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ABSTRACT. In this paper, a mathematical model for insect viruses attacking pests is constructed

and two models of continuous and impulsive pest control strategies are analyzed. In case of a

continuous control, it is shown that the model admits a globally asymptotically stable positive

equilibrium under certain condition. As a result, the global asymptotic stability of the unique

positive equilibrium point is used to establish a procedure to maintain the pests at an acceptably

low level in the long term. In case of an impulsive control, it is observed that there exists a globally

asymptotically stable pest-eradication periodic solution on condition that the amount of viruses

released periodically is larger than some critical value. When the amount of viruses released is less

than some critical value, the system is shown to be permanent, which implies that the trivial pest-

eradication solution loses its stability. Furthermore, the mathematical results are also confirmed by

means of numerical simulation. Finally, the efficiency of continuous and impulsive control policies

is compared.

AMS (MOS) Subject Classification. 90B50

1. INTRODUCTION

Currently, the application of chemical pesticides to combat pests is still one of the

main measures to improve crop yields. However, the heavy and unreasonable use of

chemical pesticides results in pest and disease resistance, a large quantity of pesticide

residues, serious environmental pollution and people and livestock poisoned from

time to time, which is seriously harmful to people’s lives. It has become an urgent

issue to reduce the use of high toxicity of high pesticide residues and to promote the

technology of pollution-free plant. Therefore it is necessary to apply the biological

control of plant diseases and insect pests.

Biological control is, generally, human use of a suitably chosen living organism,

referred as the biocontrol agent, to control another. Biocontrol agents can be preda-

tors, pathogens or parasites of the organism to be controlled that either kill the

harmful organism or interfere with its biological processes [1]. In a large number
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of bio-pesticides, the insect virus pesticide plays an important role in pest biologi-

cal control for its high pathogenicity, specificity, and simple production. The insect

viruses for the biological control of pests are mainly baculoviruses. Baculoviruses com-

prise a family of double-stranded DNA viruses which are pathogenic for arthropods,

mainly insects. The polyhedral occlusion body (OB) is the characteristic phenotypic

appearance of baculoviruses and, in case of a nucleopolyhedrovirus (NPV) typically

comprised of a proteinaceous matrix with a large number of embedded virus parti-

cles. Baculoviruses have a long history as effective and environmentally benign insect

control agents in field crops, vegetables, forests, and pastures [2].

The attempts to use baculoviruses for the protection of European forests dated

back to 19th century but the first introduction of baculovirus into the environment

which resulted in successful regulation of the pest in a large area occurred acciden-

tally in 1930 s [2]. A parasitoid was imported from Scandinavia to Canada to control

spruce sawfly Diprion hercyniae. Along with a parasitoid, an NPV specific for spruce

sawfly was introduced which established itself in Canada. Since then no control mea-

sures have been required against Diprion hercyniae. This example of “introduction-

establishment” approach-baculovirus became a permanent part of an ecosystem in

which it was not previously presented. One notable example was the A. gemmatalis

nucleopolyhedrovirus (AgMNPV) used to control the velvet bean caterpillar in soy-

bean [2, 3, 4]. The use of AgMNPV in Brazil brought about many economic, ecological

and social benefits. At the soybean grower level, the financial savings from the use of

the virus may reach ca.U $7/ha/season, including product cost and application cost.

The current annual savings at the grower level, in the total area sprayed with the

virus is over U$11,000.000. Since the beginning of the program more than 17 million

liters of chemical insecticides have not been sprayed in the environment, resulting in

considerable environmental benefits [3, 4].

Transmission is also key to the persistence of baculoviruses in the environment.

Transmission occurs primarily when a NPV-infected larva dies and lyses, releasing a

massive number of OBs onto foliage and soil. Susceptible hosts become infected when

they ingest OBs while feeding. Defecation and regurgitation by infected larvae have

been reported as additional routes of contamination of host plants with viruses[5, 6,

7, 8]. Moreover, some studies suggest that cannibalism and predation may also be

routes of virus transmission .Environmental factors such as rainfall, wind transport,

and contaminated ovipositors of parasitic hymenopterans could contribute to NPV

transmission as well [9, 10, 11].

In view of the epidemiological dynamics, it is necessary to predict optimal timing,

frequency, and dosage of virus application and to assess the shorter and longer term

persistence of NPV in insect populations and the environment. Modelling studies can

help to obtain preliminary assessments of expected ecological dynamics in the shorter
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and longer term. In this paper, we will build a mathematical model to predict the

behavior of viruses attacking pests under reasonable assumptions.

According to the above practical background, we introduce a model to investigate

the dynamics of insect viruses attacking pests, which is described as the following

system:

(1.1)





S ′(t) = rS(t)(1 − S(t)

K
) − βS(t)bV (t)S(t) − bV (t)S(t),

V ′(t) = ω(βS(t)bV (t)S(t) + bV (t)S(t)) − ubV (t)S(t) − dV (t).

Where S(t) and V (t) denote the density of pests and viruses at time t, respectively.

The assumptions in the model are:

(i) The pests S have a logistic growth rate with intrinsic birth rate r and carrying

capacity K(> 0) [12].

(ii) The infection rate is the form βSbV S, in which β, b are positive constants

and bV S denotes the quantity of disease pests invaded by virus.

(iii) ω(βSbV S + bV S) denotes the number of the viruses released by the pests

died because of disease.

(iv) The disease pest population does not recover and disease pests cannot at-

tack crops. For biological reasons, we restrict our discussion to the feasible region

{(S, V )|S ≥ 0, V ≥ 0}.
Set a = βb, e = βbω, µ = −ub + bω > 0, then the system (1.1) becomes:

(1.2)





S ′(t) = rS(t)(1 − S(t)

K
) − aS2(t)V (t) − bS(t)V (t),

V ′(t) = S(t)V (t)(eS(t) + µ) − dV (t).

It is easy to obtain that system (1.2) has two trival equilibrium points E1(0, 0),

E2(K, 0) and if K >
−µ+

√
µ2+4ed

2e
, it also has a positive equilibrium point E(S∗, V ∗),

where S∗ =
−µ+

√
µ2+4ed

2e
, V ∗ =

(r− r
K

)S∗

aS∗+b
. By calculating, we have E1(0, 0) is saddle

point, and if the positive equilibrium point E(S∗, V ∗) exists, E2(K, 0) is also a saddle

point. Moreover, system (1.2) has no pest-eradication equilibrium point. Therefore,

the approach of this kind in pest control is not effective.

System with impulsive effects describing evolution processes is characterized by

the fact that at certain moments of time they abruptly experience a change of state.

Processes of such type are studied in almost every domain of applied science. Impul-

sive differential equations have been recently used in population dynamics in relation

to impulsive vaccination, population ecology, the chemotherapeutic treatment of dis-

ease, the theory of the chemostat [13, 14, 15, 16, 17, 18, 19, 20, 21].

The main purpose of this paper is to construct two realistic models of viruses

attacking pests for pest management, investigate their dynamics and compare the

results obtained for the ordinary differential model, corresponding to the continuous
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control, with those obtained for the impulsive differential model, corresponding to

the impulsive control. The rest of this paper is organized as follows: in Section 2,

by using the qualitative theory of ordinary differential equations, we investigate the

behavior of the ordinary system which models the process of continuous release of

viruses. In Section 3, we construct an impulsive system which models the process of

periodic release of viruses at fixed moments. By using Floquets theory for impulsive

differential equations, small-amplitude perturbation methods and comparison tech-

niques, we investigate the global asymptotic stability of the pest-eradication periodic

solution and the conditions for the permanence of the system. A brief discussion of

some optimal control issues arising in pest management is also provided in the last

section.

2. CONTINUOUS RELEASE VIRUSES FOR PEST MANAGEMENT

In this section, we introduce the continuous release of viruses into the system

(1.2), then we have the following system:

(2.1)





S ′(t) = rS(t)(1 − S(t)

K
) − aS2(t)V (t) − bS(t)V (t),

V ′(t) = S(t)V (t)(eS(t) + µ) − dV (t) + p,

where p > 0 is the amount of release viruses. Other parameters are the same as

system (1.2).

In the following, we investigate the dynamics of the system (2.1) by means of

stability analysis and apply the subsequently obtained stability results to the study

of our control problem. We define

P (S, V ) = rS(t)(1 − S(t)

K
) − aS2(t)V (t) − bS(t)V (t),

Q(S, V ) = S(t)V (t)(eS(t) + µ) − dV (t) + p.

Obviously, system (2.1) has a pest-eradication equilibrium point E1(0,
p

d
), and if r

b
>

p

d
, the equilibrium point E1 is a saddle point, the positive equilibrium point E2(S, V )

exists. We shall prove the existence of the positive equilibrium point E2 by means of

geometric methods.

For existence of E, if r
b

> p

d
, the two isoclines

(2.2) l1 : P (S, V ) = 0,

(2.3) l2 : Q(S, V ) = 0,

must intersect in the region R2
+ = {(S, V )|S > 0, V > 0}. The isocline l1 includes

the line l3 : S = 0 and the curve

(2.4) l4 : r(1 − S

K
) − aSV − bV = 0.
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It follows from Eq.(2.3) that

dV

dS
=

p(2eS + µ)

(eS2 + µS − d)2
.

Obviously, when S ∈ (−∞,− µ

2e
), the isocline l2 is strictly decreasing as S increases

and when S ∈ (− µ

2e
,∞) the isocline l2 is strictly increasing as S increases. Therefore,

when S > 0 the isocline l2 is strictly increasing as S increases. From Eq. (2.4), we

derive that dV
dS

=
− rb

K
−ra

(aS+b)2
< 0, which implies that the curve l4 is strictly decreasing as

S increases.

We define P1 = (0, p

d
), which is the point of intersection of curve l2 and line l3,

P2 = (0, r
b
), which is the point of intersection of line l3 and curve l4, P3 = (K, 0) and

P4 = (− µ

2e
, µ2+4ed

4e
), which is the point on the curve l2 with the lowest S-coordinate.

In the following we shall investigate the system (2.1) with 0 < S < K . Clearly, if
r
b

> p

d
, the monotonicity property of the curves l2 and l4 guarantees that the system

(2.1) has a unique positive equilibrium point E2 = E2(S
∗, V ∗) (see FIGURE 1). Also,

0 < S∗ < K, p

d
< V ∗ < r

b
.

A traditional approach to gain preliminary insight into the stability of the equi-

librium of a dynamic system is to carry out a slope field analysis of the system. The

slope field diagram provides information about whether or not the equilibrium E2

is locally stable (see FIGURE 2 for details). Having the information provided by

FIGURE 2 in mind, we are now ready to analyze the local stability of the previously

found positive equilibrium by means of Jacobian matrix analysis. With regard to

this, it is seen the Jacobian matrix of system (2.1) at E2 in the form of

JE2 =

(
−aS∗V ∗ − r

K
S∗ −a(S∗)2 − bS∗

2eS∗V ∗ + µV ∗ e(S∗)2 + µS∗ − d

)

The eigenvalue problem for the JE2 provides the characteristic equation

λ2 + Q1λ + Q2 = 0,

where the coefficients Q1 = aS∗V ∗ + r
K

S∗ + p

V ∗
> 0, Q2 = (a(S∗)2 + bS∗)(2eS∗V ∗ +

µV ∗) + (aS∗V ∗ + r
K

S∗) p

V ∗
> 0, then both of the eigenvalues have negative real part,

we have that E2 is locally asymptotically stable. Therefore, we have the following

result.

Theorem 2.1. If r
b

> p

d
, then system (2.1) has a positive equilibrium point E2 which

is locally asymptotically stable.

Forward we shall prove the positive equilibrium point E2 is globally asymptot-

ically stable. For this purpose, we shall prove that each positive solution of system

(2.1) is uniformly ultimately bounded.

Lemma 2.2. The system (2.1) is uniformly ultimately bounded.
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Proof. Define a function L(t) = eS(t) + aV (t), then we have

dL(t)
dt

+ dL(t) = −er
K

S2(t) + (de + er)S(t) + (aµ − eb)S(t)V (t) + ap

≤ (d + r)eS(t) − erS2(t)
K

+ (aµ − eb)S(t)V (t) + ap,

for aµ− eb = −b2βu < 0, then dL(t)
dt

+ dL(t) ≤ (d + r)eS(t)− erS2(t)
K

+ ap. Obviously,

the right hand of the above equality is bounded, thus, there exists M0 > 0 such that

dL

dt
≤ −dL + M0.

It follows that

lim
t→∞

inf L(t) ≤ lim
t→∞

sup L(t) ≤ M0

d
.

Therefore, by the definition of L(t) and the positivity of S(t) and V (t), we obtain

that the system (2.1) is uniformly ultimately bounded. The proof is completed.

Lemma 2.3. Suppose Γ(T ) = (S(t), V (t)) is a periodic orbit with T of system (2.1),

ℜ is the set which consists of all the points in phase plane Γ. Denote

N =

∫ T

0

(
∂f1

∂S
(S(t), V (t)) +

∂f2

∂V
(S(t), V (t))dt,

where S ′(t) = f1(S(t), V (t)), V ′(t) = f2(S(t), V (t)). Then we can obtain N < 0.

Proof.

N =
∫ T

0
[r(1 − S(t)

K
) − 2aS(t)V (t) − bV (t) − rS(t)

K
+ S(t)(eS(t) + µ) − d]dt

=
∫ T

0
[r(1 − S(t)

K
) − aS(t)V (t) − bV (t)]dt +

∫ T

0
[−aS(t)V (t) − rS(t)

K
− p

V
]dt

+
∫ T

0
V ′(t)

V
dt,

for S(t) and V (t) are period function with T , so
∫ T

0

[r(1 − S(t)

K
) − aS(t)V (t) − bV (t)]dt =

∫ T

0

d lnS(t) = 0,

∫ T

0

V ′

V
dt =

∫ T

0

d lnV (t) = 0,

hence

N =

∫ T

0

[−aS(t)V (t) − rS(t)

K
− p

V
]dt,

It is evident that N < 0, the proof is complete.

Theorem 2.4. If r
b

> p

d
, then the positive equilibrium point E2 is globally asymptot-

ically stable.

Proof. From Theorem 2.1, we know that E2 is locally stable. According to Lemma 2.3,

we can obtain if there exists periodic solution (S(t), V (t)) around E2(S
∗, V ∗), then it is

stable for any periodic solution. This is impossible. According to Poincare-Bendixson

Theorem, limit set ω of all orbits must be equilibrium point E2. This implies that

E(S∗, V ∗) is globally asymptotically stable in the region R2
+ = {(S, V )|S > 0, V > 0}.

This completes the proof.
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Example 2.5. As an application of our main result, we consider the following system:

(2.5)





S ′(t) = 1.8S(t)(1 − S(t)

2
) − 0.6S2(t)V (t) − 0.7S(t)V (t),

V ′(t) = V (t)(0.9S2(t) + 0.3S(t)) − 0.7V (t) + 1,

Obviously, the system (2.5) has a unique positive globally asymptotically stable

equilibrium E2(0.26984, 1.80663) (see FIGURE 3).

To make our biological control strategy successful, we should regulate target pests

to densities below the economic injury level (EIL), which indicates the pest densities

(numbers of pests per unit area) at which artificial control measures are economically

justified. In other words, at this level the cost of implementing the control measures

is less than the loss of the farmer, or other resource producer would suffer if control

action were not taken. We now let L be the number of the pest population reaching

the economic injury level and discuss the strategy to control target pests. From

Eqs. (2.2) and (2.3), we see that S can be thought as a function of the independent

variable p, that is S = f(p). Further, we know from Eq.(2.3) that S is strictly

decreasing as a function of p. Obviously, f is invertible. We denote the inverse of

function f by p = f−1(S). Thus, for any positive ε small enough, we may choose the

control variable p ≥ f−1(L − ε) to control the target pest population below L.

3. IMPULSIVE RELEASE VIRUSES FOR PEST MANAGEMENT

In this section, we introduce the impulsive release viruses into the system (1.2),

then we have the following system:

(3.1)






S ′(t) = rS(t)(1 − S(t)

K
) − aS2(t)V (t) − bS(t)V (t),

V ′(t) = V (t)(eS2(t) + µS(t) − d),



 t 6= nT,

△S(t) = 0,

△V (t) = p

}
t = nT, n = 1, 2, . . . .

where T is the impulsive period, n = {1, 2 . . .}, p is the release amount of viruses,

∆S(t) = S(t+) − S(t), ∆V (t) = V (t+) − V (t). Other parameters are the same as

system (2.1).

First, we give some definitions, notations and lemmas which will be useful for

stating and proving our main results. Let R+ = [0,∞), R2
+ = {(x1, x2) | xi >

0, i = 1, 2}. Denote f = (f1, f2)
T the map defined by the right hand of the first two

equations in system (3.1). Let V : R+ × R2
+ → R+, then V ∈ V0 if

(i) V is continuous in (nT, (n + 1)T ] × R2
+ and for each z ∈ R2

+, n ∈ N

lim
(t,z)→(nT+,z)

V (t, z) = V (nT+, z)

exists.

(ii) V is locally Lipschitzian in z.
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Definition 3.1. V ∈ V0, then for (t, z) ∈ (nT, (n + 1)T ] × R2, the upper right

derivative of V (t, z) with respect to system (3.1) is defined as

D+V (t, z) = lim
h→0+

sup
1

h
[V (t + h, z + hf(t, z)) − V (t, z)].

The solution of (3.1), denoted by z(t) = (S(t), V (t)), is a piecewise continuous

function z(t): R+ → R2
+, z(t) is continuous on (nT, (n + 1)T ], n ∈ N and z(nT+) =

limt→nT+ z(t) exists. Obviously, the existence and uniqueness of the solution of (3.1)

is guaranteed by the smoothness properties of f (for more details see [13, 14]).

Lemma 3.2. Suppose z(t) is a solution of (3.1) with z(0+) ≥ 0, then z(t) ≥ 0 for

all t ≥ 0. Moreover, if z(0+) > 0, then z(t) > 0 for all t ≥ 0.

Lemma 3.3. Let V : R+ × Rn
+ → R+ and V ∈ V0. Assume that

(3.2)






D+V (t, z(t)) ≤ (≥)g(t, V (t, z)), t 6= τk,

V (t, z(t+)) ≤ (≥)Ψn(V (t, z(t))), t = τk, k ∈ N,

z(0+) = z0,

where g : R+×Rn
+ → Rn is continuous in (τk, τk+1]×Rn

+ and for each ν ∈ Rn
+, n ∈ N

lim
(t,ι)→(τ+

k
,ν)

g(t, ι) = g(τ+
k , ν)

exists, g(t, U) is quasimonotone nondecreasing in U and Ψn : Rn
+ → Rn

+ is non-

decreasing. Let ℜ(t) = ℜ(t, 0, U0) be the maximal (minimal) solution of the scalar

impulsive differential equation

(3.3)






U ′(t) = g(t, U), t 6= τk,

U(t+) = Ψn(U(t)), t = τk, k ∈ N,

U(0+) = U0,

existing on [0,∞]. Then V (0+, z0) ≤ (≥)U0 implies that

V (t, z(t)) ≤ (≥)ℜ(t), t ≥ 0,

where z(t) is any solution of (3.1) existing on [0,∞]. Note that if we have some

smoothness conditions of g to guarantee the existence and uniqueness of solutions for

(3.3), then ℜ(t) is exactly the unique solution of (3.3).

Lemma 3.4. There exists a constant M > 0 such that S(t) ≤ M, V (t) ≤ M for each

positive solution (S(t), V (t)) of (3.1) with t large enough.

Proof. Define a function L such that L(t) = eS(t) + aV (t). Then we have

D+L(t) |(3.1) +dL(t) = −er
K

S2(t) + (de + er)S(t) + (aµ − eb)S(t)V (t)

≤ (d + r)eS(t) − erS2(t)
K

+ (aµ − eb)S(t)V (t),



VIRAL INFECTION MODEL 427

for aµ − eb = −b2βu < 0, then D+L(t) |(3.1) +dL(t) ≤ (d + r)eS(t) − erS2(t)
K

for

t ∈ (nT, (n + 1)T ]. Obviously, the right hand of the above equality is bounded, thus,

there exists M0 > 0 such that

(3.4)





D+L(t) ≤ −dL(t) + M0, t 6= nT,

L(nT+) = L(nT ) + η, t = nT,

where η = ap. According to Lemma 2.2 in [13], we derive

L(t) ≤ L(0)e−dt +
∫ t

0
M0e

−d(t−s)ds +
∑

0<kT<t ηe−d(t−kT )

→ M0

d
+ ηedT

edT −1
as t → ∞

Therefore, by the definition of L(t) we obtain that each positive solution of system

(3.1) is uniformly ultimately bounded. The proof is complete.

Remark 3.5. From Lemma 3.4, it is clear that lim supt→∞ V (t) < M0

d
+ ηedT

edT−1
. For

convenience, let M = 1
κ
(M0

d
+ ηedT

edT−1
), where κ = min{e, a}.

Next, we give some basic property of the following subsystem:

(3.5)

{
y′(t) = −dy(t), t 6= nT

△y(t) = p, t = nT

Lemma 3.6. System (3.5) has a positive periodic solution y∗(t) and for every positive

solution y(t) of system (3.5), |y(t) − y∗(t)| → 0 as t → ∞, where

y∗(t) =
pe−d(t−nT )

1 − e−dT

and

y∗(0+) =
p

1 − e−dT

When S(t) = 0, for all t ≥ 0. we get the subsystem of system (3.1)

(3.6)

{
V ′(t) = −dV (t), t 6= nT

△V (t) = p, t = nT

By Lemma 3.6, we can obtain the unique positive periodic solution of system (3.6):

V ∗(t) = pe−d(t−nT )

1−e−dT , nT < t ≤ (n + 1)T , with initial value V ∗(0+) = p

1−e−d1T . Thus the

pest-eradication solution is explicitly shown. That is, system (3.1) has a so called

pest-eradication periodic solution (0, V ∗(t)). We shall now give a condition which

assures its global asymptotic stability.

Theorem 3.7. Let (S(t), V (t)) be any solution of system (3.1) with positive initial

values. Then the pest-eradication periodic solution (0, V ∗(t)) is globally asymptotically

stable provided

(3.7) rT < b

∫ T

0

V ∗(t)dt.
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Proof. The local stability of periodic solution (0, V ∗(t)) may be determined by con-

sidering the behavior of small amplitude perturbation of the solution. Let S(t) =

u(t), V (t) = v(t) + V ∗(t). The corresponding linearized system of (3.1) at (0, V ∗) is

(3.8)






u′(t) = (r − bV ∗(t))u(t),

v′(t) = µV ∗(t)u(t) − dv(t),

}
t 6= nT,

u(t+) = u(t), v(t+) = v(t), t = nT, n = 1, 2, . . .

Let Φ(t) be the fundamental matrix of (3.8), then Φ(t) satisfies

dΦ(t)

dt
=

(
r − bV ∗(t) 0

µV ∗(t) −d

)
Φ(t)

and Φ(0) = E2 (unit 2 × 2 matrix). Hence, the fundamental solution matrix is

Φ(t) =

(
e

R t

0
(r−bV ∗(t))dt 0

∗ e−dt

)

The resetting impulsive condition of (3.8) becomes
(

u(nT+)

v(nT+)

)
=

(
1 0

0 1

)(
u(nT )

v(nT )

)
.

Hence, if all the eigenvalues of

M =

(
1 0

0 1

)
Φ(T )

have absolute values less than one, then the periodic solution (0, V ∗(t)) is locally

stable. Since the eigenvalues of M are

λ1 = e−dT < 1, λ2 = e
R T

0
(r−bV ∗(t))dt

and |λ2| < 1 if and only if (3.7) holds. According to Floquet’s theory of impulsive

differential equation, the pest-eradication periodic solution (0, V ∗(t)) is locally stable.

In the following, we shall prove its global attractivity.

Choose ε1 > 0 small enough such that
∫ T

0

[r − b(V ∗(t) − ε1)]dt
.
= η < 0

Note that V ′(t) ≥ −dV (t), by Lemma 3.3 and 3.6, there exists a n1 such that for all

t ≥ n1T

(3.9) V (t) ≥ V ∗(t) − ε1,

thus we have

S ′(t) = rS(t)(1 − S(t)
K

) − aS2(t)V (t) − bS(t)V (t)

≤ S(t)[r − bV (t)]

≤ S(t)[r − b(V ∗(t) − ε1)]
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Integrating the above inequality on ((n1 + k)T, (n1 + k + 1)T ], k ∈ N , yields

S(t) ≤ S(n1T )e
R (n1+1)T

n1T
[r−b(V ∗(t)−ε1)]dt ≤ S(n1T )ekη

Since η < 0, we can easily get S(t) → 0 as t → ∞. In the following, we prove

V (t) → V ∗(t), as t → +∞. For ε2 > 0 small enough (eε2
2 +µε2 < d), there must exist

a n2(n2 > n1) such that 0 < S(t) < ε2, for t ≥ n2T . Then from system (3.1) we have

V ′(t) ≤ (−d + eε2
2 + µε2)V (t),

by Lemma 3.3 and 3.6, there exists a n3(n3 > n2) such that

(3.10) V (t) ≤ V ∗
2 (t) + ε1 for all t ≥ nT, n > n3,

where V ∗
2 (t) = pe−(d−eε22−µε2)(t−nT )

1−e
−(d−eε22−µε2)T

. Let ε2 → 0, we have V ∗
2 (t) → V ∗(t). Together

with (3.9), (3.10), we get V (t) → V ∗(t) as t → +∞. Therefore, (0, V ∗(t)) is globally

attractive. This completes the proof.

In fact, for condition (3.7), rT represents the normalized gain of the pest in a

period, while b
∫ T

0
y∗(t)dt represents the normalized loss of the pest in a period due

to disease. That is, this condition is a balance condition for the pest near the pest-

eradication periodic solution, which asserts the fact that in a vicinity of this solution

(0, V ∗(t)) the pest are depleted faster than they can recover and consequently the

pest is condemned to extinction.

Corollary 3.8. If p > p∗1 = rdT
b

or T < T ∗
1 = bp

rd
, then the pest-eradication periodic

solution (0, V ∗(t)) is globally asymptotically stable.

We have proved that, if p > p∗1 = rdT
b

or T < T ∗
1 = bp

rd
, the pest-eradication

periodic solution (0, V ∗(t)) is globally asymptotically stable, that is, the pest popula-

tion is eradicated totally. But in practice, from the view point of keeping ecosystem

balance and preserving biological resources, it is not necessary to eradicate the pest

population. Next we focus our attention on the permanence of system (3.1). Before

starting our result, we give the definition of permanence.

Definition 3.9. System (3.1) is said to be permanent if there are constants m,

M > 0 (independent of initial value) and a finite time T0 such that all solutions

z(t) = (x(t), y(t)) with initial values z(0+) > 0, m ≤ z(t) ≤ M holds for all t ≥ T0.

Here T0 may depend on the initial values z(0+) > 0.

Theorem 3.10. Let (S(t), V (t)) be any positive solution of (3.1) with positive values

z(0+) > 0. Then system (3.1) is permanent provided

(3.11) rT > (a + b)

∫ T

0

V ∗(t)dt.
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Proof. Suppose z(t) = (S(t), V (t)) is a solution of system (3.1) with initial values

z(0+) > 0. By Lemma 3.4, there exists a positive constant M such that S(t) ≤ M ,

and V (t) ≤ M for t large enough. We may assume S(t) ≤ M, V (t) ≤ M for all t ≥ 0.

From (3.9), we know

V (t) ≥ V ∗(t) − ε1 ≥
pe−dT

1 − e−dT
− ε1

.
= m2 > 0,

for all t large enough. Thus we only need to find m1 > 0 such that S(t) ≥ m1 for t

large enough. We shall do it in two steps.

Step 1: Since rT > (a+ b)
∫ T

0
V ∗(t)dt, that is rT >

(a+b)p
d

, we can select m3 > 0,

ε > 0 small enough such that

em2
3 + µm3 < d,

and

δ
.
= rT − (

rm3

K
T + am3εT + bεT +

am3p

d − em2
3 − µm3

+
bp

d − em2
3 − µm3

) > 0.

We shall prove S(t) < m3 cannot hold for all t > 0. Otherwise

V ′(t) = V (t)(eS2(t) + µS(t) − d) ≤ (−d + em2
3 + µm3)V (t),

Then we obtain V (t) ≤ u(t) and u(t) → u∗(t) as t → ∞, where u∗(t) is the solution

of

(3.12)





u′(t) = (−d + em2
3 + µm3)u(t), t 6= nT ,

∆u(t) = p, t = nT ,

u(0+) = V (0+) > 0,

and

u∗(t) =
pe(−d+em2

3+µm3)(t−(n−1)T )

1 − e(−d+em2
3+µm3)T

, t ∈ ((n − 1)T, nT ].

Therefore, there exists a T̃ > 0 such that

V (t) ≤ u(t) ≤ u∗(t) + ε

for t > T̃ . Therefore, there exists T1 > T̃ such that

S ′(t) = rS(t)(1 − S(t)
K

) − aS2(t)V (t) − bS(t)V (t)

≥ S(t)[r − rm3

K
− am3V (t) − bV (t)]

≥ S(t)[r − rm3

K
− am3(u

∗(t) + ε) − b(u∗(t) + ε)]

for all t > T1. Let N0 ∈ N such that (N0−1)T ≥ T1. Integrating the above inequality

on ((n − 1)T, nT ], n ≥ N0, we have

S(nT ) ≥ S((n − 1)T )e
R nT

(n−1)T (r−
rm3
K

−am3(u∗(t)+ε)−b(u∗(t)+ε))dt

= S((n − 1)T )e
rT−(

rm3
K

T+am3εT+bεT+
am3p

d−em2
3
−µm3

+ bp

d−em2
3
−µm3

)

= S((n − 1)T )eδ.
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Then S((n + k)T ) ≥ S(nT )ekδ → ∞ as k → ∞, which is a contradiction to the

boundedness of S(t). Thus, there exists a t1 > 0 such that S(t1) ≥ m3.

Step 2: If S(t) ≥ m3 for all t ≥ t1, then our aim is obtained. Hence we need

only to consider the situation that S(t) ≥ m3 is not always true for t ≥ t1, we denote

t∗ = inft≥t1{S(t) < m3}. Then S(t) ≥ m3 for t ∈ [t1, t
∗) and S(t∗) = m3, since S(t)

is continuous. Suppose t∗ ∈ (n1T, (n1 + 1)T ], n1 ∈ N . Select n2, n3 ∈ N such that

n2T > T2 =
ln ε

M+u∗

0

−d + em2
3 + µm3

, eδ1(n2+1)T eδn3 > 1,

where u∗
0 = p

1−e
(−d+em2

3+µm3)T
, δ1 = r−rm3

K
−am3M−bM < 0. Let T̂ = (n2+n3)T . We

claim there must be a t2 ∈ [(n1 +1)T, (n1 +1)T + T̂ ] such that S(t2) ≥ m3. Otherwise

S(t) < m3, t2 ∈ [(n1 + 1)T, (n1 + 1)T + T̂ ]. Consider (3.12) with u((n1 + 1)T+) =

V ((n1 + 1)T+). We have

u(t) = (u(n1 + 1)T+ − u∗
0)e

(−d+em2
3+µm3)(t−(n1+1)T ) + u∗(t),

t ∈ (nT, (n + 1)T ], n1 + 1 ≤ n ≤ n1 + 1 + n2 + n3.

Thus

|u(t) − u∗(t)| ≤ (M + u∗
0)e

(−d+em2
3+µm3)n2T < ε,

and

V (t) ≤ u(t) ≤ u∗(t) + ε, (n1 + 1 + n2)T ≤ t ≤ (n1 + 1)T + T̂ .

Thus, we have

S ′(t) = rS(t)(1 − S(t)
K

) − aS2(t)V (t) − bS(t)V (t)

≥ S(t)[r − rm3

K
− am3V (t) − bV (t)]

≥ S(t)[r − rm3

K
− am3(u

∗(t) + ε) − b(u∗(t) + ε)]

for (n1 + 1 + n2)T ≤ t ≤ (n1 + 1)T + T̂ . As in step 1, we have

S((n1 + 1 + n2 + n3)T ) ≥ S((n1 + 1 + n2)T )eδn3 .

On the interval t ∈ [t∗, (n1 + 1 + n2)T ], we have

S ′(t) = rS(t)(1 − S(t)
K

) − aS2(t)V (t) − bS(t)V (t)

≥ S(t)[r − rm3

K
− aS(t)V (t) − bV (t)]

≥ S(t)(r − rm3

K
− am3M − bM),

and

S((n1 + 1 + n2)T ) ≥ S(t∗)e
R (n1+1+n2)T

t∗
(r−

rm3
K

−am3M−bM)dt

≥ m3e
(r−

rm3
K

−am3M−bM)(n2+1)T

= m3e
δ1(n2+1)T .

Thus S((n1 + 1 + n2 + n3)T ) ≥ m3e
δ1(n2+1)T eδn3 > m3, which is a contradiction. Let

t = inft≥t∗{S(t) ≥ m3}, then S(t) ≥ m3, for t ∈ [t∗, t), we have S(t) ≥ S(t∗)e(t−t∗)δ1 ≥
m3e

(1+n2+n3)Tδ1 .
= m1. For t > t, the same arguments can be continued, since S(t) ≥
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m3, and m1, m3 are t1−independent. Hence S(t) ≥ m1 for all t ≥ t1. The proof is

complete.

Corollary 3.11. If p < p∗2 = rdT
a+b

or T > T ∗
2 = (a+b)p

rd
, then system (3.1) is permanent.

Example 3.12. Let us consider the following system

(3.13)






S ′(t) = 1.8S(t)(1 − S(t)

2
) − 0.2S2(t)V (t) − 0.8S(t)V (t),

V ′(t) = V (t)(0.9S2(t) + 0.5S(t) − 0.7),



 t 6= nT,

△S(t) = 0,

△V (t) = p

}
t = nT, n = 1, 2, . . . .

According to Theorem 3.7, Theorem 3.10 and Corollary 3.8, Corollary 3.11, we

know that if p > 2.3625, then (0, V ∗(t)) is globally asymptotically stable (see FIGURE

4), if p < 1.8900, then the system is permanent(see FIGURE 5).

4. NUMERICAL SIMULATIONS AND DISCUSSION

In this paper, a mathematical model for insect viruses attacking pest is con-

structed and two models of continuous and impulsive release viruses for pest man-

agement are analyzed. We first examine the situation in which a continuous control

is used and obtain that if r
b

> p

d
, the system (2.1) has a unique positive equilibrium

point E2(S
∗, V ∗) which is globally asymptotically stable. We then show that in case

that an impulsive control is employed, by using Floquet’s theorem, small-amplitude

perturbation skills and comparison theorem, we establish the sufficient conditions for

the global asymptotical stability of the pest-eradication periodic solution as well as

the permanence of the impulsive system (3.1). It is clear that the conditions for the

global stability and permanence of the system depend on the parameters p, T , which

implies that the parameters p, T play a very important role in the model.

From Corollary 3.8, we know that the pest-eradication periodic solution (0, V ∗(t))

is globally asymptotically stable when p > p∗1 or T < T ∗
1 . In order to drive the pests

to extinction, we can determine the impulsive release amount p such that p > p∗1 or

the impulsive period T such that T < T ∗
1 . If we choose parameters as r = 1.8, K = 2,

a = 0.2, e = 0.9, b = 0.8, µ = 0.5, d = 0.7, then we have T ∗
1 = 1.524, p∗1 = 2.3625,

so we can make the impulsive release amount p larger than 2.3625 or the impulsive

period T smaller than 1.524 in order to eradicate the pests(see FIGURE 4). At the

same time, T ∗
2 = 1.905, p∗2 = 1.8900, so we can make the impulsive release amount p

less than 1.8900 or the impulsive period T larger than 1.905 in order to maintain the

system permanent(see FIGURE 5). However, from a pest control point of view, our

aim is to keep pests at acceptably low levels; not to eradicate them, only to control

their population size. To compare the efficiency of both continuous and impulsive

control strategies, we study Eqs. (2.1) and (3.1) with the same parameter under the
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EIL Time The amount of release viruses Initial value Numerical study

Continuous 0.28 2.3 1 ∗ 2.3(p = 1) (0.9, 0) Figure 6

Impulsive 0.28 2.4 1.7 ∗ 1.6(T = 1.5, p = 1.7) (0.9, 0) Figure 7

Impulsive 0.28 Useless control(T = 2, p = 1.7) (0.9, 0) Figure 8

Table 1. A comparison between the efficiency of continuous and im-

pulsive controls.

Figure 1. The unique positive equilibrium of the system (2.1).

assumption that (2.1) has a unique positive equilibrium. We choose r = 1.8, K = 2,

a = 0.2, e = 0.9, b = 0.8, µ = 0.5, d = 0.7. It is noted that p represents the rate

of release of viruses in the system (2.1), while in the system (3.1) p is the release

amount of viruses(see TABLE 1). With regard to this, the optimal control strategy

in the management of a pest population is to drive the pest population below a given

level and to do so in a manner which minimizes the cost of using the control and

the time it takes to drive the system to the target. From Table 1, it is preferable to

control the target pest population by using a continuous control, but in practice, it

is impossible. Therefore, according to the growth characteristics of pests, we should

choose a reasonable impulsive time and an appropriate impulsive period T such that

the density of the pest is below the given level. We hope our results provide an insight

to practical pest management. However, in the real world, for the seasonal damages

of pests, should we consider impulsive releasing viruses on a finite interval? Such

work will be beneficial to pest management, and it is reasonable. We leave it as a

future work.
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Figure 2. The slope field of the system (2.5).

Figure 3. Phase portraits of the system (2.5).
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Figure 4. Dynamical behavior of the system (3.1) with impulsive con-

trol p = 2.4 (a) time-series of the pest population. (b) time-series of

the virus population. (c) Phase portraits of the system.

Figure 5. Dynamical behavior of the system (3.1)with impulsive con-

trol p = 1.7 (a) time-series of the pest population. (b) time-series of

the virus population. (c) Phase portraits of the system.
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Figure 6. Dynamical behavior of the system (2.1)with continuous control(p=1).

Figure 7. Dynamical behavior of the system (3.1)with impulsive con-

trol(p=1.7 and T=1.5).

Figure 8. Dynamical behavior of the system (3.1)with impulsive con-

trol (p=1.7 and T=2).
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