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ABSTRACT. Statistical approaches such as the linear regression models are used to analyze

software failure data. However, most of these regression models depend heavily on their underlying

parametric assumptions that in general, are not satisfied for the software failure data sets. In this

paper, we propose two regression models that are semi-parametric with unspecified error structures.

The first approach is based on the ranks of the residuals, while the second approach is based on

the monotone regression methods with the assumption that the ranks of failure data and the time

between failures are linear. These methods are quite parallel to the least squares method, but it

not only represents a robust alternative to the least square methods but also allows us to deal

with nonlinear relationships. Simulation studies and real failure data are used to demonstrate the

effectiveness of the proposed models.
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1. INTRODUCTION

In [15], it has been demonstrated that for most of the software failure data sets,

the linear regression models outperform other popular models from literature in terms

of the predictive accuracy of the Mean Time Between Failure (MTBF) estimates.

These estimates were measured using the Mean Square Error (MSE) and Mean Ab-

solute Value Difference (MAVD). However, for many of the software failure data,

certain parametric assumptions, such as the normality, does not hold. Also, the as-

sumption of uncorrelated errors is more often violated when applied to software failure

data, because it is collected over time in a sequential way. In regression literature,

there are many robust alternatives that have been developed in the last decades to

deal with these situations [4], [5], [6], [9] and [19]. One of the alternative ways is to

model the regression function nonparametrically so as to let the data decide on the

functional form. In many cases, the fitted values determined nonparametrically are

superior to the fitted values obtained from a parametric model. Nonparametric esti-

mates of the regression coefficients of a linear regression model were proposed by [12]
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and [13] by using the rank-based estimates. In this method, instead of minimizing

the least square errors, the regression coefficients are estimated by minimizing the

dispersion of the residuals consecutively. These estimates are based on the Wilcoxon

scores and the generalized Wilcoxon–Mann–Whitney tests. These procedures make

less stringent demands on the data and normality is not required to make inferences

about the predicted values.

In this paper, we will analyze some of the software failure data using two specific

non-parametric methods: namely, monotonic regression and rank regression. For

many real software failure data sets, a simple scatter plot of time of failures versus

time between failures show that the relationships need not be linear. The regression

procedure proposed in [15] can be considered as a first degree approximation model

to the real word data. The main strength of the proposed methods of this work is

that they enable us to model response variable which is nonlinearly related to the

predictor variable through a simpler linear regression procedure.

In Section 2, we will introduce some preliminary notations, definitions and mo-

tivation for using rank based methods. Section 3 will deal with error measurement

criteria. Much of the analysis of outliers and influential high leverage are discussed in

Section 4. In Sections 5 and 6, we will present proposed models. Numerical studies

done with the proposed procedures as well. In Section 7, we will compare the predic-

tive errors, mean square errors (MSE) and mean absolute value difference (MAVD),

and the minimum values of the convex function for the new models with those of the

least squares models. We will conclude the paper in Section 8.

2. PRELIMINARIES

The correlation coefficient is most useful in describing the degree of relationship

between the failure time and the time between failures
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We can then determine the probability that the observed correlation occurred by

chance by conducting a significance test: Null Hypothesis H0 : ρ = 0 versus Alternate

Hypothesis: H0 : ρ 6= 0. We will use the Spearman’s rho for the two data sets; System

40 and Project 1, [16]. The coefficient correlation between the failure time and the

time between failures of System 40 is ρ = 0.597. The test shows that the correlation

is significant at the 0.01 level (2-tailed). Similarly for Project 1, the correlation is

ρ = 0.544 and the test shows that we should reject the null hypothesis that ρ = 0 at

level 0.01. Thus, we can assume that the relationship between the failure data and



RANKED BASED REGRESSION METHODS 399

the time between failures exists. A similar test for relationship between the ranks of

failure time and the time between failures results in the following: The correlation

between ranks for system 40 is ρ = 0.608. The result is to reject the null hypothesis

that the correlation is zero. The ranks correlation of Project 1 failure data is ρ = 0.581

and the conclusion is to reject the null hypothesis.

Now, we will introduce some important terms and definitions. Let T1, . . . , Tn be

the failure times of the software, and let Y be the random variable representing the

time to the next failure. Consider the following linear regression model for software

failure prediction:

(2.1) Yi = α + βTi + εi, 1 ≤ i ≤ n,

where α is the intercept parameter, β is the parameter representing the regression

coefficient and εi represents the random errors.

Definition 1 ([7]). Let D(.) be a measure of variability that satisfies the following two

properties: (i) D(T +a) = D(T ), and (ii) D(−T ) = D(T ). Then D(.) is called an even

location-free measure of variability, it follows that D ((Yi − βTi) − α) = D (Yi − βTi).

Hence, the intercept α of (2.1) has no effect on the measure of variability and we only

need to analyze the residuals Yi − βTi.

Definition 2. The rank regression estimator β̂ is the value of β that minimizes the

sum:

(2.2) D(β) =
n∑

i=1

Rc
i (β) (Yi − βTi)

where

(2.3) Rc
i (β) = Ri(β) −

(n + 1)

2

is the centered ranks or mid-ranks and Ri(β) are the ranks of the residuals Yi − βTi

Here Ri(β) denotes the rank of the residual as a function of β.

It follows that
n∑

i=1

Rc
i(β) = 0, Rc

1(β) ≤ Rc
2(β) ≤ · · · ≤ Rc

n(β) (monotone), and

Rc
i (β) = −Rc

n−i+1(β) (antisymmetric). Also, the dispersion function D(β) is a linear

combination of ordered residuals. Assume that D(.) satisfies the assumptions of

Definition 1 and let β̂ be the value that minimizes D (Y − βTi). The corresponding

minimum is denoted by V = D
(
Yi − β̂Ti

)
. This is a semi-parametric approach to

the problem of estimating the regression coefficients in a linear model. For the rank

procedure, the residuals are no longer squares as the least squares method, but are

weighted according to their ranks. This helps to reduce the effects of outliers and

makes it desirable for heavy tailed residual distributions (see [10]).
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Theorem 1. D(β) defined in equation (2.2) is indeed an even location-free measure

of variability.

Proof. From (2.1), it is enough to prove that: (i) D(β, α) = D(β), where D(β, α) =

D ((Yi − βTi) − α), and (ii) D(−β) = D(β).

(i) Now,

D(β, α) = D ((Yi − βTi) − α)

=

n∑

i=1

Rc
i(β) (Yi − βTi − α)

=

n∑

i=1

Rc
i(β) (Yi − βTi) − α

n∑

i=1
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i (β)
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n∑

i=1

Rc
i(β) (Yi − βTi) = D(β).

(ii) To show that D(−β) = D(β),

D(−β) = D (− (Yi − βTi))

=
n∑

i=1

−Rc
i (β) (Yi − βTi)

=
n∑

i=1

Rc
n−i+1(β) (Yi − βTi) (by antisymmetry)

=
n∑

i=1

Rc
i (β) (Yi − βTi) = D(β).

Thus, we have an even and location-free measure of dispersion.

3. ERROR MEASUREMENTS PREDICTION CRITERIA

We denote the estimated value of a measure of the time between failures with

M̂TBF and the actual value with TBF . We will be using the following metrics to

evaluate the accuracy of estimates and to compare the software models.

Mean Squared Error (MSE). The MSE of an estimator T of an unobservable

parameter θ is defined by

MSE(T ) = E
(
(T − θ)2

)
.

Then,

(3.1) MSE =
1

n

n∑

i=1

(
TBFi − M̂TBF i

)2

.
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Mean Absolute Value Difference (MAVD). MAV D is defined as the average of

the difference between predicted mean time between failures and actual time between

failure values,

(3.2) MAV D =
1

n

n∑

i=1

∣∣∣TBF − M̂TBF
∣∣∣ .

Magnitude of Relative Error (MRE) ([17]). MRE is the absolute value of the

relative error, defined by

(3.3) MRE =

∣∣∣∣∣
M̂TBF − TBF

TBF

∣∣∣∣∣

Mean Magnitude of Relative Error (MMRE). MMRE is the mean of MRE.

Conte et al. [3] considered MMRE ≤ 0.25 to be an acceptable value for predic-

tion models effort. There are advantages for this assessment: (i) Comparisons can be

made easily across failure time data sets, (ii) the mean magnitude of relative error

is independent of units of data, (iii) comparisons can be made across all types of

prediction models, [3], and (iv) since MMRE is independent of scale, which is the

expected value of MRE does not vary with size. Kitchenham et al. [14] proposed

another measure, the magnitude of error relative to the estimate.

Magnitude of Error Relative to the Estimate (MER). The MER is defined

as

(3.4) MER =

∣∣∣M̂TBF − TBF
∣∣∣

M̂TBF

Mean Magnitude of Error Relative to the Estimate (MMER). MMER is

defined as the mean of MER.

In [17], it was shown that MER measure seems preferable to MRE because it

measures the error relative to the estimate value of mean time between failures.

Median of Absolute Residual (MdAR). Another measure proposed in [14] is

median of the absolute error AR instead of MMRE, where the absolute error is

defined as

(3.5) AR =
∣∣∣TBF − M̂TBF

∣∣∣

Then, MdAR is the median of the values of AR. Also, MAR, which is the mean of

AR. MAR is nothing but MAV D, which we have already calculated. Table 8 shows

error values of different methods of measurement (MSE,MAV D,MMRE,MdAR)

for some of the software failure time data sets such as System 40, Project 1, and

Project 5 in [16].
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The Measure of Dispersion (V).

(3.6) D
(
β̂
)

=
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i=1
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(
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)(
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)

where Rc
i

(
β̂
)

is the centered rank of the residuals.

4. DETECTING OUTLIERS AND LEVERAGE VALUES

In regression analysis, outliers, or over-influential observations represent obser-

vations that need careful examination. The residuals are the most commonly used

measures for detecting outliers. There are two common ways to calculate the stan-

dardized residual for the ith observation. One uses the residual mean square error

from the model fitted to the full data set (internally studentized residuals). The other

uses the residual mean square error from the model fitted to all of the data except the

ith observation (externally studentized residuals). The externally studentized residu-

als follow a t-distribution [1]. The following formula gives the amount of contribution

of the ith observation to its own fitted value in least squares regression. It is useful

in determining the influence of each observation

(4.1) hi =
1

n
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ti − t
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Note that

(4.2) hi ≥
1

n
and

n∑

i=1

hi = 2.

We used hi ≥ 6/n as a threshold condition to obtain leverage observations. A good

leverage point is a point that is unusually large or small among the observations, and

is not a regression outlier. In the Project 1 data set, there are two outliers (0.69 and

1.10) and three leverage values (0.69, 1.10 and 1.39). We can consider the observation

1.39 as a good leverage point. Additionally, in System 40, there are no outliers but

one leverage point that is considered to be a good leverage value. A bad leverage

point is a point that has an unusually large residual corresponding to regression line.

A bad leverage point is an outlier among all observations as well. Bad leverage points

can adversely affect the estimated value of the slope. Such an effect has been seen

in the case of Apollo 8, with the leverage value 33. The normality test reveals that

Apollo 8 data is not normal; Projects 1 and 5 have outliers and slightly depart from

the normality. In such cases, it can substantially reduce our ability to detect a true

association between the failure time and time between failures. However, the outliers

among the failure time T values will inflate the sample variance s2
t , and this will

decrease the standard error of the least squares estimate of the slope. This suggests

that outlier points are beneficial in terms of increasing our ability to detect regression



RANKED BASED REGRESSION METHODS 403

lines which have a nonzero slope. However, there is another concern that must be

taken into consideration. If the T value is a leverage point and the time between

failures is an outlier, then we have a regression outlier that might completely distort

how the bulk of the points are related. In a similar manner, we can fail to detect

a situation where the slope differs from zero. This occurs not because the slope is

indeed zero, but because regression outliers mask an association among the bulks of

the points under study. Also, the error measurements of the least squares regression

line is not resistant to outliers as we have seen in the following tables described in

[15] for the Apollo 8, System 40, Project 1 and Project 5 data sets. Now, we will

demonstrate in Table 1 the effect of outlier and leverage values in Apollo 8 data on

the error measurements of the software reliability regression model of the first degree

(SRRM1) using the least square procedure.

Table 1. The Effects of Outlier and Leverage Values on SRRM1 (A8) Model

Model Measurement

Criteria

Complete

Data

Data

Without

Leverage

Value ‘91’

Data

Without

Outliers

‘33, 91’

SRRM1 MSE 151, 9420 29, 3014 7.1063

SRRM1 MAVD 6, 3229 3.1597 1.9085

SRRM1 MMER 0.5914 0.57 0.5147

SRRM1 MMRE 2.2680 1.01 0.7385

SRRM1 MdAR 2.2045 2.18 2.0853

SRRM1 V(LSR) 341.25 11.64 73.6

We have been shown that the least squares regression line has an estimated slope

of 0.1132, MSE = 151.9420, and MAVD = 6.3229 in the case of complete data, while

the slope of the regression is −0.0428, MSE = 7.1063, and MAVD = 1.9805 in the

case of removing the two outliers, 33 and 91, of TBF. This negative association is

missed by the least squares regression line because of the outliers. In fact the two

outliers, 33 and 91, caused problems. Even if we remove the most extreme outlier, 91

and keep the other less hazardous outlier, 33, we get the following results: the slope

of the regression line is 0.0124, MSE = 29.3014, and MAVD = 3.1597. Besides, the

mean square error is improved by removing the outliers. Therefore, the least squares

regression line offers no hint of a strong association even though the mean square error

is low compared to previous models. The slope estimator is not resistant to outliers

and if there is a small departure from normality, devastating consequences would

erupt when trying to use the least squares regression method. In other words, this

method is not robust and the slope of the regression line can be extremely sensitive
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to small changes in the probability curve or to the existence of outliers. The removal

of the outliers from Apollo 8 data improves the SRRM1 model by decreasing its MSE

and MMRE values. This model is not robust for Apollo 8 effort prediction, even if it

has better results than both of Roberts [18] and Suresh [22] models.

The System 40 software failure data has no outliers, but it has one leverage

value. Table 2 demonstrates the effect of even one single leverage value on the error

measurements of the least squares regression model. The SRRM1 model is very

sensitive to leverage values too.

Since MMRE = 0.12 ≤ 0.25, applying this model on System 40 data can be

considered as acceptable for effort prediction. Therefore, there is no need for us to

eliminate the leverage values from System 40 failure data.

Table 2. The Effects of Outlier and Leverage Values on SRRM1 Model

(S 40)

Model Measurement

Criteria

Complete

Data

Data

Without

Leverage

Value

‘4.70’

Data

Without

Outliers

SRRM1 MSE 2.5657 2.3428 No Outliers

SRRM1 MAVD 1.2370 1.1736 No Outliers

SRRM1 MMER 0.1224 0.1138 No Outliers

SRRM1 MMRE 0.1320 0.1223 No Outliers

SRRM1 MdAR 1.0701 1.0336 No Outliers

SRRM1 V(LSR) 404 400 No Outliers

Table 3. The Effects of Outlier and Leverage Values on SRRM1 (P1) Model

Model Measurement

Criteria

Complete

Data

Data

Without

Leverage

Value ‘91’

Data

Without

Outliers

‘33, 91’

SRRM1 MSE 1.7965 1.6384 1.7209

SRRM1 MAVD 0.9479 0.9195 0.9428

SRRM1 MMER 1.1691 0.1628 0.1694

SRRM1 MMRE 0.2733 0.2277 0.2423

SRRM1 MdAR 0.6596 0.6125 0.6577

SRRM1 V(LSR) 343 357.65 355
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This model is sensitive to outliers. These analyses of the data sets show the

need to use more robust methods in lieu of the least square method for software

reliability analysis. Even though, the least squares regression methods in terms of

error measures introduced in [15] gave very good results, there was an issue of small

values. This casts doubt about the robustness of a simple linear regression model.

Since we are dealing with real life software failure time, it is not acceptable to drop

the outliers from analysis. We will now utilize two methods, the monotone and rank

regression that are less sensitive to outliers and high leverage values.

5. MONOTONE REGRESSION

Iman and Conover [11] introduced the idea of rank transform procedure in re-

gression as an alternative method to formulating a nonlinear data [20]. In software

failure models, as the bugs are removed, it is assumed that the time between failures

will increase on average. That is, assume that E(Y | T ) increases (at least, it does

not decrease) as T increases. Since there is a monotonic relationship between T and

Y for Apollo 8, Project 1, and System 40 failure data sets, the relationship between

T and Y is nonlinear. The procedure used in this work is to replace the dependent

variable Y by R (Yi), the assigned rank to the ith value of Y . Similarly, replace each

of the failure times T with its corresponding ranks R (Ti). Ties are assigned by their

average ranks. The monotonic regression procedures depend on the fact that the

ranks of these two variables have a linear relationship if the corresponding variables

have a monotonic relationship. The linear regression equation based on ranks is given

by

(5.1) R(Yi) = α + βR(Ti) + εi

The least squares regression analysis is performed on the ranks of T and Y . The

regression equation which expresses R̂ (Yi) in terms of R (Ti) is

(5.2) R̂ (Yi) = (n + 1)/2 + β̂ (R (Ti) − (n + 1)/2) + εi.

Since these monotonic procedures can be viewed as the usual parametric procedures

applied to ranks, the hypothesis test of the ranked data suggests using the linear

regression. We will apply the following algorithms on software failure data to obtain

the regression curve.

Algorithm of Obtaining the Estimate of E(Y | T ) at a Particular Point. In

order to estimate the regression of the time between failures Y on T at a particular

failure time T = t0, apply the following algorithm [2].

1. Acquire the ranks R (Ti) and R (Yi) of the T and Y , respectively. In case of ties

use average of tied ranks.
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2. Identify the least squares regression estimators of equation (5.1),

β̂ =

n∑
i=1

R (Ti) R (Yi) − n(n + 1)2/4

[
n∑

i=1

[R (Ti)]
2 − n(n + 1)2/4

](5.3)

α̂ =
(
1 − β̂

)
(n + 1)/2,(5.4)

3. A rank R (t0) for t0 can be acquired by applying the next algorithms:

(a) If t0 equals one of the observed points Ti, let R (t0) equal the rank of that

Ti.

(b) If t0 exists between two adjacent values Ti and Tj where Ti < t0 < Tj ,

interpolate between their respective ranks to get R (t0)

(5.5) R (t0) = R (Ti) +
t0 − Ti

Tj − Ti

[R (Tj) − R (Ti)] .

Note that this “rank” is not necessarily an integer.

(c) If t0 is less than the smallest observed T or greater than the largest observed

T , do not attempt to extrapolate. Information on the regression of Y on T

is available within the observed range of T .

4. Substitute R (t0) for t in (5.1) to get an estimated rank R (y0) for the corre-

sponding value of E (Y | T = t0)

(5.6) R̂ (y0) = α̂ + β̂R (t0) .

5. Transform R (y0) into Ê (Y | T = t0), an estimate of E (Y | T = t0), by referring

to the observed Yi as follows:

(a) If R (y0) equals the rank of one of the observations Yi, let the estimate

Ê (Y | T = t0) equal observation Yi.

(b) If R (y0) is between the ranks of two adjacent values of Y , say Yi and Yj

where Yi < Yj, so that R (Yi) < R (y0) < R (Yj), interpolate between Yi and

Yj:

(5.7) Ê (Y | T = t0) = Yi +
R (y0) − R (Yi)

R (Yj) − R (Yi)
(Yi − Yj) .

(c) If R (y0) is greater than the largest observed rank of Y , let Ê (Y | T = t0)

equal the largest observed value Y . If R(y0) is less than the smallest observed

rank of Y , let Ê (Y | T = t0) equal the smallest observed value Y .

The Estimate of the Regression of Y on T . The following procedure is used to

get the entire regression curve consisting of all points.

1. Obtain the end points of the regression curve by using the smallest T (2.1) and the

largest T (n) observations in the preceding procedure to obtain Ê
(
Y | T = t(2.1)

)

and Ê
(
Y | T = t(n)

)
.
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2. For each rank of Y , find the estimated rank of Ti and R̂ (Ti) from (5.2)

(5.8) R̂ (Ti) = [R (Yi) − α̂] /β̂, i = 1, . . . , n.

3. Transform each R̂ (Ti) to an estimate T̂i in the manner of the preceding Step 5.

More specifically:

(a) If R̂ (Ti) equals the rank of some observation Ti, let T̂i equal that observed

value.

(b) If R̂ (Ti) is between the ranks of two adjacent observations Tj and Tk, where

Tj − Tk < 0, obtain T̂i by using the following equation:

(5.9) T̂i = Tj +
R̂ (Ti) − R (Tj)

R (Tk) − R (Tj)
[Tk − Ti] .

(c) For all observed ranks of T values, if R̂ (Ti) < min (R (Ti)) or R̂ (Ti) >

max (R (Ti)), then there is no estimate for T̂i.

4. Plot each of the points found in Step 3, with Yi as the ordinate and T̂i as the

abscissa. Also plot the end points found in Step 1, with E(Ŷ | T ) as the ordinate

and T (2.1) or T (n) as the abscissa. All these points are monotonic, increasing if

β̂ > 0 and decreasing if β̂ < 0.

5. The estimate of the regression of Y on T is represented by lines joining points

in Step 4.

Results of Monotone Regression. Now we will apply the monotone regression

procedure to some of the software failure data sets.

Table 4. Analysis of Software Monotone Regression Method (Apollo 8)

Measurement

Criteria

Complete

Data

Data

Without

Leverage

Values

‘33’, ‘91’

Data

Without

Leverage

Value ‘91’

MSE 326.7174 9.8692 42.9201

MAVD 6.9378 2.5810 3.7246

MMER 1.4040 0.5796 0.7987

MMRE 1.2132 0.9779 1.1072

MdAR 2.3256 2.1249 2.4462

Table 4 demonstrates its sensitivity to outliers and leverage values.
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Table 5. Analysis of Software Monotone Regression Method (System 40)

Measurement

Criteria

Complete

Data

Outliers Data

Without

Leverage

Value ‘91’

MSE 2.9877 No outliers exist 2.7345

MAVD 1.3286 No outliers exist 1.2868

MMER 0.1295 No outliers exist 0.1249

MMRE 0.1460 No outliers exist 0.1365

MdAR 1.0331 No outliers exist 1.0166

There are no outliers in System 40, but one can observe that in Table 5 the

impact of removing the leverage values on the measurements output is very little.

This means that the monotone regression is insensitive to leverage values for System

40 data. At the same time, notice that MMRE = 0.1460 < 0.25 for complete System

40 data, indicating that the monotone regression is an acceptable predictive model

for applying System 40.

Table 6. Analysis of Software Monotone Regression Method (Project 1)

Measurement

Criteria

Complete

Data

Data

Without

Outliers

Data

Without

Leverage

Values

MSE 2.0517 19.6718 16.05

MAVD 1.0592 4.1360 3.77

MMER 0.0408 2.9756 2.10

MMRE 0.1981 0.7150 0.64

MdAR 0.7494 4.31 3.91

From Table 6, we see that the Monotone regression method is very good for

complete data. MSE and MAVD values are small, and MMRE = 0.1981. This

information proves that the monotone regression for the Project 1 data set is an

acceptable prediction model. While if we remove the outliers or the leverage values,

then MMRE = 0.7150 and MMRE = 0.64 respectively lead us to decide that this

model is not acceptable for prediction in the absence of outliers and leverage values.

Because we are dealing with real life software data, it is crucial to keep these values.
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Table 7. Analysis of Software Monotone Regression Method (Project 5)

Measurement

Criteria

Complete

Data

Data

Without

Outliers

Data

Without

Leverage

Values

MSE 2.7975 2.4576 2.3085

MAVD 1.3348 1.2819 1.2525

MMER 0.0148 0.0109 0.0090

MMRE 0.0597 0.0451 0.0399

MdAR 1.1471 1.1108 1.1

Since the value MMRE = 0.0597 ≤ 0.25 in Table 7, it is significant, that the

monotone regression model is an acceptable model for prediction for complete data.

The percent effect of outliers is 12.15 percent, while the percentage effect of leverage

values is 17.48 percent. This result shows that the monotone regression is insensitive

to outliers for Project 5.

6. RANK REGRESSION BASED ON ROBUST SLOPE ESTIMATION

For the monotone regression, we were investigating errors by assuming that the

ranks of the failure data and the time between failures were linearly related. However,

in this section we are taking into consideration the ranks of the residuals. Ranking

the residuals reduces the effects of outliers [9, 10]. Iman and Conover [11], Sawyer

[21], and Theil [23, 24, 25] introduced the rank regression method. In this section,

we will adopt this method to study the software reliability models. Recall equations

(2.1), (2.2), and (2.3). Since
n∑

i=1

Rc
i (β) =

n∑

i=1

(
Ri(β) −

(n + 1)

2

)
= 0

then

D(β, α) =
n∑

i=1

Rc
i (β) (Yi − βTi − α)

(6.1) D(β, α) =
n∑

i=1

Rc
i (β) (Yi − βTi) = D(β).

Equation (5.6) represents the sum that involves the residuals (Yi − βTi − α) of the re-

gression equation (2.1). Instead of equation (5.6), the least-squares estimators (LSE)

of α and β are found by minimizing:

(6.2) C(α, β) =
n∑

i=1

(Yiα − βTi)
2 .
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The LSE of β̂c from equation 5.7 is:

(6.3) β̂c =

n∑
i=1

(
Yi − Y

) (
Ti − T

)

n∑
i=1

(
Ti − T

)2 .

Equation (5.6) can be minimized for β, but the computations are very difficult. How-

ever a natural generalization of the LSE β̂c in equation (5.8) is to minimize

(6.4) E(α, β) =

n∑

i=1

|Yi − α − βTi|

instead of C(α, β) in equation (5.7). But the parameter estimates α̂1, and β̂1 are

computed by minimizing the function E(α, β) in equation (5.9) are not easy to an-

alyze for the proposed rank regression model. This leads us to use Theil’s statistics

procedure [8], [23], [24], and [25] to compute the slope estimator of equation (2.1).

Theil’s estimator is:

(6.5) β̂TH = median{Sij}, 1 ≤ i < j ≤ n

where

Sij =
(Yj − Yi)

(Tj − Ti)
, 1 ≤ i < j ≤ n.

Compute N = n(n − 1)/2 individual sample slope values of Sij . Let S(2.1) ≤ S(2.2) ≤

· · · ≤ S(N) be the ordered sample slope values of Sij . If N = 2k+1 is odd, then β̂TH =

S(k+1), where k = (N −1)/2. If N = 2k, then k = N/2 and β̂TH =
[
S(k) + S(k+1)

]
/2.

If the values of Ti are equally spaced, then β̂TH and the rank regression estimator

β̂ from [8] can be shown to be asymptotically equally powerful for estimating β, [8].

If Ti are not equally spaced as in the software failure time data sets [16], then the

rank-regression estimator β̂ is asymptotically more powerful, or is more accurate for

the same size of failure data, [21].

Theorem 2. If Rc
i(β) = Ri(β) − n+1

2
is the centered rank of Yi − βTi, then D(β) =

n∑
i=1

Rc
i (β) (Yi − βTi) is continuous, piecewise linear, and convex upwards. Let

(6.6) kT = min

{

k : Sk = −Q +

k∑

p=1

|Tjp − Tip|

}

> 0.

For k = kT , the rank regression estimator β̂ is:

(6.7) β̂ = Wk =
Yjk − Yik

Tjk − Ti

, if Sk−1 < 0 < Sk.

Equation (6.3) corresponds to the case of a unique minimum value for D(β).

(6.8) β̂ =
Wk−1 + Wk

2
, if Sk−1 = 0 < Sk.

Equation (6.4) corresponds to an interval of minimum values, [8], [12] and [21].



RANKED BASED REGRESSION METHODS 411

Proof. Here we present our proof, according to the possible values/conditions of D(β):

(i) D(β) is a piecewise linear function. For simplicity, assume that there are

no ties among the failure data pairs (Ti, Yi). Let Rα(β) be the ranks of Zα =

Yα − βTα, for 1 ≤ α ≤ n. If there is a solution of Yj − βTj = Yi − βTi for i 6= j,

then the values of Zα have tied values of (Tα, Yα)

Yj − βTj = Yi − βTi ⇔ Yj − Yi = β (Tj − Ti)

(6.9) β = Z(i, j) =
Yj − Yi

Tj − Ti

; Ti 6= Tj.

Equation (6.5) implies {Zα} = {Yα − βTα} has no tied values as

β 6= Z(i, j) =
Yj − Yi

Tj − Ti

, (Tj 6= Ti)

which are at most N = n(n−1)
2

in number. The sorted values (Yα − βTα) keeps

the same relative order as soon as

β 6= Z(i, j) =
Yj − Yi

Tj − Ti

.

In other words, the ranks Ri(β) are constant in each of the N + 1 = n(n−1)
2

+ 1

intervals (Wk, Wk+1) for 0 ≤ k ≤ N , where Wk are the sorted values Z(i, j), such

that it is sorted in an increasing order with W0 = −∞, and WN+1 = +∞. Since

the ranks Ri(β) are constant in each interval (Wk, Wk+1), then the function

D(β) =
n∑

i=1

Rc
i (β) (Yi − βTi)

is piecewise linear

(6.10) D(β) = Ak + βBk

where Wk < β < Wk+1, Ak =
n∑

i=1

Rc
i (β)Yi, and Bk = −

n∑
i=1

Rc
i (β)Ti.

(ii) D(β) is convex upward. If β1 < W1, then the relative order of Yi − βTi stays

the same as β becomes arbitrarily large and negative. This implies that Yi−βTi

has the same relative order as Ti, or R (Ti). With this said, the slope then the

slope of D(β) is B0 = −Q < 0, where Q =
n∑

i=1

Rc
i (T )Ti > 0. If β > WN , where

N = n(n−1)/2, then the slope of D(β) is BN > 0,
n∑

i=1

Rc
i (T ), Ti > 0. Therefore,

D(β) has a minimum value, i.e., D(β) is convex upwards.

(iii) D(β) is continuous. Now what happens if W1 < β < WN , and β crosses one of

the values of Wk, 1 ≤ k ≤ N? If there is a single tie, then: Yj − βTj = Yi − βTi

at β = Wk with Ti < Tj

Ya − βTa = Ya − WkTa + (Wk − β) Ta
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if β < Wk then Yj−βTj > Yi−βXi, and if β > Wk then Yj−βTj < Yi−βXi. If β

is sufficiently close to Wk, then no other values Ya−βTa lie between the previous

two values. Therefore, there exists an integer m such that for sufficiently small

b > 0, we have:

Rj(β) = m + 1 and Ri(β) = m for Wk − b < β < Wk(6.11)

Rj(β) = m and Ri(β) = m + 1 for Wk < β < Wk + b(6.12)

and we have no other change in ranks Ra(β)(a 6= i, j) in the interval Wk − b <

β < Wk + b implies

(a) D(β) =
n∑

a=1

Ra(β) (Ya − RTa) is a continuous function across β = Wk. By

equations (6.10)–(6.12), there is only one change in the ranks of Ra(β). This

change happens when both ranks Ri(β) and Rj(β) switch their values at

β = Wk. However, since the coefficients Rc
i (β), Rc

j(β) have the tied values

Yj−βTj = Yi−βTi for D(β) under the condition β = Wk, D(β) is continuous.

We can then follow the same procedures if {Ya−βTa} has multiple tied values

at β = Wk.

(b) By assuming Ti < Tj and using equations (6.10)–(6.12) as β increases

through Wk the change in the slope parameter D(β) is

Bk − Bk−1 = −

(
n∑

a=1

Rc
a (β + a)Ta −

n∑

a=1

Rc
a(β − a)Ta

)

= − ((mTj + (m + 1)Ti) − ((m + 1)Tj + mTi))

= Tj − Ti.

(6.13)

However, if we assume Ti > Tj , then Bk −Bk−1 = Ti − Tj. In general for all

the values of Ti and Tj , we have Bk − Bk−1 = |Ti − Tj|.

Assume that Ti are increasing, then the slope of D(β) increases by Tj −Ti > 0

at each β = Wk for 1 ≤ k ≤ N . If β < W1, then the slope of D(β) = −Q, and

if β > WN , then the slope of D(β) = Q. For verification, consider the pair (i, j)

for Wk = Z(i, j) and (6.5), where

(6.14) {Wk : 1 ≤ k ≤ N} = (sorted)

{
Yj − Yi

Tj − Ti

: 1 ≤ i < j ≤ n, Ti 6= Tj

}
.

If the values of Ti are strictly increasing, then

(6.15)

∑∑

(i,j)

(Tj − Ti) =
∑ ∑

1≤i<j≤n

(Tj − Ti) =
n∑

j=1

j−1∑

i=1

Ti −
n∑

i=1

n∑

j=i+1

Tj

=

n∑

j=1

(j − 1 − (n − j)) Tj = 2

n∑

j=1

(
j −

(n + 1)

2

)
Tj = 2Q.

This is another proof that the slope of D(β) is BN = Q. To find the minimum

value of D(β). Using equation (6.8) we have that the slope of D(β) in (Wk, Wk+1)
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is:

(6.16) Bk = B0 +
k∑

p=1

(Bp − Bp−1) = B0 +
k∑

p=1

(Tjp − Bip) = Sk

Thus, Sk = Bk in equation (6.10) is the slope of D(β) in (Wk, Wk+1):

(i) If Sk−1 < 0 < Sk then β = β̂ = Wk is the unique minimum value of D(β).

Resulting in: β̂ = Wk =
Yjk−Yik

Tjk−Ti
.

(ii) Sk−2 < 0, Sk−1 = 0, Sk > 0, then β̂ = Wk−1+Wk

2
. Note that equation (6.3)

represents a unique minimum value of D(β), and equation (6.4) corresponds

to an interval estimation of minimum values. Similar to the monotone regres-

sion case, an algorithm can be developed for computing the slope estimator

β̂.

7. NUMERICAL AND SIMULATION RESULTS

AND COMPARISONS

In this section, we will present errors resulting from the application of rank re-

gression to the software failure data sets.

Table 8. Analysis of Software Rank Regression (Apollo 8)

Measurement

Criteria

Complete

Data

Data Without

Outlier Values

Data Without

Leverage Values

MSE 429.4732 19.4206 73.7114

MAVD 8.2009 3.299 4.8218

MMER 7.5311 2.0602 0.1770

MMRE 1.5341 N/A N/A

MdAR NA NA NA

V(RRS) 245.7090 209.9932 243.2727

Table 9. Analysis of Software Rank Regression (System 40)

Mesurement

Criteria

Complete

Data

Data Without

Outlier Values

Data Without

Leverage Values

MSE 28.56 No outlier exists 24.41

MAVD 4.59 No outlier exists 4.26

MMER 0.73 No outlier exists 0.58

MMRE 0.46 No outlier exists 0.42

MdAR 4.44 No outlier exists 4.27

V(RRS) 1274.97 No outlier exists 1199.35
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Table 10. Analysis of Software Rank Regression (Project1)

Mesurements

Criteria

Complete

Data

Data Without

Outlier Values

Data Without

Leverage Values

MSE 21.8342 21.1284 20.1449

MAVD 3.9773 3.9337 3.8370

MMER 6.7568 0.2167 0.1967

MMRE 0.9864 0.8452 0.7964

MdAR 3.8216 3.7546 3.6655

V(RRS) 1343.90 1334 1305

Examining Tables 8, 9 and 10, we can conclude that the rank regression is insen-

sitive to outliers and to leverage values. This is in contrast to the results obtained

in [15], where it has been shown that the linear regression models are very sensitive

to the presence of outliers and to leverage values. Since the data are real, removing

the outliers and to leverage values are not an option, and hence rank based methods

seem to be more appropriate.

Simulation and other studies. Table 11 represents the output of three models:

least squares regression, Monotone regression, and the rank regression by applying the

three procedures on the monotonic data that is taken from [20]. The results support

the point-of-view that if the data is monotonic then the monotonic regression method

is the better choice for software reliability.

Table 11. Comparison of Models Using Different Measurement’s Cri-

teria (for a Monotonic Data)

Model Least Squares

Method

Monotone

Regression

Rank

Regression

MSE 3.2814 0.2011 7.1656

MAVD 1.4008 0.2829 1.8184

MMER 0.1020 0.0188 0.1175

MMRE 0.1454 0.0193 0.2450

V 36.9 116.10 99.7500

R-Square 0.9512 0.9692 0.5767

R-adj 0.9485 0.9675 0.5532

The results in Table 11 support this study for the need of the monotone regres-

sion model. Since the hypothetical data is normal, we are expecting the least squares

regression model to be acceptable model for prediction. The MMRE of the three
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models is smaller than 0.25, meaning that all three models are considered to be ac-

ceptable for prediction for a normal data. At the same time the error measurements

of the monotonic regression model is the best among these three. The value of R-

square is 0.9512 for the least squares method, and R2 = 0.9692 for the monotonic

regression method, while the value R-square for the rank regression method is 57.67

percent. These results are very good for the simulated Monotonic normal data. The

error measurements of the rank regression illustrate an acceptable model for predic-

tion for the data drawn from a normal distribution. In order to facilitate further

study, we simulated two different normal data sets of sizes 20 and 50. There were no

monotonicity assumptions.

Table 12. MSE and V Percentage Effect of Outlier Values (n = 20)

for Normal Simulated Failure Data
Models Complete Data Data Without

Outliers

Percentage

Effect of

Outliers

Least Square Regression MSE = 0.0197 MSE = 0.0154 21.8274

Monotone Regression MSE = 0.0240 MSE = 0.0188 21.6667

Rank Regression V = 57.1451 V = 52.1208 8.7922

Table 13. MSE and V Percentage Effect of Outlier values (n = 50)

for Normal Simulated Failure Data
Models Complete Data Data Without

Outliers

Percentage Effect

of Outliers

Least Square Regression MSE = 0.0157 MSE = 0.0114 27.3885

Monotone Regression MSE = 0.0192 MSE = 0.0129 32.8125

Rank Regression V = 157.2260 V = 142.9994 9.0485

Looking at the percentage effect of outliers in Tables 12 and 13, even if both

data sets are normal, we have better results for the rank regression model in both

cases, while the monotone regression is better than the least squares regression for

the data of sample size 20. The above results show that the rank regression is insen-

sitive to outliers and is a better model even when the data is coming from a normal

distribution. In order to see the effects of these methods on a skewed data, we have

simulated 50 data values from a truncated skewed Laplace distribution. The following

table gives the results.
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Table 14. MSE and V% Effect of Outlier Values (TSL n = 50) for

Simulated Truncated Skewed Laplace Failure Data of Size 50

Models Complete Data Data Without

Outliers

Percentage Effect

of Outliers

Least Square Regression MSE = 1.2079 MSE = 0.2709 77.5726

Monotone Regression MSE = 3.6117 MSE = 1.2747 64.7063

Rank Regression V = 223.3501 V = 107.0164 52.0858

Again, looking at the percentage effect, we see that the rank regression outper-

forms the other methods.

8. CONCLUSION

In this paper two non-parametric approaches were proposed, the monotone re-

gression and the rank robust regression models. The results illustrate that if we relax

the assumptions of the least square procedure described in [15], the monotone regres-

sion and rank regression models perform well for: System 40, Project 1, and Project

5 failure data sets. Both of these models are capable of predicting the next failures

with smaller error measurements. They are also less sensitive to outliers and leverage

values of the time between failures, in comparison with the parametric models. The

percentage effects of outliers and leverage values illustrate that the rank regression

model is less sensitive to outliers and leverage values than either the least squares

regression or the monotone regression.
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