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ABSTRACT. Grover proposed an algorithm for the quantum computation of statistical mean.

This algorithm has a complexity of O
(

1

ν

)

where ν is the error limit. In this paper we study this

algorithm. First we prove the correctness of Grover’s philosophy for computation of mean. Also we

observe some errors in the mean estimation step. We then propose a modification of this estimation

step by introducing a new unitary operator. The correctness of the modified algorithm is proved

and numerical examples are included to illustrate Grover’s algorithm and the proposed modification.

The proposed algorithm uses a much simpler unitary operator than Grover’s original algorithm.
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1. Introduction

Feynman observed that simulation of a quantum mechanical system on an or-

dinary computer would entail an exponential slowdown in the efficiency (Feynman,

1982). Feynman (1986) wrote “But the full description of quantum mechanics for

a large system with R particles is given by a function ψ(x1, x2, . . . , xR, t) which we

call the amplitude to find the particles x1, x2, . . . , xR, and therefore, because it has

too many variables, it cannot be simulated with a normal computer with a number of

elements proportional to R . . . .” He suggested that one way to overcome this short-

coming would be to simulate the quantum mechanical system on a computer governed

by quantum laws. Quantum computing has now emerged as a synthesis of ideas from

fields like computer science and quantum mechanics.

Deutsch (1985) established a solid ground for quantum computation. After this,

research on quantum computing remained at a low profile until 1994 when Shor

(1994) proposed quantum algorithms for factoring integers and extracting discrete

logarithms in polynomial time and in 1996 Grover proposed a quantum search algo-

rithm for data-bases, which is quadratically faster than known classical algorithm.
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Over the last few years there has been a rapid development of methods for process-

ing quantum information (Barenco, et al., 1995; Benioff, 1980; Bernstein & Vazirani,

1993; Berthiaume & Brassad, 1992, 1994; Boyer et al., 1998; Chen & Diao, 2000;

Deutsch et al., 1995; Deutsch & Jozra, 1992; Grover 1996; Nielsen and Chuang, 2000;

Shor, 1994; Simon 1994).

Grover (2000) proposed a quantum algorithm for computation of statistical mean

and studied its performance. Grover designed a transformation due to which the am-

plitude in a particular state becomes proportional to the mean. So, by repeating this

transformation, the probability in the desired state can be increased to a detectable

level. Finally, a measurement can be made to determine if the system is indeed in

the desired state.

In this paper we first briefly describe Grover’s algorithm for statistical mean

computation and analyze this algorithm with examples. We demonstrate some flaws

in this algorithm. Then we propose a correct quantum algorithm for the same problem

using a philosophy analogous to that of Grover (2000).

2. Basic Ideas of Quantum Operations

Here we discuss quantum gate arrays or quantum acyclic circuits, which are anal-

ogous to acyclic circuits in classical computer science. We also discuss reversible com-

putation. Besides the network model of quantum computer, there are two other types

of models such as quantum Turing machine (Bernstein & Vazirani, 1993; Deutsch et

al., 1995; Yao 1993) and quantum cellular automata (Feynman 1986; Lloyd 1993,

1994, 1995; Margolus 1986, 1990). Quantum Turing machine and quantum gate ar-

rays can compute some function with a small probability of error in polynomial time

(Yao 1993).

Suppose a system has n components and each component has two states. Clas-

sically, we can represent the system with n bits, but in quantum mechanics we need

2n complex numbers for a complete description of the system, that is, the state of

the quantum system is a point in a 2n-dimensional Hilbert space. A quantum state

is represented by the ket notation (first used by Dirac). The Hilbert space associated

with this quantum system is the vector space with these 2n states as basis vectors.

A unit-length vector in this Hilbert space represents a state of the system at any

instant of time. In quantum computation the superposition of a state is represented

by
∑2n−1

i=0 αi|xi〉, where αi = amplitude of ith state such that
∑

i |αi|2 = 1 and |xi〉=
a basis vector of the Hilbert space.

Quantum circuits allow only local unitary transforms, i.e., unitary transforms

on a fixed number of qubits (Benioff, 1982a, 1982b). Two qubit transforms are more

useful than any general unitary transform which takes place on n-qubits, because it is
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not easy to implement n-qubit transforms, whereas two-qubit transformations can be

implemented by relatively simple physical systems. These two-qubit transformations

are the heart of a quantum computer. For quantum computation there are two well

known quantum gates, NOT and controlled-NOT gates. A NOT gate has a single

qubit input and a controlled-NOT gate has two qubits input. The input and output of

a NOT gate and a controlled-NOT gate are shown in Table 1 and Table 2 respectively.

Table 1: Input and output relation of a NOT gate

Input qubit Output qubit

|0〉 |1〉
|1〉 |0〉

Table 2: Input and output relation of a controlled-NOT gate

Input qubit Output qubit

|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

As mentioned earlier quantum circuits allow only local unitary transforms. So to

realize these gates we need unitary matrices. It is not difficult to construct the

unitary matrices to achieve the desired goals. The rows of such a matrix correspond

to input basis vectors and the columns represent output basis vectors. If the ith basis

vector, when applied as an input to the gate, produces the jth basis vector as the

output, then the (i, j)th entry of the matrix is set to the amplitude of the output

vector (in this case the amplitude is 1); otherwise, it is set to 0. Thus the matrix

MNOT corresponding to the NOT gate is shown in Table 3.

Table 3: Unitary matrix corresponding to a NOT gate

|0〉 |1〉
|0〉 0 1

|1〉 1 0

MNOT =

(

0 1

1 0

)

.

Similarly, for a controlled-NOT gate the unitary matrix MCNOT is shown in Table 4.

Table 4: Unitary matrix corresponding to a controlled-NOT gate

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 0 1

|11〉 0 0 1 0

MCNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













.

Here we also use another fundamental gate known as Walsh-Hadamard (W-H) gate.

There is no classical gate which is compatible to W-H gate. For Walsh-Hadamard
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gate the input and output relations are given in equation (2.1):

(2.1) |0〉 → 1√
2
|0〉+ 1√

2
|1〉, |1〉 → 1√

2
|0〉 − 1√

2
|1〉.

A system consisting of n qubits has N = 2n basis states. Now application of W-H gate

on each qubit of a starting state, a string of n binary digits, produces a superposition

of states consisting of all possible n bit strings, where the amplitude of each state is

±2−
n
2 (Grover 2000).

Grover’s algorithm also requires selective inversion of the phase of the amplitude

of certain states. This is needed for amplitude amplification of certain states and a

scheme for phase inversion is described by Grover (2000).

3. Amplification of Amplitude

The quantum algorithm discussed in (Grover 2000) uses Grover’s quantum search-

ing algorithm (Grover 1996). All quantum algorithms consist of unitary operations

applied in series. Any series of unitary operations is again equivalent to a single

unitary operation.

Assume that, each point in a domain B(x) is mapped into a state in which t is

the target state. Now our objective is to design a system (i.e., a set of states) such

that an initial starting state s (say) is transformed to the target state t after a series

of unitary operations. The objective is to get the system into state t. Suppose we

start with an initial state s and apply a unitary operation U to s and the system

reaches the state t with amplitude Uts. Thus, the probability of getting the state t

is |Uts|2. So, it takes O
(

1
|Uts|2

)

iterations before we get a single success. But using

Grover’s concept, performing only O
(

1
|Uts|

)

iterations it is possible to get a single

success. This results in a great improvement in computation, if |Uts| ≪ 1. We now

discuss such a unitary operator G (Grover 2000).

We use the following notations:

Ix : It is a matrix that inverts the amplitude in a single state |x〉. All

diagonals of Ix, except the (x, x) term, are 1; the (x, x) term is −1. The

off-diagonal entries are all zeros. We can express Ix as I − 2|x〉|x〉T ,

where I is the identity matrix.

|x〉 : The column vector which has all terms zero, except for the xth term

which is unity.

G : A unitary operator and it is composed of four operations, −IsU−1ItU .

This implies that G is equivalent to four operations in the following

sequence (1) U , (2) It, (3) U−1 and (4) −Is. Here U−1 is the complex

transpose of U .

It is shown in (Grover 2000) that G preserves the two dimensional vector space
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spanned by two vectors: |s〉 and U−1|t〉. Consider a superposition state α|s〉+βU−1|t〉
and G = −IsU−1ItU . Applying G on a superposition state we get (3.1):

(3.1) G(α|s〉+ βU−1|t〉) = [(1− 4|Uts|2)α− 2U∗
tsβ]|s〉+ [2Utsα + β]U−1|t〉.

From equation (3.1) we can conclude that the operator G transforms any superposi-

tion of two vectors |s〉 and U−1|t〉 into another superposition of the two vectors and

preserves the two dimensional vector space spanned by two vectors |s〉 and U−1|t〉.
According to Grover (2000), if we start with |s〉, after ξ iterations of G the result will

be the superposition as|s〉+ atU
−1|t〉 where as = cos(2ξ|Uts|) and |at| = sin(2ξ|Uts|).

So, if we choose ξ = π
4|Uts| , the superposition collapses to U−1|t〉. After this, if we

apply U on it, it provides |t〉. Thus, we need only O
(

1
|Uts|

)

iterations of G to reach

the target state |t〉 from the starting state |s〉 with certainty.

4. Grover’s Quantum Mean Computation

Grover describes the philosophy behind his quantum algorithm for mean compu-

tation (qmean) (Grover 2000) as:

“... a unitary transformation is designed due to which the amplitude in a particular

state comes out to be proportional to the statistic we want to estimate. Then by re-

peating this transformation in the prescribed manner, the probability in the desired

state is increased to a detectable level. Finally a measurement is made to determine if

the system is indeed in the desired state. By repeating the entire operation sequence a

few times and counting the number of observations, one can estimate the probability

of occurrence of the desired state and hence the original statistic.”

Suppose we have to find the mean of {x0, x1, . . . , xN−1}. First we change the

given set of values {x0, x1, . . . , xN−1} in the range (−0.5, 0.5) by a suitable scaling.

Let the scaled values be {xd0 , xd1 , . . . , xdN−1
}. Assume a specified precision ν for the

mean M. Choose a relatively large ν0 such that |M | < ν0. The process described in

Algorithm A.

Algorithm A: Grover’s qmean algorithm

while (ν0 > ν) do

begin

(1) Estimate the mean Me such that |Me − M | < ν0

2
using the

“Estimate Algorithm” (Algorithm B) described next.

(2) Each element is shifted by the newly estimated mean, i.e.,

xdi
← xdi

−Me.

(3) [Improve precision] ν0 ←
ν0

2
end
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The mean is estimated as the sum of the estimated Me in each iteration

Step (1) of the loop.

We now provide a proof of the correctness of this result in the following theorem:

Theorem 1. Suppose M is the true mean of {xd0 , xd1 , . . . , xdN−1
} such that |M | < ν0,

where ν0 is relatively large and Me is the estimated mean computed by Grovers’

algorithm, such that |Me −M | < ν0

2
. Then Algorithm A computes the true mean of

the data points as the sum of the estimated means and it will be within precision of

ν, where ν ≤ ν0

2k after k iterations.

Proof. Here, M = 1
N

∑N−1
i=0 xdi

. In the first iteration

M (1)
e =

1

N

N−1
∑

i=0

x
(0)
i ±

ν0

2
, x

(1)
i = x

(0)
i −M (1)

e ,

where x
(0)
i = xdi

. After kth iterations

M (k)
e =

1

N

N−1
∑

i=0

x
(k−1)
i ± ν0

2k

and x
(k)
i = x

(k−1)
i −M (k)

e . Now,

x
(k)
i = x

(k−1)
i −M (k)

e = x
(k−2)
i −M (k−1)

e −M (k)
e = · · · = x

(0)
i −

k
∑

j=1

M (j)
e

and

M (k)
e =

1

N

N−1
∑

i=0

x
(k−1)
i ± ν0

2k
=

1

N

N−1
∑

i=0

(

x
(0)
i −

k−1
∑

j=1

M (j)
e

)

± ν0

2k

=
1

N

N−1
∑

i=0

xdi
−

k−1
∑

j=1

M (j)
e ±

ν0

2k
.

Therefore,

M (k)
e +

k−1
∑

j=1

M (j)
e = M ± ν0

2k
,

i.e.,
∑k

j=1M
(j)
e = M ± ν. Hence sum of estimated mean obtained in each iteration

approaches the actual mean M with iteration k. For describing the ‘Estimate Algo-

rithm’ (Algorithm B) we need to define a set of operators which we do next. Consider

a quantum mechanical system with (2n+1 + 1) states, where each state is represented

by (n + 2) qubits. Given N, we find the smallest n such that 2n ≥ N . Assume three

kinds of state space, P , H and I. These states are used to compute the mean of N

given numbers.

Let P = {P0, P1, . . . , PN−1} be a state space, where each state Pi is represented

by (n + 2) qubits – the first two qubits are 00 and the next n qubits indicate the

Pi state (one can view that the n qubits correspond to the index of xi) as shown in
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Figure 1. (a) State representation of Pi, (b) State representation of

Hi, and (c) State representation of Ii for Algorithm B.

Figure 1(a). Similarly, H = {H0, H1, . . . , HN−1} be another state space. Each state

Hi is represented by (n+ 2) qubits, where the first two qubits are 01 and the next n

qubits indicate the Hi state as shown in Figure 1(b). Also consider another state I

in which the first qubit is 1 and the remaining (n+ 1) qubits are set to zero and the

corresponding register is shown in Figure 1(c).

The estimate algorithm requires four unitary operators: L1, L2, R1, and W1.

Grover (2000) suggested to apply the operator U = L1W1R1W1L2 on P0 to find the

estimated mean Me. The definition of four unitary operators L1, L2, R1, and W1 are

as follows:
Operator L1

The unitary operator L1 is performed by the following rules.

(a) If in state P0: Goto state I with an amplitude of 1
2

and remain in state P0

with an amplitude
√

3
2

.

(b) If in state I: Goto state P0 with an amplitude of 1
2

and remain in state I with

an amplitude −
√

3
2

.

(c) If in any other state: Remains in the same state.

Operator L2

The following rules define the operator L2.

(a) If in state P0: Goto state I taking an amplitude of 1√
2

and remain in the state

P0 with an amplitude 1√
2
.

(b) If in state I: Goto state P0 taking an amplitude of − 1√
2

and remain in the

state I with an amplitude 1√
2
.

(c) If in any other state: Remains in the same state.

Operator R1

The following rules are used for the operator R1.

(a) If in state Pβ: Goto state Hβ taking an amplitude of
√

2
3
− 4

3
x2

β and remain in

the state Pβ with an amplitude of ( 1√
3

+
2ixβ√

3
).

(b) If in state Hβ: Goto state Pβ taking an amplitude of
√

2
3
− 4

3
x2

β and remain in

the state Hβ with an amplitude of (− 1√
3

+
2ixβ√

3
).

(c) If in any other state: Remains in the same state.
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Operator W1

The following rules define the operator W1.

(a) If in state Pβ: Perform Walsh-Hadamard transform on Pβ state.

(b) If in any other state: Remains in the same state.

Grover claimed that application of U = L1W1R1W1L2 on P0 will make the am-

plitude of state P0 as iM√
2
. If this claim is true then Algorithm B (the Estimate

Algorithm) for estimation of the mean with precision ν0 will be as follows:

Algorithm B : Estimate Algorithm

(1) Repeat G for O
(

1
ν0

)

times on P0.

(2) Apply U only once on the resultant state.

(3) Measure the amplitude of state P0 for the estimated mean (with a precision of

ν0).

We shall now show with a numerical example that the application of U on P0

does not make the amplitude of P0 as iM√
2

as claimed in (Grover 2000).

4.1. Numerical Example. Before giving a complete example we first explain how

quantum operators act on qubits and what results are produced by such operators. We

discuss a useful operator, the Walsh-Hadamard operator, on three qubits input. For

simplicity we consider the input |000〉. Walsh-Hadamard transform can be represented

by following matrix:

W-H =
1√
2

(

1 1

1 −1

)

.

We apply W-H transform on |000〉. The input |000〉 can be written as |0〉|0〉|0〉 or

|0〉⊗ |0〉⊗ |0〉, where ⊗ is the tensor product operator. After applying W-H operator

on |000〉 becomes
( |0〉 + |1〉√

2

)

⊗

( |0〉 + |1〉√
2

)

⊗

( |0〉 + |1〉√
2

)

.

So we can rewrite as:

|000〉 W−H−→
( |0〉 + |1〉√

2

)

⊗

( |0〉 + |1〉√
2

)

⊗

( |0〉 + |1〉√
2

)

=

( |0〉 + |1〉√
2

)

⊗

( |00〉 + |01〉 + |10〉 + |11〉
2

)

=
|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉

2
3
2

Suppose N = 2 and the two input numbers are x0 and x1; x0, x1 ∈ (−0.5,+0.5). We

want to estimate the mean of x0 and x1. To find the estimated mean Me, we proceed

as follows: Choose ν0 = 0.5 (in Algorithm A). We shall try to estimate the mean
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such that |Me −M | < ν0

2
. Here, n = 1 [Since N = 2n]. Now we write P0 and H0

corresponding to x0; P1 and H1 corresponding to x1, and I as described previously.

P0 ≡ |000〉 H0 ≡ |010〉 I ≡ |100〉
P1 ≡ |001〉 H1 ≡ |011〉

Assume that the starting state is P0. Now apply the unitary operator U = L1W1R1W1L2

on P0. In other words on P0 we apply the following operators in this sequence

L2,W1, R1,W1 and L1. After applying each operator the amplitude of the different

states are shown in Table 5 to Table 9.

Step 1: We apply L2 operator on P0 state. It goes to state I with an amplitude

of 1√
2

and to state P0 with an amplitude of 1√
2
. This can be written as:

|000〉 L2−→ 1√
2
|000〉 +

1√
2
|100〉.

The amplitudes of different states (P0 and I) are shown in Table 5.

Table 5: Amplitude of different states after applying operator L2

State Amplitude

P0
1√
2

I 1√
2

Step 2: Now W1 operator acts on P0 state. The operation can be written as:

1√
2
|000〉 W1−→ 1√

2

( |000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉
2

3
2

)

≡ 1

22
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉) .

Amplitudes of different states after applying operator W1 on the output of Step

1 are shown in Table 6.

Table 6: Amplitudes of different states after applying operator W1

State Amplitude

P0
1
22

P1
1
22

H0
1
22

H1
1
22

I 1√
2

+ 1
22

Step 3: We then apply operator R1. After applying operator R1 on the output of

Step 2 the amplitudes of different states are shown in Table 7.
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Table 7: Amplitudes of different states after applying operator R1

State Amplitude

P0
1
22

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3

)

P1
1
22

(

1√
3

+ 2ix1√
3

+

√

2
3
− 4x2

1

3

)

H0
1
22

(

√

2
3
− 4x2

0

3
− 1√

3
+ 2ix0√

3

)

H1
1
22

(

√

2
3
− 4x2

1

3
− 1√

3
+ 2ix1√

3

)

I 1√
2

+ 1
22

Step 4: The operator W1 is applied on the output of Step 3. The resulting am-

plitudes for the states P0, P1 and I are shown in Table 8.

Table 8: Amplitudes of different states after applying operator W1

State Amplitude

P0
1

23
√

2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
+ 1√

3
+ 2ix1√

3
+

√

2
3
− 4x2

1

3

)

P1
1

23
√

2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
− 1√

3
− 2ix1√

3
−
√

2
3
− 4x2

1

3

)

I 1√
2

+ 1
22 + 1

23
√

2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
+ 1√

3
+ 2ix1√

3
+

√

2
3
− 4x2

1

3

)

Step 5: Applying operator L1 on the output of Step 6, we get the amplitude of

P0 as shown in Table 9.

Table 9: Amplitude of P0 state after applying operator L1

State Amplitude

P0

√
3

24
√

2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
+ 1√

3
+ 2ix1√

3
+

√

2
3
− 4x2

1

3

)

+1
2

(

1
23

√
2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
− 1√

3
− 2ix1√

3
−
√

2
3
− 4x2

1

3

)

+ 1√
2
+

1

2
3
2
√

2
+ 1

23
√

2

(

1√
3

+ 2ix0√
3

+

√

2
3
− 4x2

0

3
+ 1√

3
+ 2ix1√

3
+

√

2
3
− 4x2

1

3

))

Grover claimed that application of U changes the amplitude of P0 to iM√
2
, but our

example shows that it is not the case even for a very simple example. We now

propose a modification of Grover’s algorithm to fix this problem. In other words, we

propose a new unitary operator that changes the amplitude P0 to iM√
2
.

5. Modified Algorithm for Mean Computation

The basic steps of Algorithm A remains unchanged but we propose a new unitary

operator which is used by the estimate algorithm (Algorithm B). The required basic

unitary operators are described next. Consider a quantum mechanical system with

2n+1 states where each state is represented by (n + 1) qubits. We are assuming only

two kinds of state space, P and H . These states are used to compute the mean of
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Figure 2. (a) Representation of state Pi, and (b) representation of

state Hi for algorithm C.

N = 2n given real values. Let P = {P0, P1, . . . , PN−1} be a state space, where each

state Pi is represented by (n+1) qubits; the first qubit is 0 and next n qubits indicate

the Pi state (one can view that the n qubits correspond to the index of xi) as shown

in Fig. 2(a).

Similarly, H = {H0, H1, . . . , HN−1} be another state space, where each state Hi

is represented by (n + 1) qubits; the first qubit is 1 and next n qubits indicate the

index of Hi as shown in Fig. 2(b).

To estimate the mean Me, the 5-step unitary operator U = L1W1R1W1L2 of

Grover’s algorithm is replaced by a 3-step unitary operator U = Wm1Rm1Wm1, where

the unitary operators Wm1 and Rm1 are defined as follows:

Operator Rm1

(a) If in state Pβ: Goto the state Hβ with an amplitude of i
√

1
2
− 1

2
x2

β

and remain in the state Pβ with an amplitude of
(

1√
2

+
ixβ√

2

)

.

(b) If in state Hβ: Goto the state Pβ with an amplitude of −i
√

1
2
− 1

2
x2

β

and, remain in the state Hβ with an amplitude of
(

− 1√
2

+
ixβ√

2

)

.

Operator Wm1

Perform Walsh-Hadamard transformation on the state under

consideration.

Next, we demonstrate the correctness of our operator.

5.1. Numerical Example. Consider the same data points x0 and x1 as in the pre-

vious example in Section 4.1. We assume the same value for ν. The states are

represented as follows:

P0 ≡ |00〉, H0 ≡ |10〉, P1 ≡ |01〉, H1 ≡ |11〉.

Note that, here we do not use any I state. Now apply U = W1R1W1 on P0 state. The

amplitude of different states after applying different operators are shown in Table 10–

Table 12. The computational steps involved are shown below:

(5.1) |00〉 Wm1−→ 1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉
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Rm1−→ 1

2

(

1√
2

+
ix0√

2
− i
√

1

2
− x2

0

2

)

|00〉+ 1

2

(

1√
2

+
ix1√

2
− i
√

1

2
− x2

1

2

)

|01〉+

1

2

(

i

√

1

2
− x2

0

2
− 1√

2
+
ix0√

2

)

|10〉+ 1

2

(

i

√

1

2
− x2

1

2
− 1√

2
+
ix1√

2

)

|11〉

Wm1−→ 1

2

(

i(x0 + x1)√
2

)

|00〉 +
1

2

(

ix0√
2
− ix1√

2

)

|01〉 +

1

2

(

2√
2
− i
√

1

2
− x2

0

2
− i
√

1

2
− x2

1

2

)

|10〉

+
i

2

(
√

1

2
− x2

1

2
−
√

1

2
− x2

0

2

)

|11〉

Step 1: Apply operator Wm1 on P0 as shown in (5.1). The amplitudes of different

states after application of Wm1 are given in Table 10.

Table 10: Amplitudes of different states after applying operator Wm1

State Amplitude

P0
1
2

H0
1
2

P1
1
2

H1
1
2

Step 2: Apply operator Rm1 on the output of Step 1. The amplitude of different

states are shown in Table 11.

Table 11: Amplitudes of different states after applying operator R1

State Amplitude

P0
1
2

(

1√
2

+ ix0√
2
− i
√

1
2
− x2

0

2

)

P1
1
2

(

1√
2

+ ix1√
2
− i
√

1
2
− x2

1

2

)

H0
1
2

(

i

√

1
2
− x2

0

2
− 1√

2
+ ix0√

2

)

H1
1
2

(

i

√

1
2
− x2

1

2
− 1√

2
+ ix1√

2

)

Step 3: Apply operator Wm1 on the output of Step 2. The amplitude of state

P0 is shown in Table 12. Clearly, this amplitude is 1
22

(

2i(x0+x1)√
2

)

= iM√
2
, where

M = x0+x1

2
. This is exactly, what Grover wanted to achieve (Grover 2000).

Table 12: Amplitudes of different states after applying operator W1

State Amplitude

P0
1
22

(

2i(x0 + x1)√
2

)

So after applying U ≡ Wm1Rm1Wm1 the amplitude of the state P0 becomes iM√
2
.

According to the analysis in Section 3, if we apply G = −IP0U
−1IP0U on P0 of O

(

1
ν0

)
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times, followed by an application of U , then Algorithm B will estimate the mean with

a precision ν0. Consequently, Algorithm A will estimate the mean with the desired

precision.

We now provide a proof of the correctness of our proposed modified operators in

Theorem 2.

Theorem 2. Let M be the true mean of {x0, x1, . . . , xN−1}. Then the amplitude of

the state P0 becomes iM√
2

after applying the operator Wm1Rm1Wm1 on P0.

Proof. Suppose, Hk = |1b(k)
1 b

(k)
2 · · · b

(k)
n 〉 and Pk = |0b(k)

1 b
(k)
2 · · · b

(k)
n 〉, where (b

(k)
1 b

(k)
2 · · ·

b
(k)
n )2 = k, b

(k)
j ∈ {0, 1}, j = 1, 2, . . . , n; k = 0, 1, 2, . . . , N − 1 and N = 2n. From the

definition of W-H transform we know that application of W-H transform on the state

|b(k)
j 〉 changes it to |0〉+(−1)

b
(k)
j |1〉√

2
. Now

P0 = |0b(0)1 b
(0)
2 · · · b

(0)
n 〉

Wm1−→ |0〉+ |1〉√
2

n
⊗

p=1

|0〉+ (−1)b
(0)
p |1〉√

2

=
|0〉+ |1〉√

2

n
⊗

p=1

|0〉+ |1〉√
2

[Since b
(0)
p = 0 ∀ p = 1, 2, . . . , n]

=
1

2
n+1

2

(

N−1
∑

k=0

(Pk +Hk)

)

Rm1−→ 1

2
n+1

2

[

N−1
∑

k=0

{(

i

√

1

2
− x2

k

2

)

Hk +

(

1√
2

+
ixk√

2

)

Pk+

(

−i
√

1

2
−x

2
k

2

)

Pk +

(

− 1√
2

+
ixk√

2

)

Hk

}]

=
1

2
n+1

2

[

N−1
∑

k=0

{(

1√
2

+
ixk√

2
− i
√

1

2
−x

2
k

2

)

Pk+

(

− 1√
2

+
ixk√

2
+ i

√

1

2
− x2

k

2

)

Hk

}]

Wm1−→ 1

2
n+1

2

[

N−1
∑

k=0

{(

1√
2

+
ixk√

2
− i
√

1

2
− x2

k

2

)(

|0〉+ |1〉√
2

n
⊗

p=1

|0〉+ (−1)b
(k)
p |1〉√

2

)

+

(

− 1√
2

+
ixk√

2
+ i

√

1

2
− x2

k

2

)(

|0〉 − |1〉√
2

n
⊗

p=1

|0〉+ (−1)b
(k)
p |1〉√

2

)}]

=
1

2
n+1

2

[

N−1
∑

k=0

(

1√
2

+
ixk√

2
− i
√

1

2
− x2

k

2

){

1

2
n+1

2

N−1
∑

r=0

(−1)
Pn

j=1 b
(r)
j (Pr +Hr)

}

+

(

− 1√
2

+
ixk√

2
+ i

√

1

2
− x2

k

2

){

1

2
n+1

2

N−1
∑

r=0

(−1)
Pn

j=1 b
(r)
j (Pr −Hr)

}]

Therefore the amplitude of the P0 state

=
1

2n+1

[

N−1
∑

k=0

{(

1√
2

+
ixk√

2
− i
√

1

2
− x2

k

2

)

+

(

− 1√
2

+
ixk√

2
+ i

√

1

2
− x2

k

2

)}]
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=
1

2n+1

N−1
∑

k=0

2
ixk√

2
=

1√
2
i

1

2n

N−1
∑

k=0

xk =
iM√

2
.

5.2. Complexity Analysis of the entire Algorithm (Algorithm A and B).

Suppose Algorithm A iterates k times to converge the process. Each time the precision

is updated as ν0 ← ν0

2
where ν0 is the initial precision. If ν is the final desired precision

then ν ≤ ν0

2k . Therefore, k ≤ log2
ν0

ν
. When k = 1, Me is computed with a precision

of ν0. In this case, the required number of iterations, as explained in Section 3, is

O
(

1
ν0

)

. Similarly, when k = 2, the required number of iteration is O
(

2
ν0

)

and so

on. To achieve the desired precision ν, we perform the whole operations k = log2
ν0

ν

times. And also we replace ν0 by ν0

2
after each iteration. Therefore, the total number

of iteration =
∑log2

ν0
ν

i=0 O
(

2i

ν0

)

= O
(

∑log2
ν0
ν

i=0
2i

ν0

)

= O
(

2log2
ν0
ν +1−1
ν0

)

≈ O
(

1
ν0

ν0

ν

)

=

O
(

1
ν

)

. So the mean M can be estimated with a precision of ν in O
(

1
ν

)

operations.

6. Conclusion

We discussed Grover’s algorithm for mean computation and demonstrated with

an example that this algorithm does not produce the desired result. We then proposed

a modified algorithm for mean computation using Grover’s basic philosophy (Grover

2000). Our proposed unitary operator is simple, produces correct result and more

efficient both in terms of number of operations performed as well as the number of

qubits used. We proved the correctness of our algorithm and also illustrated it with

a numerical example.
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