elements of

ΠT1 will be denoted by {q1
ki
}

#(ΠT1
)

i=1 and a numeration of the elements of ΠT2 will be

denoted by {q2
ki
}

#(ΠT2
)

i=1 and ΠT1 and ΠT2 denote the restriction of the set of primes

Π to the conditions specified in ΠT1 and ΠT2 respectively) the q1
ki

adic addition of

n + p−3
2

− (p − 2) and p − 2, and the q2
ki

adic addition of n + p+3
2

− (p − 2) and p − 2,

compute the number of carries c1
qki

and c2
qki

.

Step 3. If the number of carries is such that c1
qki

≥ 1 ∀p ∈ ΠT1 and c2
qki

≥ 1 ∀p ∈ ΠT2

then, (2n − 1, 2n + 1, 2n + 5, 2n + 7) is a prime quadruplet, include the quadruplet

prime in the set ΠQP otherwise is not and p divides 2n − 1 or 2n + 1 or 2n + 5 or

2n + 7.

Step 4. Set n = n + 1 and go to step 2.

5. CONCLUSIONS

In this paper algorithms for generation of prime k-tuples were presented. The

methodology proposed, based on the divisibility properties of binomial expressions,

results in a new computing approach where divisions are substituted by p-adic ad-

ditions. Theorems 7, 9, 10, 11 and 12 give new characterizations for k-tuple primes

which permit to check if a given k-tuple number is a k-tuple prime or not.
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