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ABSTRACT. This paper is concerned with bootstrap bias correction and forming a bootstrap

confidence interval for outputs of a given trained neural network. We apply our method to the

problem of symmetry detection for eight bits code as well as in time series prediction. A real data

set is also considered. Conclusions are given.
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1. Introduction

Neural networks (hereafter NNs) have been popular in analyzing nonlinear prob-

lems occurring in many fields such as biology, finance, engineering, mathematics and

physics. McCulloch and Pitts (1943) first studied NNs in the context of mathematical

biophysics. In fact, they are extensions of mathematical models designed for biolog-

ical nervous systems. Some excellent references in this area are Hertz et al. (1991)

and Masters (1993a, 1993b). NNs have also many applications in statistics. They

are used frequently in regression analysis, time series prediction and for change point

detection (see Ripley (1997)).

NNs decompose the original data set to two partitions, namely training and test

sets. A special NN is trained using the first data set. In the second stage, the

performance of above mentioned network is evaluated by applying it to test set and

an error (variance) is computed. Dupret and Koda (2000) showed that the error

calculated in this way don’t show the actual error and it may be misleading. They

proposed the bootstrap solution. In their approach, the NN is trained B (enough

large) times using the bootstrap re-sample sets of train set. Consequently, we derive

B errors. The mean of errors presents an accurate estimate of actual error.

The bootstrap method proposed by Efron (1979) is a computer intensive statisti-

cal techniques. It belongs to the class of re-sampling based approaches. Indeed, it is a

sampling with replacement from a given sample. Valid bootstraps are often accessible
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practical solutions to statistical inference problems. In computational statistics set-

ting, the bootstrap is used often for estimation of standard deviation, bias correction

and constructing empirical confidence intervals. As follows, we review Dupret and

Koda’s work briefly.

Let xi = (Ii, Ti), i = 1, . . . , n be i−th element of the training set x = {x1, . . . , xn}at

which Ii is vector input and the target value is Ti. The NN is a function like h which

produces the actual output O = hx(I). For a suitable distance d, the prediction error

in the NN is

EF (d(T, hx(I))),

where F denotes the distribution of (T, hx(I)) and a Monte Carlo estimator of error

is

êx = (1/n)

n∑

i=1

d(Ti, hx(Ii)).

Dupret and Koda (2000) suggested to train the specified NN (B times) with bootstrap

sample x∗ and to derive B errors êx∗b, b = 1, . . . , B and finally they advised to

calculate

(1/B)

B∑

b=1

êx∗b.

Their approach motivates us to survey how the bootstrap method can be applied to

improve the performance of a given NN. This paper is organized as follows. In section

2, we consider the bias correction and constructing confidence intervals for NN using

bootstrap technique. It is shown that in this way, the accuracy is improved. We

apply our method to problems of symmetry detection for eight bits code and time

series prediction. A real data set is studied in section 3. Conclusions are given in

section 4.

2. Bootstrap NN

In this section, we study bootstrap bias correction and bootstrap confidence in-

tervals for NN problems. Estimating the bootstrap variance is studied by Dupret and

Koda (2000) which we reviewed it in introduction. Both methods are described and

three examples are given. First, we consider the bias correction.

2.1 Bias correction. Suppose that hx is a trained NN. The main question is if

hx is unbiased or it is biased and therefore the outputs O’s are biased. In practice,

hx may be biased and it is reasonable to correct the nasty bias. Therefore, we search

for a network like h∗

x such that its bias is zero. The first selection is

h∗

x = hx − bias(hx).

Next, suppose that we train our network by bootstrap train sets x∗b, b = 1, . . . , B.

The bootstrap estimation for bias(hx) is hx∗ − hx, where hx∗ = (1/B)
∑B

b=1 hx∗b.
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Therefore, the bootstrap estimate of h∗

x is

ĥ∗

x = 2hx − hx∗,

see Gentle (2002) for more description.

2.2 Confidence interval. Here, we study the interval estimation for prediction

of a NN using the bootstrap method. There many kinds of bootstrap confidence

intervals. Here, we only consider two types of them, first the bootstrap-t confidence

interval and second bootstrap percentile interval.

(a) Bootstrap-t intervals. The confidence interval for the mean of a normal popu-

lation, when the population variance is unknown, works very well, even in cases that

the underlying distribution is not normal. Following this idea, a 100(1 − α) percent

single confidence interval for i-th output Oi = hx(Ii) is given by

(Oi − t̂1−(α/2)

√
v̂ar(Oi) , Oi − t̂α/2

√
v̂ar(Oi)),

where t̂α is estimated by α-th quantile of

O∗

i − Oi√
v̂ar(O∗

i )
,

at which v̂ar(O∗

i ) = 1
B−1

∑B
b=1(O

∗b
i − O

∗

i )
2 with O

∗

i = 1
B

∑B
b=1 O∗b

i . To construct the

simultaneous confidence intervals, for example, for (Oi, Oj), i 6= j we should consider

the bootstrap distribution of (
O∗

i −Oi√
cvar(O∗

i )
,

O∗

j−Oj√
cvar(O∗

j )
). In this way, we derive the joint

(multivariate) quantiles t̂iα and t̂jα.

(b) Bootstrap percentile intervals. The 100(1 − α) percent single bootstrap per-

centile confidence interval is given by

(t∗(α/2), t
∗

1−(α/2)),

where t∗(α/2) is the [Bα]-th order statistic of O∗b
i , b = 1, 2, . . . , B. The simultaneous

confidence intervals are constructed similarly.

Example 1. Here, we study the simulated data, taken form Shariat-panahi

(2011). There are 130 vector of observations with length 6. This data set is broken to

100 train data and 30 observations is kept for test set. We trained feed-forward NN

with three hidden layers of 10 neurons as varying parameters, using back-propagation.

The transfer function is Tansic for three layers and it is Purelin for the last layer. The

number of bootstrap replication is B = 1000. The prediction error is 17.515 while its

bootstrap estimate is 10.244. The prediction for 10-th observation is O10 = 25.65 and

its bias corrected estimate is 23.015 target value T10 = 22.054. It is seen that the bias

corrected estimate is too accurate. Then, we construct a bootstrap 0.95% for T10.

One can see that the bootstrap t-confidence interval is (20.45, 25.32). This interval

has length 4.87 which is small relative to target value T10 = 22.054. The bootstrap

percentile interval is (19.35, 26.12).
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Example 2: symmetry detection. Here, following Dupret and Koda (2000),

we apply the above mentioned two bootstrap facilities to the problem of symmetry

detection for six bits code. To describe more, the input vector is I = (φ1, . . . , φ8)
T

and each φi takes values in {0, 1}. Therefore, there are 28 = 256 inputs. An input

is symmetric if φi = φ9−i, i = 1, 2, 3, 4. There are 16 symmetric inputs and 240

asymmetric inputs. There is one output which is 1 if I is symmetric and 0 otherwise.

Similar to Example 1, we again use the feet-forward with 3 hidden layers with 10

neurons. The transfer functions are Tansic and Purelin. The number of bootstrap

replications is 1000. We bootstrap symmetric and asymmetric codes, separately.

Following Dupret and Koda (2000), we considered a set the symmetric proportions

(which its true value is 240
256

= 0.9375) moving form 16
256

to 250
256

. We found that the

best result relates to case of the true value 0.9375. Therefore, here, we only focus

on this case. Consider 20-th observation. Its 8-bits code is asymmetric and therefore

the T20 = 0. The proportion of zeros for x20 in 1000 bootstrap replications is 0.94

which shows that the network works well. Note that this proportion in original data

set is 240
256

= 0.9375. The network also works well for other x’s but we don’t present

them, here. Using the bootstrap method, we derive 1000 re-samples for each xi (with

actual output zero), i = 1, 2, . . . , 240. We found that the mean of proportion of zeros

is 0.9268 with standard deviation 0.00325. A 95% confidence interval for the actual

proportion of zeros is (0.8938, 0.9598).

Example 3: Time series prediction. In time series setting, we are interested

to predict future value of xn+1 based on x1, . . . , xn. A suitable integer p is chosen and

the prediction of xn+1 is

x̂n+1 = g(xn, . . . , xn−p).

Touretzky and Laskowski (2006) described how the NN’s can be applied to predict

a time series. As follows, we give a schematic structure of inputs and outputs. The

lengths of inputs and output sequences are i and o, respectively. The train set involves

p sequences of length i. Here, we study the prediction of monthly returns for AT&T

taken form Hipel and Mcleod (1994). There are 84 returns for time period January

1961-December 1967. Again, we select feet-forward network with three hidden layers

with 10 neurons in each layers. We let p = 5 and i = o = 40. The transfer functions

are Tansic and Purelin. The MATLAB software proposes a 5 × 40 matrix of errors.

The maximum of errors is 1.2 × 10−2 which shows that the network works very well.

In this problem, we focus on 5-th to 40-th (by step 5) elements of 3-th output.

The number of bootstrap again is 1000. The 0.90% bootstrap percentile confidence

intervals for these elements are (−0.0586, 0.0688), (−0.0574, 0.0765), (−0.102, 0.053),

(−0.101, 0.0326), (−0.0571, 0.0372), (−0.111, 0.185), (−0.168, 0.125), and (−0.0494,

0.0391), respectively. One can see that how much the length of intervals are small

and they are close to actual values.
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Training set

x1 x2 · · · xi

x2 x3 · · · xi+1

x3 x4 · · · xi+2

...
...

...
...

xp xp+1 · · · xp+i−1

Targets

xi+1 xi+2 · · · xi+o

xi+2 xi+3 · · · xi+o+1

xi+3 xi+4 · · · xi+o+2

...
...

...
...

xp+i xp+i+1 · · · xp+i+o−1

3. Real data set: Change point detection

When analyzing (or prediction) a time series using NN technique, a key assump-

tion is the stability of actual NN over time. A common method to assess this stability

is to derive a NN over the rolling window. If the actual NN doesn’t differ over time

then errors of predictions using rolling NN’s are very close to zero. To compute pre-

diction errors, we use the method of example 3. The maximum absolute of these

errors is a good criterion. To compute the confidence interval for the mentioned max-

imum, we need its probability distribution. This distribution is completely unknown,

and we use the bootstrap technique.

Hansen (1992) fitted a discrete time AR(1) model for annual U.S. output growth

rates. He showed that this model has remained stable over time period 1889- 1987.

Similar to example 2, we fit a feet-forward NN with 3 hidden layers with 10 neurons.

The transfer functions are Tansic. Here, we want to check if this network remains

unchanged over time. We let the length of rolling window be 24. One can see that

the bootstrap confidence interval is (0.04, 0.08), where its length is too small and this

shows that our NN is enough for whole observed time series.

4. Conclusions

In this paper, we applied the bootstrap method for bias correction in NN setting.

We guessed that the output of a trained NN may be biased, since the unbiased

condition is not considered for training of a NN. Methods are proposed and by some

examples, it is seen that, using the bootstrap method, the accuracy of NN output

is improved. It is also generally believed that the interval estimate (output) is very

better than point estimation. Therefore, we use the bootstrap method for forming

the confidence interval. We also applied these methods for change point detection in a

real time series. It is seen, using bootstrap method and NN technique simultaneously,

we can monitor time series.
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