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Abstract. In this article, we report a class of two-level implicit difference schemes; using spline 
in tension for the numerical solution of singularity perturbed one space dimensional parabolic 
equations with singular coefficients. The proposed methods are of �(�� + ℎ�)  accurate and 
applicable to problems both in singular and non-singular cases. Stability theory of a proposed 
method is discussed and numerical experiments carried out on the new schemes supplement the 
analytical results. 
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1. INTRODUCTION 
 

Consider the following singularly perturbed one space dimensional parabolic equation 
 
                       �	

 = 	� + (�)	
 + �(�)	 + �(�, �),								0 < � < 1, � > 0		              (1)                                                  
 
where	0 < � ≪ 1   and (�), �(�)	and �(�, �) are continuous bounded functions defined 

in the semi-infinite region  {( , ) 0 1, 0}x t x tΩ = < < > . 

 
The initial and boundary conditions associated with equation (1) are given by 
 

                                                0( ,0) ( )u x a x= , 0 1x≤ ≤                                                    (2) 

 

                                        0 1(0, ) ( ), (1, ) ( ), 0u t b t u t b t t= = ≥                                         (3) 

 

We assume that the functions, 0 ( )a x , b 0 (t) and b1(t) are sufficiently smooth and their 

required high-order derivatives exist  in the solution space  Ω. 
 
The initial-boundary value problems (1)-(3) model many physical problems in various 
areas of science and engineering. In many applications equation (1) represents boundary 
or interior layers and has been studied by many authors. Earlier, the theory of splines 
functions and their applications were studied  by ( Ahlberg et el., 1967; Greville, 1969).   
______________ 
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Later, (O’Malley, 1974; Abrahamsson et al., 1974) have introduced singular perturbation 

technique to solve two point boundary value problems. Various properties of splines and 

variational methods were discussed by (Prenter, 1975; Pruess, 1976; Boor, 1978). 

Various numerical methods for singular perturbation problems have been discussed by 

(Hemker & Miller, 1979; Kreiss & Kreiss, 1982;  Segal, 1982; Abrahamsson & Osher, 

1982). Using adaptive spline function approximation (Jain & Aziz, 1983) have proposed 

a numerical method for stiff and convection-diffusion equation. Further, using lower 

order accurate upwind and central difference approximations (Miller et al., 1995) have 

developed a stable numerical method for solving singularly perturbed problems. During 

last decade, (Marusic & Rogina, 1996; Kadalbajoo & Patidar, 2002) have derived second 

order accurate numerical methods for the solution of singularly perturbed two point linear 

boundary value problems by spline in tension. Recently, (Khan et al., 2005) have 

surveyed various spline function approximations. All these methods are only applicable 

to problems in rectangular coordinates. Recently, using collocation and tension splines, 

(Beros & Marusic, 2005) have solved singularly perturbed heat conduction problems. 

Difficulties were experienced in the past for the numerical solution of singularly 

perturbed one space dimensional parabolic problems in polar coordinates. The solution 

usually deteriorates in the vicinity of singularity. In this piece of work, we have discussed 

the approximation method based on spline in tension to solve the problems of type (1). 

We have refined our procedure in such a way that the solution retains its order and 

accuracy even in the vicinity of the singularity	� = 0. It is well known that the most 

classical methods fail when � is small relative to the mesh length h >0, that is used for 

discretization of the differential equation (1) in the x-direction. Our aim is to show that 

tension splines can furnish accurate numerical approximations of equation (1), when all 

or any of the coefficients (�), �(�) and �(�, �) contain singularity at � = 0 and when � 

is either small or large as compared with h. We consider three types of problems. In the 

first case, we analyze the problems in which the second derivative term ( , )
xx

u x t and the 

function term u(x,t) are present, whereas the term containing the first term derivative 

( , )
x

u x t is absent. The problems having the second derivative ( , )
xx

u x t term and first 

derivative term ( , )
x

u x t but lacking the function term u(x,t) are considered in the second 

case. Finally, the third case deals with the most general problems. In all cases, we use the 

continuity of first derivative of the spline function. The resulting spline difference 

methods are two-level implicit schemes (see Fig. 1) and of  �(�� + ℎ�) accurate and are 

tri-diagonal system of equations at each advanced time level, which can be solved by 

using a tri-diagonal solver. The main attraction of our work is that the proposed tension 

spline difference schemes are applicable to both singular and non-singular problems. In 

section 2, we have discussed the derivation of the spline methods and their application to 

singular problems. In section 3, we have discussed stability analysis of a method. In 

section 4, numerical results of three different singular problems are given to demonstrate 

the utility of the proposed method. The numerical results confirmed that the proposed 

tension spline methods produce an oscillation-free solution for 0 < � ≪ 1 everywhere in 

the solution region 0< x<1, t>0.                                                  
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Figure  1 ( Schematic representation of two-level scheme) 

 
2. DESCRIPTION  OF  THE  TENSION  SPLINE  METHOD 

 
The solution domain [0,1]× [t>0] is divided into (N+1)× J mesh with the spatial step size 
h = 1/(N+1) in x-direction and the time step size k>0 in t-direction  respectively, where N 

and J are positive integers. The mesh ratio parameter is given by  0)/( 2 >= hkλ . 

  

Grid points are defined by ),(),( jklhtx
jl

= , l = 0(1)N+1 and j = 0, 1, 2,…J. The 

notations j

l
u  and j

l
U  are used for the discrete approximation and the exact solution of  

u(x,t) at the grid point ),(
jl

tx , respectively. 

 
Let  

                    � = (��), 			�� = �(��)  and  �� = �(��) 
  

For	� ∈ [����, ��], we denote 
 

�� =	12 (��� + �), �!� = 	12 (���� + ��), �"� =	12 (���� + ��). 
 

We consider the following three cases: 
 
Case 1:  First we consider the differential equation 
 

                   ( ) ( , )
xx t

u u b x u f x tε = + +  , 0 < x < 1, t>0                                                      (4)                               

 
which is a particular case of equation (1) in which the first derivative term ux(x,t) is 
absent.  
 
For the derivation of the method, we follow the approaches given by (Kadalbajoo & 
Patidar , 2005), and (Mohanty et al., 2005). 
 
Now we consider the ordinary differential equation  
 

                      
2

2
( ) ( )

d u
b x u f x

dx
ε− + = , 0<x<1                                                                    (5) 

 

h h k 

(l, j) (l+1, j) 

(l, 

(l-1, 

(l-1, j+1) (l+1, j+1) 

jth - level 

(j+1)th - level 
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The numerical solution of this equation is sought in the form of the spline function S(x), 
which on each interval[����, ��], denoted by $�(�) satisfies the differential equation 
 

                                                   −�$�′′(�) + �!�$�(�) = �"� 			                                              (6) 
 
The interpolating conditions: 
 
                                               $�(����) = 	���,										$�(��) = 	�				                                  (7) 
 
and the continuity condition: 
 

                                                  $�′(��&) = $�′(���)		                                                            (8) 
 
 
Solving the equation (6) and using the interpolating conditions (7), we get 
 	$�(�) = ��'()*(+,-) [.� sinh( 3�(���� − �)) + 4� sinh( 3�(� − ��))] + 5"-6!-, � ∈ [����, ��]   (9) 

 
 Where  

.� = 	� − �"��!� , 4� = 	��� − �"��!� , 3� = 7�!�� ,			 
 
Equation (9) is known as spline in tension (Pruess, 1976).  Replacing l by l+1 in equation 
(9), we can obtain the spline function	$�&�(�) defined in[��, ��&�]. 
 
As  $(�) ∈ 8�[0,1], we have                    

   .                                               $�′(��) = $�&�′ (��)                                                (10) 
 
Differentiating equation (9) with respect to ‘x’ and using the continuity condition (8), we 

obtain the spline in tension scheme for the numerical solution of equation (5) as:  

 ℎ3�sinh(h3�) 	��� − [ℎ3� coth(ℎ3�) + ℎ3�&� coth(ℎ3�&�)]	� + ℎ3�&�sinh( ℎ3�&�) 	�&� 	
= < ℎ3�sinh( ℎ3�) − ℎ3� coth(h3�)= �"��!�
+ < ℎ3�&�sinh(h 3�&�) − ℎ3�&� coth(ℎ3�&�)= �"�&��!�&� 	 , > = 1(1)?															(11)	 

 

Note that, the scheme (11) is of O(h2) accurate for the numerical solution of  (5), 

however, the scheme fails to compute at l=1. We overcome this difficulty by using the 

following approximations:                                                                                                                
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 2

1 ( ),
l l xl

a a ha O h± = ± +                                             (12a) 

                                                     2

1 ( ),
l l xl

b b hb O h± = ± +                                              (12b) 

                                                    2

1 ( )
l l xl

f f hf O h± = ± + .                                              (12c) 

 
Now using the approximation (12a)-(12c) in equation (11) and neglecting high order 

terms we obtain the tension spline scheme for the equation (5) in compact form: 

 

              ( ) ( )
2 2 2 2

1 1

2
1 2 2 1 2

12 3 12
l x l l l l x l ll l

h h h h
b hb u b u b hb u f

ε ε ε ε
− +

      −
− − − + + − + =     

     
,  

                                                                                                                     l=1(1)N       (13)      
 
In order to obtain the tension spline scheme for parabolic equation (4), we replace  
 

l
u  by  11

2
( )j j

l l
u u

+ + ,   1l
u ± by 11

1 12
( )j j

l l
u u

+
± ±+ , and 

l
f  by ( )

jj
t l l

u f− +  (where 

2
( , )

j
k

l jl
f f x t= + ,  and  

1( ) /
j j j

t l l lu u u k+= − ) in (13) and we obtain 

 

           

( ) ( )

( ) ( )

2 2 2 2
1 1 1

1 1

2 2 2 2 2

1 1

1 1
2 1 2

2 24 3 2 24

1 1
2 1 2

2 24 3 2 24

j j j

l x l l l l x ll l

jj j j

l x l l l l x l ll l

h h h h
b hb u b u b hb u

k

h h h h h
b hb u b u b hb u f

k

ε ε ε ε

ε ε ε ε ε

+ + +
− +

− +

     
− − − + + + − +     

     

     
= − − − + + − − − + +     

     

 

                                                                                                l=1(1)N, j=0,1,2,…         (14)                         
                                                                                                                                                                                                         
Case 2:  In this case, we consider the differential equation of the form 

 
                       �	

 = 	� + (�)	
 + �(�, �),										0 < � < 1, � > 0                     (15)      
 

This is a particular case of equation (1), in which the function term u(x,t) is absent.  
 
For the derivation of the method, we follow the same ideas given by (Kadalbajoo & 
Patidar , 2005), and (Mohanty et al., 2005). 
 
We consider the ordinary differential equation  
 

                                   
2

2
( ) ( )

d u du
a x f x

dx dx
ε− + =  ,   0 < x <1,                                          (16)  

 
which is a steady-state case of equation (15). As in case 1, we seek S(x) as a solution of 

the above differential equation 

 

                                                   −�$�′′(�) + ��$�(�) = �"�                                        (17)  
 
This satisfies the interpolating conditions (7) and the continuity condition (8). 
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Solving equation (16) by the help of conditions (7), we obtain 
 

           
( ) ( )1 1

1 1

ˆ1 1
( )

ˆ
l l l l l l l lL x L x L x L x l

l l l l l

l l l

f
S x u e u e x e x e

F F a
− −

− −= − + −     

                        

1

ˆ ˆ1

ˆ ˆ
lL xl l

l l

l l l

f f
u u h e x

F a a
−

 
+ − + +  

 
                                                                                 

(18)                                                                                                                       

where [ ]1,l lx x x−∈  , 
ˆ

,l
l

a
L

ε
= and	@� = AB-
-CD − AB-
- .    

                               
Similarly, replacing l by l+1 in equation (18), we can get the spline function $�&�(�)  
valid in	[��, ��&�]. 
 
Differentiating equation (18) with respect to ‘x’ and using the continuity condition (8), 
we may obtain the spline in tension method for the approximate solution of equation (16) 
as: 

 

               3��	��� + 3�E	� + 3�&	�&� = F������ + F�E�� + F�&��&�						> = 1(1)?              (19) 
 

where             

3�� = G�A�+B- − 1 , 3�& = G�&�1 − A+B-HD , 3�E = −(3�& + 3��),	 
 

		F�� = −12�� (1 + ℎ3��), 	F�& = 12��&� (1 + ℎ3�&), 	F�E = (F�& + F��). 
 
Note that, the scheme (19) is of O(h2) accurate for the numerical solution of  (16), 
however, the scheme fails to compute at l=1. We overcome this difficulty by using the 
approximations defined by (12) and we obtain   
 

    ( ) ( )
2 2

1 11 2 2 1 2
4 2 4

l x l x l l x l ll l l

h h h h
a ha u a u a ha u f

ε ε ε ε
− +

  −   
+ − − − + − + =        

, l=1(1)N      (20)   

 
In order to obtain the tension spline method for the parabolic equation (15), we replace 

l
u  by  11

2
( )j j

l l
u u

+ + , 1l
u ± by 11

1 12
( )j j

l l
u u

+
± ±+ , and 

l
f  by ( )

jj
t l l

u f− +  (where 

2
( , )

j
k

l jl
f f x t= + , and  

1( ) /
j j j

t l l lu u u k+= − ) in (20) and we obtain 

      

        

( ) ( )

( ) ( )

2 2
1 1 1

1 1

2 2 2

1 1

1 1
2 1 2

2 8 4 2 8

1 1
2 1 2

2 8 4 2 8

j j j

l x l x l l x ll l l

jj j j

l x l x l l x l ll l l

h h h h
a ha u a u a ha u

k

h h h h h
a ha u a u a ha u f

k

ε ε ε ε

ε ε ε ε ε

+ + +
− +

− +

    
+ − − − + + − +        

    
= − + − + − − − − + +        

 ,                          

                                                                                       l=1(1)N, j=0,1,2,…                   (21) 
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Case 3:  Finally we consider the most general problem (1), where both ux(x,t) and u(x,t)  
are present.  
 
For the derivation of the method, we now follow the techniques given by (Kadalbajoo & 
Patidar , 2005), and (Mohanty et al., 2005). 
 
For this purpose, we consider the ordinary differential equation  
 

                                   
2

2
( ) ( ) ( )

d u du
a x b x u f x

dx dx
ε− + + =  ,   0 < x <1                              (22) 

 
which is a steady-state case of (1). In this case the spline function $(�) satisfies 
 

                                  ˆ ˆˆ( ) ( ) ( )l l l l l lS x a S x b S x fε ′′ ′− + + =                                                      (23) 

 
This also satisfies the conditions (7) and (8).  Solving equation (23) with the help of 
interpolating conditions (7), we obtain 
 

	$�(�) = IJ�-K�'()*(+L!-) MN� sinh( O"�(���� − �)) + P� sinh( O"�(� − ��))Q + 5"-6!-,		 [ ]1,l lx x x−∈            

                                                                                                                                         (24) 
where 

N� = R	� − �"��!�S A�T-̂
- ,				P� = R	��� − �"��!�S A�T-̂
-CD ,			V�̂ =
��2� , 	O"� = 12� W��� + 4��!� ,	 

 
Replacing l by l+1 in equation (24), we can obtain the spline function $�&�(�) for the 
equation (23) in the interval	[��, ��&�]. 
 
Using the continuity condition (8), from equation (24) we obtain the difference scheme 

based on spline in tension for the approximate solution of equation (22) as 

 

                          3��	��� + 3�E	� + 3�&	�&� = F������ + F�E�� + F�&��&�		                   (25) 
where 

3�� = ℎO"�sinh( ℎO"�) A+T-̂ ,					 
 

	3�& = ℎO"�&�sinh(ℎO"�&�) A�+T-̂HD ,	 
 		3�E = −ℎO"� coth(ℎO"�) − ℎO"�&� coth(ℎO"�&�) + ℎV�̂&� − ℎV�̂,	 
 

F�� = 12�!� [3�� − ℎV�̂ − ℎO"� coth( ℎO"�)],			 
 

                                            	F�& = ��6!-HD [3�& + ℎV�̂&� − ℎO"�&� coth(ℎO"�&�)],		 
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                                             F�E = F�� + F�&	.   
 
Note that the tension spline scheme (25) is of �(ℎ�) for the approximate solution of the 
equation (22).  However, these scheme fails when the coefficients (�), �(�)and f(x) 
contain singularities and the solution is to be determined at l=1. We overcome this 
difficulty by modifying  the scheme (25) in such a manner that the solution retains its 
order and accuracy even in the vicinity of the singularity x=0. 
 
As discussed in case 1 and case 2, using the approximations (12) and neglecting high 
order terms, we obtain the following tension spline scheme for the solution of parabolic 
equation (1) in compact form:                                                
 

( )

( )

2 22 2
1 1 1

1 1

2 2 2

1

1 1
1 4 3

2 4 2 12 12 2 4 2 12

1 1
1 4 3

2 4 2 12 12 2 4 2

j j jl l

l x l l x l l x ll l l

j jl
l x l l x l l xl l

h b h bh h h h h h
a a u b a u a a u

k

h bh h h h h h
a a u b a u a a

k

ε ε ε ε ε ε

ε ε ε ε ε

+ + +

− +

−

       
+ − − − + − + + − + −       

       

    
= − + − − + + − − − − +    

    

2 2

1
12

j
jl

l ll

h b h
u f

ε ε
+

  
− +  

  
 

 

                                                                                                     l=1(1)N,   j=0,1,2,…   (26)                                                                                                      
                                                                                                         
Note that the tension spline schemes (14), (21) and (26) are of �(�� + ℎ�)accurate for 
the numerical solution of singularly perturbed parabolic partial differential equations (4), 

(15) and (1), respectively and free from the terms 1(1 )
l

x ± , hence very easily computed 

for l=1(1)N, j = 0,1,2,..in the solution region Ω. 
 
 

3. STABILITY  ANALYSIS 

 
Now we discuss the stability analysis for the scheme (14).  
 

In this case the exact solution Y�Zsatisfies 

 

 

( ) ( )

( ) ( )

2 2 2 2
1 1 1

1 1

2 2 2 2

1 1

2
2 2 4

1 1
2 1 2

2 24 3 2 24

1 1
2 1 2

2 24 3 2 24

( ).

j j j

l x l l l l x ll l

j j j

l x l l l l x ll l

j

l

h h h h
b hb U b U b hb U

k

h h h h
b hb U b U b hb U

k

h
f O k h h

ε ε ε ε

ε ε ε ε

ε

+ + +
− +

− +

     
− − − + + + − +     

     

     
= − − − + + − − − +     

     

+ + +

     (27)        

 

We assume that there exists an error j j j

l l l
e U u= −

 
at each grid point (xl, tj), then 

subtracting (14) from (27), we obtain the error equation 
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( ) ( )

( ) ( )

2 2 2 2
1 1 1

1 1

2 2 2 2

1 1

2
2 2 4

1 1
2 1 2

2 24 3 2 24

1 1
2 1 2

2 24 3 2 24

( ).

j j j

l x l l l l x ll l

j j j

l x l l l l x ll l

j

l

h h h h
b hb e b e b hb e

k

h h h h
b hb e b e b hb e

k

h
f O k h h

ε ε ε ε

ε ε ε ε

ε

+ + +
− +

− +

     
− − − + + + − +     

     

     
= − − − + + − − − +     

     

+ + +

           (28) 

To establish stability for the scheme (14), it is necessary to assume that the solution of the 

homogeneous part of the error equation is of the form ,j j i l

le e
βξ= where ξ  is in general 

complex, 1i = − , β  is real and we obtain the amplification factor 

 

                        

( )

( )

32 22
2

2

32 22
2

2

2 1 sin sin
2 6 12

2 1 sin sin
2 6 12

xl l l

xl l l

h bh b h bh
i

k

h bh b h bh
i

k

β

β

β
ε ε ε ε

ξ

β
ε ε ε ε

  
− + − +  

  =
  
− − − − −  

  

                           (29)   

                                     
 

For stability it is required that 1ξ ≤ . Since ( )2

2
max sin 1β =  and hε ∝ , it is easy to 

verify from (29) that 1ξ ≤ for all variable angle β .  Hence the scheme (14) is 

unconditionally stable.    
 

4. EXPERIMENTAL  RESULTS 

 

Numerical results presented in this section are concerned with the application of tension 
spline methods to singular perturbation problems. We have solved the following 

singularly perturbed singular problems for a fixed value of 1.6λ = . The homogeneous 
functions, initial and boundary conditions may be obtained using the exact solutions as a 
test procedure. In all cases, we have used Gauss-elimination method (Saad, 2003; 
Hageman & Young, 2004). All computations were carried out using double precision. 
 
Example 1:  �	

 = 	� + DK	 + �(�, �),				0 < � < 1, � > 0                                          (30) 

 
The exact solution is given by  	(�, �) = A�� cosh � . The root mean square (RMS) errors 
at t = 1.0 are tabulated in Table 1 for various values of	�	(0 < � ≪ 1). 
 

Example 2:         �	

 = 	� + [K	
 + �(�, �),						0 < � < 1, � > 0                               (31) 

      
The exact solution is given by 	(�, �) = A�� sinh �. For	\ =1 and 2, the equation above 
represents singularly perturbed linear singular parabolic equation in cylindrical and 
spherical symmetry, respectively. The RMS errors at t = 1 are tabulated in Table 2 for 
different values of	�	(0 < � ≪ 1) and for  \=1 and 2, respectively. 
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Table 1: The RMS errors 

h ε =2
-3 ε =2

-4 ε =2
-5 ε =2

-6 ε =2
-7 ε =2

-8 ε =2
-9 ε =2

-10 

2
-3 0.6156(-04) 0.9773(-04) 0.1271(-03) 0.1492(-03) 0.1649(-03) 0.1751(-03) 0.1812(-03) 0.1846(-03) 

2
-4 0.1132(-04) 0.1931(-04) 0.2608(-04) 0.3132(-04) 0.3517(-04) 0.3793(-04) 0.3982(-04) 0.4105(-04) 

2
-5 0.2574(-05) 0.4495(-05) 0.6140(-05) 0.7419(-05) 0.8363(-05) 0.9041(-05) 0.9524(-05) 0.9863(-05) 

2
-6 0.6256(-06) 0.1099(-05) 0.1506(-05) 0.1822(-05) 0.2056(-05) 0.2224(-05) 0.2343(-05) 0.2428(-05) 

2
-7 0.1549(-06) 0.2727(-06) 0.3739(-06) 0.4527(-06) 0.5109(-06) 0.5527(-06) 0.5824(-06) 0.6034(-06) 

2
-8 0.3862(-07) 0.6799(-07) 0.9324(-07) 0.1129(-06) 0.1274(-06) 0.1378(-06) 0.1452(-06) 0.1504(-06) 

2
-9 0.9642(-08) 0.1697(-07) 0.2328(-07) 0.2819(-07) 0.3181(-07) 0.3442(-07) 0.3627(-07) 0.3758(-07) 

2
-10 0.2408(-08) 0.4241(-08) 0.5817(-08) 0.7043(-08) 0.7948(-08) 0.8599(-08) 0.9063(-08) 0.9390(-08) 

 
 

Table 2: The RMS errors 

h ε =2
-3 ε =2

-4 ε =2
-5 ε =2

-6 ε =2
-7 ε =2

-8 ε =2
-9 ε =2

-10
 

1α =  

2
-3 0.2567(-02) 0.5594(-02) 0.1119(-01) 0.1888(-01) 0.2321(-01) 0.2236(-01) 0.2097(-01) 0.2015(-01) 

2
-4 0.6167(-03) 0.1344(-02) 0.2829(-02) 0.5750(-02) 0.1106(-01) 0.1857(-01) 0.2283(-01) 0.2182(-01) 

2
-5 0.1512(-03) 0.3283(-03) 0.6889(-03) 0.1415(-02) 0.2860(-02) 0.5681(-02) 0.1088(-01) 0.1832(-01) 

2
-6 0.3747(-04) 0.8124(-04) 0.1701(-03) 0.3488(-03) 0.7072(-03) 0.1422(-02) 0.2840(-02) 0.5626(-02) 

2
-7 0.9330(-05) 0.2021(-04) 0.4231(-04) 0.8667(-04) 0.1755(-03) 0.3535(-03) 0.7090(-03) 0.1417(-02) 

2
-8 0.2327(-05) 0.5044(-05) 0.1055(-04) 0.2161(-04) 0.4375(-04) 0.8806(-04) 0.1767(-03) 0.3540(-03) 

2
-9 0.5813(-06) 0.1259(-05) 0.2635(-05) 0.5396(-05) 0.1092(-04) 0.2198(-04) 0.4410(-04) 0.8836(-04) 

2
-10 0.1452(-06) 0.3147(-06) 0.6585(-06) 0.1348(-05) 0.2729(-05) 0.5492(-05) 0.1101(-04) 0.2207(-04) 

2α =  

2
-3 0.4959(-02) 0.9911(-02) 0.1695(-01) 0.2110(-01) 0.2117(-01) 0.2043(-01) 0.1988(-01) 0.1952(-01) 

2
-4 0.1206(-02) 0.2514(-02) 0.5066(-02) 0.9760(-02) 0.1665(-01) 0.2074(-01) 0.2066(-01) 0.1985(-01) 

2
-5 0.2959(-03) 0.6174(-03) 0.1262(-02) 0.2538(-02) 0.5007(-02) 0.9596(-02) 0.1642(-01) 0.2049(-01) 

2
-6 0.7332(-04) 0.1528(-03) 0.3126(-03) 0.6326(-03) 0.1268(-02) 0.2522(-02) 0.4961(-02) 0.9512(-02) 

2
-7 0.1825(-04) 0.3803(-04) 0.7777(-04) 0.1573(-03) 0.3166(-03) 0.6342(-03) 0.1264(-02) 0.2510(-02) 

2
-8 0.4554(-05) 0.9489(-05) 0.1939(-04) 0.3924(-04) 0.7896(-04) 0.1583(-03) 0.3170(-03) 0.6332(-03) 

2
-9 0.1137(-05) 0.2369(-05) 0.4844(-05) 0.9800(-05) 0.1971(-04) 0.3954(-04) 0.7921(-04) 0.1584(-03) 

2
-10 0.2842(-06) 0.5921(-06) 0.1210(-05) 0.2448(-05) 0.4926(-05) 0.9881(-05) 0.1979(-04) 0.3961(-04) 
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Example 3:    �	

 = 	� + DK	
 + (1 + ��)	 + �(�, �),			0 < � < 1, � > 0                (32) 

 
The exact solution is given by  	(�, �) = A�� sin ]�  .The RMS errors at t = 1.0 are 

tabulated in Table 3 for different values of		�	(0 < � ≪ 1). 
 
 

Table 3: The RMS errors 

 

 

5. FINAL  DISCUSSION 

 

The traditional lower order methods of accuracy of O(k2+h
2) have their inherent 

difficulties to handle singularly perturbed singular parabolic initial boundary value 
problems, although some correction techniques may be used to yield stable tension spline 

methods for 0 1ε< << . The stability analysis of a tension spline method has been 
discussed and it has been shown that the method is unconditionally stable. Some text 
problems have been solved to demonstrate the efficiency of the proposed method when ε

>0 is either small or large as compared to the corresponding mesh sizes h>0 and k>0. The 

technique used in this paper may be extended to derive other numerical methods, not 
necessarily limited to tension spline methods. 
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