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ABSTRACT. A SIR model with time-varying contact rate and stochastic perturbations is studied.

The contact rate is modelled as a piecewise constant by assuming that it is a switching parameter.

Extrinsic noise is considered by assuming that there are white noise perturbations in the transmission

of the disease. Both time-constant control and impulsive control are applied to the SIR model and

some threshold conditions are established which guarantee the disease is eradicated in mean square.
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1. Introduction

Mathematical epidemiology is useful for attempting to understand how a disease

spreads in a population and, moreover, for estimating vaccination levels necessary to

eradicate a disease [18]. In modeling the spread of a disease, it is physically reasonable

to suppose there are external, environmental forces which partially drive the spread

of a disease, and hence affect a model’s parameters. Indeed, since real life is full of

randomness and stochasticity, there are real benefits to be gained in using a stochastic

model formulation for the spread of an infectious disease [8, 32]. This is particularly

true when modeling biological phenomena such as internal HIV viral dynamics [8].

Further, it is true that noise can induce non-trivial effects in physical and biological

systems by modifying the behaviour of the corresponding deterministic evolution of

the system [29].

There has been some work done in the literature on stochastic epidemic models

with white noise perturbations. For example, Tornatore et. al [29] investigated the

stability of the disease-free equilibrium of a stochastic SIR model with distributed time

delay. Beretta et. al [5] analyzed white noise stochastic perturbations around positive

endemic equilibria of epidemic models with time delays influenced by probability.

In [32], a two-group SIR model with white noise stochastic perturbations around

its positive endemic equilibrium is introduced and studied. Carletti [6] investigated

the stability properties of a stochastic model for phage-bacteria interaction in open

marine environment. Dalal et. al [7, 8] studied a model of AIDS and HIV by analyzing
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condom use in a stochastic epidemic model with parameter perturbations, motivated

by the inherent randomness associated with HIV and AIDS.

Traditionally, mathematical infectious disease models assume that the contact

rate (the average number of contacts between individuals that are sufficient for trans-

mission of the disease) is a constant in the model. However, studies have shown that

the contact rate varies seasonally, as it is higher during the winter months (when indi-

viduals group together more often) compared to the summer months [19]. Periodicity

in disease transmission is apparent in the spread of many diseases, such as measles,

chickenpox, mumps, rubella, poliomyelitis, pertussis, and influenza [17]. There are

many causes of seasonality in the spread of a disease, for example, changes in the abun-

dance of vectors, changes in host behaviour, and changes in host immunity [9, 10, 14].

Seasonality is usually incorporated into epidemic models by assuming that the contact

rate is a smoothly-varying parameter, for example, see [2, 3, 4, 13, 14, 19, 22, 24, 25, 27]

and the references therein. An alternative approach, first proposed by Schenzle in

[26], and since studied in, for example, [11, 20, 21], is to assume that the contact

rate experiences abrupt changes in time, which is referred to as term-time forcing.

This is reasonable, for example, for a childhood disease spreading among students

who experience holiday breaks and has been shown to more accurately match the

transmission data in some cases [11].

The objective of this paper is to study infectious disease models with time-varying

contact rates and stochasticity. Stochasticity is added to epidemic models by con-

sidering multiplicative white noise, motivated by randomness in the transmission of

the disease due to external forces. Time-varying contact rates are introduced into

infectious disease models by assuming that the contact rate is a switching parameter,

which is piecewise constant. Based on these assumptions, an SIR model with term-

time forcing and stochastic perturbations is considered. A constant treatment and

pulse treatment strategy are applied to the model and analyzed. For the pulse treat-

ment scheme, the inter-pulse period does not necessarily have to equal the period of

the seasonal changes in the model. Some threshold criteria guaranteeing eradication

of the disease in the mean square are given. To the best of the authors’ knowledge,

there have been no studies on stochastic epidemic models with switching parame-

ters and control schemes. In this paper, some switched systems techniques found in

[15, 16, 21] are used to prove the threshold conditions found.

This paper is organized as follows: in Section 2, a constant treatment scheme

is applied to an SIR model with term-time forcing and stochastic perturbations.

A pulse treatment scheme is applied to the same SIR model in Section 3. Some

threshold conditions are established for both models which guarantee that the number

of infected converges to zero with probability one. Simulations are given in Section 4



CONTROL STRATEGIES APPLIED TO A STOCHASTIC DISEASE MODEL 39

to illustrate the theorems established in this paper. Finally, some conclusions are

drawn and future directions are given in Section 5.

2. Constant Treatment Model

Split the population into three distinct groups: the susceptible, S, who are

healthy and able to contract the disease; the infected, I, who are infected and able

to transmit the disease; and the recovered, R, who have recovered from the disease

(either naturally or by treatment) and gained permanent immunity. Assume that the

birth rate µ > 0 is constant (which is equal to the natural death rate) and all indi-

viduals are born healthy. Assume that individuals recover from the disease naturally

at a rate g > 0. Assume that the incubation period of the disease is negligible and

that individuals in the population mix homogeneously.

Most developed countries have used some type of time-constant (also called co-

hort) immunization program with varying degrees of success [1]. For example, many

areas in the Western world recommend vaccination doses at 15 months and six years

of age to combat measles [28]. Consider the strategy of time-constant control, where

a portion 0 ≤ θ ≤ 1 of the infected population is being treated continuously in time.

Note that θ = 0 is uninteresting and, due to treatment failure, θ = 1 is physically

unrealistic. Assume that once treated, an infected individual moves to the recovered

class with permanent immunity.

Motivated by the discussion in Section 1 on seasonal variations, assume that the

contact rate is a switching parameter βik > 0, where the index ik ∈ℵ = {1, 2, . . . , m}

changes values according to the deterministic switching rule σ(t) : [tk−1, tk) → ℵ,

where k = 1, 2, . . ., which is a piecewise constant function. Under this construction,

βik takes on a certain value in each time interval (tk−1, tk]. The switching times satisfy

t0 = 0 < t1 < · · · < tk < · · · with tk → as k → ∞. Denote the class of switching rules

which satisfy these properties by S. Assume that the incidence rate of the disease,

defined as the average number of new cases per unit time, is proportional to the

number of infected and susceptible present and takes the form βikSI/N , where the

total population N = S + I + R. The derivation comes from a physical argument:

the incidence rate is the number of average contacts multiplied by the total number

of susceptibles and the probability the contact is with an infected.

Assume that, due to external forces in the model causing stochastic perturbations

in the transmission of the disease, the contact rate is perturbed to βik + cn(t), where

c > 0 is a constant, and n(t) is Gaussian white noise. Then the disease is transmitted

with the incidence rate [βik + cn(t)]SI/N . The motivation is that, from a practi-

cal perspective, the contact rate is estimated as an average value plus some error

which is assumed to follow a normal distribution. This is the technique of parameter

perturbation, which is standard in stochastic population modeling [7, 8].
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Taking these assumptions into account, the switched SIR model with stochastic

perturbations and constant treatment is given by,

(2.1)































dS =

[

µN − βik

SI

N
− µS

]

dt − c
SI

N
dB,

dI =

[

βik

SI

N
− gI − θI − µI

]

dt + c
SI

N
dB,

dR = [gI + θI − µR]dt,

for t ∈ (tk−1, tk]. Here ik ∈ ℵ is governed by a switching rule σ, dB is a Wiener

process (or Brownian motion), under the Itô interpretation, defined on a complete

probability space (Ω,F , P) with a filtration {Ft}t≥0 satisfying the usual conditions

[23]. The initial conditions are S(0) = S0 > 0, I(0) = I0 > 0 and R(0) = R0 such

that S0 + I0 + R0 = 1. The positivity conditions are to make the problem physically

interesting. System (2.1) has a single disease-free equilibrium point Q̄ = (S̄, Ī, R̄) =

(1, 0, 0), where there are no infected individuals present in the population.

Following the work of Dalal et. al [7, 8], where the authors have proved existence

and non-negativity of solutions of stochastic epidemic models, the following theorem

on positivity and existence of solutions may be presented.

Theorem 2.1. For any initial conditions (S0, I0, R0) with S0 > 0, I0 > 0, and

S0 + I0 + R0 = 1, there exists a unique solution to (2.1) on t ≥ 0 and the solution

remains in ΩSIR = {(S, I, R) ∈ R
3
+| S + I + R = 1} with probability one for all t ≥ 0

almost surely.

Proof. Note that it is apparent from integration the equations in (2.1) and adding

them together that S+I+R = 1 almost surely. Then the proof can be broken into two

parts: first we prove global existence of solutions and then we prove non-negativity

of each variable almost surely.

To prove non-negativity, we follow the procedure of [7, 8]. Note that the coeffi-

cients of (2.1) are piecewise Lipschitz continuous on any interval (tk−1, tk], and hence

there exists a unique solution for all (S0, I0, R0) ∈ R
3
+ for t ∈ [0, τe) where τe is the

explosion time (see [12]). Then it is sufficient to show τe = ∞ almost surely in order

to guarantee global existence of the solution. Let N0 ≥ 0 be sufficiently large so that

1/N0 ≤ S0 ≤ N0, and 1/N0 ≤ I0 ≤ N0. For each integer N ≥ N0, define the stopping

time

τk = inf{t∈ [0, τe) : S(t) /∈ (1/N, N) or I(t) /∈ (1/N, N) or R(t) /∈ (1/N, N)}

and note that τk is increasing as k → ∞. Set τ∞ = limk→∞ τk and note that τ∞ ≤ τe

almost surely. If τ∞ = ∞ almost surely then τe = ∞ almost surely and hence

(S, I, R)∈R3
+ almost surely for all t ≥ 0.
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We prove the claim τ∞ = ∞ by contradiction: if not, then there exists T > 0

and 0 < ǫ < 1 such that P[τ∞ ≤ T ] > ǫ. Thus there exists N1 ≥ N0 such that

(2.2) P[τk ≤ T ] ≥ ǫ, ∀N ≥ N1.

Consider the auxiliary function V = S + 1− ln S + I + 1− ln I + R + 1− ln I, which

is always positive. By Itô’s formula,

dV = [4µ − µS − µI − µ/S + βikI − βikS + g + θ]dt

[−µR − (g + θ)I/R + c2(S2 + I2 + R2)/2]dt + c(I − S)dB.

For t∗ ≤ T , define η = min(t∗, τk). Then for t∈ [0, η],

dV ≤ [(βik + g + θ)I + 4µ + g + θ + c2(S + I + R)2/2]dt + c(I − S)dB,

= [(βik + g + θ)I + 4µ + g + θ + c2/2]dt + c(S − I)dB.

Use

I ≤ 2(I + 1 − ln I) − (4 − 2 ln 2) ≤ 2(S + 1 − ln S + I + 1 − ln I) = 2V.

Then,

dV ≤ [2(βik + g + θ)V + 4µ + g + θ + c2/2]dt + c(S − I)dB,

≤ [λ(1 + V )]dt + c(S − I)dB,

where λ = max{2(β1 + g + θ), . . . , 2(βm + g + θ), c2/2 + 4µ + g + θ}. Thus,
∫ η

0

dV (S(t), I(t), R(t)) ≤

∫ η

0

λ[1 + V (S(t), I(t), R(t))]dt

+ E

[
∫ η

0

λ[1 + V (S(t), I(t), R(t))]dt

]

,

which implies,

E [V (S(η), I(η), R(η))] ≤ V0 + E

[
∫ η

0

λ[1 + V (S(t), I(t), R(t))]dt

]

,

≤ V0 + λt∗ + λE

[
∫ η

0

V (S(t), I(t), R(t))dt

]

,

≤ V0 + λT + λE

[
∫ t∗

0

V (S(η), I(η), R(η))dt

]

,

= V0 + λT + λ

∫ t∗

0

E[V (S(η), I(η), R(η))]dt,

where V0 = V (S0, I0, R0). By Gronwall’s inequality,

(2.3) E[V (S(η), I(η), R(η))] ≤ [V (S0, I0, R0) + λT ] exp(c2T ).

Set ΩN = {τN ≤ T} for N ≥ N1. Then P(ΩN) ≥ ǫ by equation (2.2). Note that for

all B ∈ ΩN : S(τN , B) = N or 1/N ; or I(τN , B) = N or 1/N ; or R(τN , B) = N or
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1/N . Hence V (S(τN , B), I(τN , B), R(τN , B)) ≥ N +1− ln N or (1/N)+ 1− ln(1/N).

That is,

V (S(τN , B), I(τN , B), R(τN , B)) ≥ min{N + 1 − lnN, 1/N + 1 + ln N}.

Then equations (2.2) and (2.3) imply

(V (S0, I0, R0) + λT ) exp(λT ) ≥ E[1ΩN
(B)V (S(τN , B), I(τN , B), R(τN , B)),(2.4)

≥ ǫ(min{N + 1 − ln N, 1/N + 1 + ln N}),(2.5)

where 1ΩN
is the indicator function of ΩN . Let N → ∞ then c3 = (V (S0, I0, R0) +

λT ) exp(λT ) satisfies ∞ > c3 = ∞ which is a contradiction, hence τ∞ = ∞.

To show that solutions remain positive: assume that S0 > 0 and I0 > 0, which

implies that S(∆t) > 0 and I(∆t) > 0 almost surely for ∆t small positive. By Itô’s

formula,

d ln I = [βikS − µ − g − θ − c2(SI)2/2]dt + cSIdB.

Hence

I = I0 exp

{
∫ t

0

[βσ(u)S(u) − µ − g − θ − c2S2(u)I2(u)/2]du +

∫ t

0

cS(u)I(u)dB

}

.

Similarly,

d lnS = [µ/S − βikI − µ − c2(SI)2/2]dt + cSIdB.

Hence

S = S0 exp[

∫ t

0

[µ/S(u) − βσ(u)I(u) − µ − c2S2(u)I2(u)/2]du +

∫ t

0

cS(u)I(u)dB].

Then, by changing the time origin to ∆t and since solutions exist for all t ≥ 0 almost

surely, it follows, without loss of generality, that I > 0 and S > 0 for all t ≥ 0 almost

surely. Finally, since R′ = (g + θ)I −µR and I > 0 almost surely, then it follows that

R ≥ 0 almost surely.

Since there have been observed seasonal variations in the contact rate, consider a

special switching rule that is periodic [15]: Assume that the switching rule σ satisfies

tk − tk−1 = τk with τk+m = τk. Assume that βi = βk for t ∈ (tk−1, tk] and that

βk+m = βk, where ω = τ1 + τ2 + · · ·+ τm is one period of the switching rule. Denote

the set of switching rules that satisfy this property by Speriodic ⊂ S.

Define

(2.6) Rθ =
1
ω

∫ ω

0
βσ(t)dt + 1

2
c2

µ + g + θ
.

If σ∈Speriodic and c = 0 (no stochastic perturbations), then Rθ is the basic reproduc-

tion number of the model, which follows from the epidemic literature (for example, see

[3, 31]). The basic reproduction number has an important physical interpretation:
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it represents the average number of secondary infections produced by one infected

individual, during their infectious period, in a wholly susceptible population.

In order to investigate the eradication of the disease, the following definition is

required.

Definition 2.2 ([23]). If xk (k ≥ 1) and x are random variables belonging to Lp (pth

moment has finite value) and E[|xk − x|p] → 0, then xk is said to converge to x in pth

moment.

The following theorem may now be proven using the basic reproduction number

as a threshold.

Theorem 2.3. If σ∈Speriodic and Rθ < 1 then the solution of system (2.1) converges

in the second moment to the disease-free equilibrium Q̄.

Proof. From equation (2.1), it follows from Itô’s formula that

dI2 = [I2(βikS − µ − g − θ) +
1

2
c2S2I2]dt + 2cSI2dB.

Integrating gives,

I2(t) = I2
0 +

∫ t

0

[(βσ(u)S(u) − µ − g − θ)I2(u) +
1

2
c2S2(u)I2(u)]du

+

∫ t

0

2cS(u)I2(u)dB(u),

≤ I2
0 +

∫ t

0

λσ(u)I
2(u)du +

∫ t

0

2cS(u)I2(u)dB(u),

where λi := βi−µ−g−θ+1
2
c2. Taking expected values, E[I2(t)] ≤ I2

0+
∫ t

0
λσ(u)E[I2(u)]du,

since E[
∫ t

0
2cS(u)I2(u)dB(u)] = 0. It follows that

(2.7) E[I2(t)] ≤ I2
0 exp

[
∫ t

0

λσ(u)du

]

.

Hence,

E[I2(ω)] ≤ I2
0 exp [λ1τ1 + · · ·+ λmτm] = I2

0 exp [ω(µ + g + θ)(Rθ − 1)].(2.8)

Define η := exp [ω(µ + g + θ)(Rθ − 1)], which satisfies η < 1 since Rθ < 1. Hence

E[I2(ω)] ≤ ηI2
0 < I2

0 , and, similarly, E[I2(hω)] ≤ ηE[I2((h − 1)ω)] for any integer

h = 1, 2, . . . Hence,

E[I2(hω)] ≤ ηE[I2((h − 1)ω)] ≤ η(ηE[I2((h − 2)ω)]) ≤ · · · ≤ ηhI2
0 .

Therefore the sequence {E[I2(hω)]}∞h=0 converges to zero as h → ∞. Further, it is

apparent that E[I2(t)] is bounded on each interval ((h − 1)ω, hω], and so it follows
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that I2 converges to zero in probability. From the equation for R, it is true that

R2 = R2
0 +

∫ t

0
2R(u)[(θ + g)I(u)− µR(u)]du, then by Holdër’s inequality,

E[R2] = R2
0 +

∫ t

0

[2(θ + g)E[I(u)R(u)] − 2µE[R2(u)]]dt,

≤ R2
0 +

∫ t

0

[2(θ + g)
√

E[I2(u)]E[R2(u)] − 2µE[R2(u)]]dt.

Since E[I2] → 0, it follows that E[R2] converges to zero. Finally, since S = 1− I −R,

it follows that E[S2] = 1+E[I2]+E[R2]−2E[I]−2E[R]+2E[IR]. Again using Holdër’s

inequality it follows that E[S2] converges to one. Thus the solution of system (2.1)

converges in the second moment to the disease-free equilibrium Q̄.

Note that the condition Rθ < 1 defines a critical control rate θcrit such that

θ > θcrit guarantees disease eradication in the mean square, where

(2.9) θcrit =
1

ω

∫ ω

0

βσ(t)dt +
1

2
c2 − µ − g.

It is possible to prove a threshold theorem in the non-periodic case. Define the

time-weighted average

(2.10) 〈Rθ〉 = sup
t≥0

1
t

∫ t

0
βσ(u)du + 1

2
c2

µ + g + θ
.

Theorem 2.4. If σ∈S and 〈Rθ〉 < 1 then the solution of system (2.1) converges in

the second moment to the disease-free equilibrium Q̄.

Proof. Note that 〈Rθ〉 < 1 implies that there exists ǫ > 0 such that (1
t

∫ t

0
βσ(u)du +

1
2
c2)/(µ + g + θ) ≤ 1 − ǫ, so that

∫ t

0
(βσ(u) + 1

2
c2 − g − µ − θ)du ≤ −ǫ(µ + g + θ)t.

Therefore,

(2.11)

∫ t

0

λσ(u)du ≤ −ǫ(µ + g + θ)t,

where λσ := βσ − g − µ − θ + 1
2
c2. Assume that ik follows the switching rule σ∈S,

then from equation (2.7) and (2.11), it follows that E[I2(t)] ≤ I2
0 exp (−ǫ(µ + g + θ)t)

for all t ≥ 0. Showing convergence of E[S2] and E[R2] to one and zero, respectively,

follows similarly as in the proof of Theorem 2.3.

3. Pulse Treatment Model

A time-constant control scheme has the effect of reducing the basic reproduc-

tion number but does not antagonize the underlying mechanics which spread the

disease [19]. On the other hand, pulse vaccination strategies have recently gained

prominence for their successful application to poliomyelitis and measles outbreaks in

Central and South America [28]. The most notable example of a successful applica-

tion of a vaccination program was the World Health Organization’s global initiative
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against smallpox, beginning in 1967 and leading to global eradication by 1977 [18].

A pulse control scheme is based on the idea of impulsively treating or vaccinating a

fraction of individuals at certain points in time. Theoretical results show that pulse

control schemes can achieve disease eradication at lower vaccination levels compared

to conventional cohort immunization programs [1].

Assume that at the times t = kT , k = 1, 2, . . ., a portion 0 ≤ p ≤ 1 of the

infected population is impulsively treated, causing them to move immediately to the

recovered class. It is assumed that the time scale of the dynamics of the disease is

much larger than the time scale of the treatment process, and so the instantaneous

movement to the recovered class is a reasonable assumption. The model is then,

(3.1)



















































dS = [µ − βikSI − µS]dt − cSIdB, t ∈ (tk−1, tk],

dI = [βikSI − gI − µI]dt + cSIdB,

dR = [gI − µR]dt,

S(t+) = S(t), t = kT,

I(t+) = (1 − p)I(t),

R(t+) = R(t) + pI(t),

where I(t+) = limh→0+ I(t + h), ik ∈ℵ, and with initial conditions S(0+) = S0 > 0,

I(0+) = I0 > 0 and R(0+) = R0. As in the constant treatment model (2.1), it can

be shown that S, I, R ≥ 0 up until at least the first impulsive time. Further, the

impulsive equations do not take make the solution negative and hence the meaningful

physical domain is ΩSIR almost surely. System (3.1) has the disease-free equilibrium

Q̄ = (S̄, Ī , R̄) = (1, 0, 0).

Define the lowest common multiple of the inter-pulse period and seasonal period

by z := lcm(T, ω) and define

(3.2) Rp =
1
ω

∫ ω

0
βσ(t)dt + 1

2
c2

µ + g − 1
T

ln(1 − p)
.

If σ ∈ Speriodic and c = 0 then Rp is the basic reproduction number of the model,

which follows from the epidemic literature [30].

Theorem 3.1. If σ∈Speriodic and Rp < 1 then the solution of system (3.1) converges

to the disease-free equilibrium Q̄ in the second moment.

Proof. From equation (3.1), it follows from Itô’s formula that

dI2 = [I2(βikS − µ − g) +
1

2
c2S2I2]dt + 2cSI2dB.
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Before the first impulse is applied,

I2(T ) = I2
0 +

∫ T

0

[(βσ(t)S(t) − µ − g)I2(t) +
1

2
c2S2(t)I2(t)]dt +

∫ T

0

2cS(t)I2(t)dB(t),

≤ I2
0 +

∫ T

0

λσ(t)I
2(t)dt +

∫ T

0

2cS(t)I2(t)dB(t),

where λi := βi−µ−g+ 1
2
c2. Taking expected values E[I2(T )] ≤ I2

0 +
∫ T

0
λσ(t)E[I2(t)]dt,

since E[
∫ T

0
2cS(t)I2(t)dB(t)] = 0. It follows that E[I2(T )] ≤ I2

0 exp
[

∫ T

0
λσ(t)dt

]

.

Hence, E[I2(T+)] ≤ I2
0 (1 − p) exp [τ1λ1 + · · ·+ τmλm]. Similarly,

E[I2(z+)] ≤ I2
0 (1 − p)z/T exp

{ω

T
[τ1λ1 + · · · + τmλm]

}

,

= I2
0 exp

{ z

T
ln(1 − p) +

z

ω
(τ1λm + · · · + τmλm)

}

,

= I2
0 exp

{

z(µ + g −
1

T
ln(1 − p))(Rp − 1)

}

.

Define η := exp
{

z(µ + g − 1
T

ln(1 − p))(Rp − 1)
}

< 1 since Rp < 1. Hence E[I2(z+)] ≤

ηI2
0 < I2

0 . Since σ∈Speriodic, it can be similarly shown that E[I2(hz+)] ≤ ηE[I2((h −

1)z+)] for any integer h = 1, 2, . . ., and therefore,

E[I2(hz+)] ≤ ηE[I2((h − 1)z+)] ≤ η(ηE[I2((h − 2)z)]) ≤ · · · ≤ ηhI2
0 .

Therefore the sequence {E[I2(hz+)]}∞h=0 converges to zero as h → ∞. Since E[I2(t)]

is bounded for 0 ≤ t ≤ z and on each interval ((h − 1)z, hz] for h = 1, 2, . . ., it

follows that E[I2] converges to zero as h → ∞. Therefore, I2 converges to zero in

probability. Showing convergence of E[S2] and E[R2] to one and zero, respectively,

follows similarly as in the proof of Theorem 2.3.

Note that the condition Rp < 1 defines a critical control rate pcrit such that

p > pcrit guarantees disease eradication, where

(3.3) pcrit = 1 − exp

[

T

(

µ + g −
1

ω

∫ ω

0

βσ(t)dt −
1

2
c2

)]

.

4. Simulations

Consider the constant treatment model (2.1) with initial conditions S0 = 0.2,

I0 = 0.8, and R0 = 0. Assume that the switching rule takes the periodic seasonal

form:

(4.1) σ =







1 if t∈(k, k + 0.25], k = 0, 1, 2, . . .

2 if t∈(k + 0.25, k + 1],

which implies τ1 = 0.25, τ2 = 0.75, and ω = 1. Take the parameters β1 = 2 during

the winter, β2 = 1 during other seasons, µ = 0.1, g = 0.9, and noise parameter

c = 0.5. If θ = 0.4 then Rθ = 0.982, and so, by Theorem 2.3, the solution converges
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to the disease-free equilibrium of system (2.1) in the second moment. In this case,

θcrit = 0.375 to guarantee disease eradication in mean square. See Figures 1a and 1b.

Consider the pulse treatment model (3.1) with the same initial conditions, peri-

odic switching rule (4.1), and parameter values. Then treatment rate p = 0.35 with

inter-pulse period T = 2 gives Rp = 0.961, which implies the solution converges to the

disease-free equilibrium of system (3.1) in the second moment, by Theorem 3.1. In

this case, pcrit = 0.313 to guarantee disease eradication in mean square. See Figures

1c and 1d.

With the same parameter choices, the constant treatment scheme (2.1) requires a

larger treatment rate compared to the pulse treatment scheme. This helps to contrast

the constant scheme with the pulse scheme; it is often the case that a pulse scheme

can achieve eradication using a lower value of p because of the existing trade-off

between increasing the frequency of pulses and decreasing the pulse treatment rate

requirement p. This is especially important when vaccine/treatment efficacy is con-

sidered, for example, the critical vaccination level for measles is approximately 94%,

with vaccination efficacy approximately 95%. In order for a time-constant control

program to be successful in this case, at least 99% of the population would need to

be immunized, which is infeasible practically [18].
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(a) Realization of (2.1)

with θ = 0.4.
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(b) Ensemble average of

(2.1).
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(c) Realization of (3.1)

with p = 0.35.
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(d) Ensemble average of

(3.1).

Figure 1

Finally, if we consider the pulse treatment model with β1 = 4, treatment rate

p = 0.1, other parameters the same as above except with noise parameter c = 5, then

it is apparent from Figure 2 that the solutions converge to the disease-free equilibrium.
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In this case Rp = 12.9 and, because of the increase in the noise parameter, the critical

treatment rate is pcrit = 1, which is physically infeasible. This raises an important

point: because of the oscillatory nature with which solutions converges in the endemic

case, there can be an extinction event if the noise parameter is large enough. When the

number of infected oscillate close to zero, the infected population can reduce to zero

from the relatively large stochastic perturbations. This illustrates the fact that the

basic reproduction number Rp is too strict (and hence Theorem 3.1 is sufficient but

not necessary); we conjecture the noise parameter c should be inversely proportional

to the basic reproduction number. Based on simulations, this effect seems to also be

present in the constant control scheme.
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(a) Realization of (3.1) with p = 0.1 (Rp =

12.9).
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(b) Ensemble average of (3.1) with c = 5.

Figure 2

5. Conclusions

In this paper, a new type of epidemic model with time-varying contact rates

and external noise is studied. In order to do this, the contact rate is modeled as a

switching parameter and multiplicative Gaussian white noise is added to represent

randomness in the model from external perturbations affecting the transmission of the

disease. In particular, a constant treatment and pulse treatment scheme are applied

to a new switched SIR model with stochastic perturbations. Under both control

strategies, threshold criteria are established which guarantee disease eradication in

the mean square, based on the reproduction number of the disease and the magnitude

of stochasticity. Some simulations are given to illustrate the theorems in this paper.

For future work, one may consider establishing some results on permanence of

the disease in the endemic case. Another possibility is to further investigate the pos-

sibility of an extinction event, mentioned at the end of Section 4, where the noise in
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the model can lead to eradication in an otherwise endemic model. Another possibility

is to assume that other parameters are time-varying or to look at more complex mod-

els with stochasticity, such as multi-group models, SEIR models, or age-structured

models. Finally, one may consider constant vaccination or pulse vaccination schemes.
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