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ABSTRACT. Often, when singularly perturbed problems are solved on non-uniform meshes, so-

lutions are decomposed into their regular and singular components. The analysis of the underlying

method is conducted accordingly. In this paper, we consider a system of two coupled singularly

perturbed reaction-diffusion equations. This type of systems are encountered in various fields of

applied science such as chemical kinetics and predator-prey population dynamics. The presence of

a small positive parameter multiplying the highest derivative in each equation leads to two overlap-

ping and interacting boundary layers. We propose a fitted operator finite difference method to solve

such systems. We show that the fitted operator satisfies a maximum principle. A rigorous error

analysis (without decomposition of the solution) shows that the method is second order uniformly

convergent. The theoretical results are confirmed through computational investigations.
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1. INTRODUCTION

The abundance of research on singularly perturbed problems (SPPs) over the last

few decades is motivated by the singular aspect of their solutions: they vary sharply

in small layers. This behavior is due to the presence of a small parameter multi-

plying the highest derivative in the differential equation of the underlying problem.

Standard numerical methods have failed to resolve optimally these problems. As an

alternative, fitted numerical methods have been extensively used. More information

about numerical methods for SPPs can be found in [4, 15, 16, 18, 19, 22] and the

references therein.

In this paper, a system of two coupled singularly perturbed reaction-diffusion

equations is considered. More precisely, we consider the problem of finding ~u ∈ C2(Ω̄),

such that for all x ∈ Ω = (0, 1),

Lε1,ε2
~u ≡

(

−ε1
d2

dx2 0

0 −ε2
d2

dx2

)

~u(x) + A(x)~u(x) = ~f(x),(1.1)

Received October 13, 2011 1061-5369 $15.00 c©Dynamic Publishers, Inc.



174 J. B. MUNYAKAZI AND K. C. PATIDAR

~u(0) = (u1(0), u2(0))T , ~u(1) = (u1(1), u2(1))T(1.2)

where

~u(x) =

(

u1(x)

u2(x)

)

, A(x) =

(

a11(x) a12(x)

a21(x) a22(x)

)

, ~f(x) =

(

f1(x)

f2(x)

)

.

It is assumed that the functions aij(x), fi(x), i, j = 1, 2 are sufficiently smooth and

that 0 < ε1 ≤ ε2 ≤ 1. Moreover, we assume that

(A1) a11(x) > |a12(x)|, a22(x) > |a21(x)|, x ∈ Ω̄(1.3)

(A2) a12(x) ≤ 0, a21(x) ≤ 0, x ∈ Ω̄.(1.4)

While assumption (A1) is made to assure the diagonal dominance, assumption (A2)

guarantees that Lε1,ε2
satisfies the standard maximum principle.

Such problems are encountered in many real life situations, for instance in mod-

eling of diffusion processes complicated by chemical reactions (for example in the

context of the Brusselator model) [1, 13] or in predator-prey population dynamics [5].

Over many years, several methods have been developed to solve SPPs. How-

ever, limited efforts have been devoted to singularly perturbed systems of equations.

Below, we mention few examples. In [23], Shishkin considered singularly perturbed

boundary-value problems for systems of elliptic and parabolic equations on an infinite

strip. Some theoretical bounds on the solution and its derivatives were established.

A classical finite difference method on Shishkin mesh was developed by Matthews et

al. [12] to solve systems of the type (1.1)–(1.2). Madden and Stynes [10] constructed

a piecewise-uniform mesh that is invariant of the usual Shishkin mesh. They devel-

oped a first order accurate central finite difference scheme. A numerical method on

a Shishkin mesh was also studied by Linß and Madden [6]. Xenophontos and Ober-

broeckling [25] investigated finite element methods while Clavero et al. [2] examined

a hybrid finite difference scheme of HODIE type.

The works cited above involved systems of two equations. Recently, systems of an

arbitrary number of equations were investigated by Linß and Madden [7] and Rao and

Kumar [21]. In the former paper, discrete Green’s functions were utilized to establish

the properties of a central difference scheme on certain layer-adapted meshes while in

the later, a high order Schwarz domain decomposition method was developed.

More works on systems of coupled singularly perturbed equations can be found

in [9, 11, 24].

All the works mentioned above treat systems of singularly perturbed equations

on non-uniform meshes. For the case of meshes of Shishkin type, the idea is to divide

the domain of the problem into a number of subintervals, on each of which the mesh
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is constrained to be uniform. For a single reaction-diffusion two-point boundary value

problem, three subintervals are required because two boundary layers are expected.

In the case of a system such as (1.1), the domain will be divided into five subintervals

due to the presence of two overlapping and interacting layers near both ends of the

intervals. The solution is decomposed into its smooth and singular components. This

situation leads to a lengthy and sometimes complicated analysis.

Recently, fitted operator finite difference methods (FOFDMs) have attracted a

lot of attention for SPPs because of their simplicity: Their analysis is simple due to

the use of uniform meshes. As examples, Lubuma and Patidar [8] and Patidar [20]

successfully used these methods for scalar ODEs. Munyakazi and Patidar [18, 19]

later extended these methods to elliptic PDEs in two dimensions. However, up to the

best of our knowledge, no attempt has been made so far to use this type of methods to

solve systems of coupled singularly perturbed equations. To fill this gap, we develop

a FOFDM to solve the problem (1.1)–(1.2).

The FOFDM will automatically resolve the layers without having to decompose

the solution. As a consequence, the analysis will be simpler. Another advantage is

that, this type of methods seems to be more accurate (e.g., see comparison of results

in [18, 19]).

Very often, knowledge of the properties of the analytical solution of a problem

is necessary in the analysis of appropriate numerical methods. In Section 2, some

qualitative issues pertaining to the problem are provided. Bounds on the solution

and its derivatives, adapted from [2], are also presented.

Section 3 is concerned with the construction and analysis of the numerical method.

In this section, the properties of the discrete operator are presented. In particular, we

prove that this operator satisfies a discrete maximum principle as well as a stability

result.

The error analysis of the proposed FOFDM is dealt with in Section 4. We prove

that the method is second order uniformly convergent. Our theoretical findings are

confirmed through computational investigations in Section 5. Finally, Section 6 is

devoted to a brief discussion of the results of this paper.

2. THEORETICAL ESTIMATES

In this section, we present results which are necessary for the existence, unique-

ness and well-posedness of the solution of the continuous problem (1.1)–(1.2).

Before we proceed, we adopt the following notation:

||ξ|| = max
Ω̄

|ξ(x)|, ||~ξ|| = max
i

{||ξi||}, ~ξ = (ξ1, ξ2)
T .
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Lemma 2.1 (Maximum Principle). Assume (A1) and (A2). Let ~Ψ = (Ψ1,Ψ2) be any

sufficiently smooth function such that ~Ψ(0) ≥ ~0, ~Ψ(1) ≥ ~0 and Lε1,ε2

~Ψ ≥ ~0, ∀x ∈ Ω.

Then, ~Ψ(x) ≥ ~0, ∀x ∈ Ω̄.

Proof. See [12].

We show below, using this principle, that the solution of the problem (1.1)–(1.2)

is bounded.

Lemma 2.2. Let ~u(x) be the solution of Lε1,ε2
~u(x) = ~f(x). Then ~u(x) satisfies

||~u|| ≤ 1

α
||~f || + ||~u(0)|| + ||~u(1)||,

where α = minΩ{a11(x) + a12(x), a21(x) + a22(x)}.

Proof. We construct two vector-valued barrier functions ~Π± defined by

(2.1) ~Π±(x) =
||~f(x)||
α

+ ||~u(0)|| + ||~u(1)|| ± ~u(x).

We have

~Π±(0) ≥ ~0 and ~Π±(1) ≥ ~0.

Furhermore,

Lε1,ε2

~Π±(x) =

(

±f1(x) + a11(x)+a12(x)
α

||~f(x)||+(a11(x)+a12(x))(||~u(0)||+||~u(0)||)
±f2(x) + a21(x)+a22(x)

α
||~f(x)||+(a21(x)+a22(x))(||~u(0)||+||~u(0)||)

)

If follows that Lε1,ε2

~Π±(x) ≥~(0), ∀x ∈ Ω. Thus, by the maximum principle,

~Π±(x) ≥ ~0, ∀x ∈ Ω̄.

For the purpose of the error analysis of the numerical method which we propose

in next section, we present bounds on the solution and its derivatives in the lemma

below. These bounds are adapted from [2].

In what follows,

Bε1
(x) = exp

(

−x
√

α/ε1

)

+ exp
(

−(1 − x)
√

α/ε1

)

,

Bε2
(x) = exp

(

−x
√

α/ε2

)

+ exp
(

−(1 − x)
√

α/ε2

)

.
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Lemma 2.3. Let ~u(x) = (u1, u2)
T be the solution of the problem (1.1)–(1.2). There

exists a constant C, independent of ε1 and ε2, such that

|u1(x)| ≤ C [1 + Bε2
(x)] ,

|u2(x)| ≤ C [1 + Bε2
(x)] ,

|u(k)
1 (x)| ≤ C

[

1 + ε1
−k/2Bε1

(x) + ε2
−k/2Bε2

(x)
]

, for k = 1, 2, 3, 4.

|u(k)
1 (x)| ≤ C

[

1 + ε1
(4−k)/2ε2 + ε1

−k/2Bε1
(x) + ε2

−k/2Bε2
(x)
]

, for k = 5, 6.

|u(k)
2 (x)| ≤ C

[

1 + ε
−k/2
2 Bε2

(x)
]

, k = 1, 2,

|u(k)
2 (x)| ≤ C

[

1 + ε2
−1
(

ε1
(2−k)/2Bε1

(x) + ε2
(2−k)/2Bε2

(x)
)]

, for k = 3, 4, 5, 6.

3. THE DISCRETE PROBLEM

In this section, we propose a numerical method for the system of BVPs (1.1)–

(1.2). Let n be a positive integer. Consider the following partition of the interval

[0, 1]:

x0 = 0, xj = x0 + jh, j = 1(1)n, h = xj − xj−1, xn = 1.

We denote this mesh by Σn. In the rest of this paper, we use the notation vj =

v(xj) for any function v(x) and denote the approximation of the solution ~u(x) =

(u1(x), u2(x))
T by the unknown ~U = (U1, U2)

T .

Using the theory of difference equations [14], we construct the following scheme

on the mesh Σn:

−ε1

U1j−1 − 2U1j + U1j+1

ϕ2
j

+ a11,jU1j = f1,j − a12,jU2j , j = 1(1)n− 1,(3.1)

−ε2

U2j−1 − 2U2j + U2j+1

ψ2
j

+ a22,jU2j = f2,j − a21,jU1j , j = 1(1)n− 1,(3.2)

with

U10 = u1(0), U1n = u1(1),(3.3)

and

U20 = u2(0), U2n = u2(1).(3.4)

The denominator functions are given by

(3.5) ϕj ≡ [ϕj(h, ε1)] :=
2

(ρj)
sinh

(

ρjh

2

)

and

(3.6) ψj ≡ [ψj(h, ε2)] :=
2

(λj)
sinh

(

λjh

2

)

,



178 J. B. MUNYAKAZI AND K. C. PATIDAR

with

(3.7) ρj =
√

a11,j/ε1 and λj =
√

a22,j/ε2.

It is easy to see that ϕj(h, ε1) = h+ O
(

h3

ε1

)

, and ψj(h, ε2) = h+ O
(

h3

ε2

)

.

Thus the discrete formulation of our problem reads: Find ~Uj = (U1j , U2j)
T for

j = 1, 2, . . . , n such that

Lh
ε1,ε2

~Uj ≡
(

−ε1δ̃ 0

0 −ε2δ̄

)

~Uj + A(xj)~Uj = ~fj ,(3.8)

with the boundary conditions

(3.9) ~U1 = ~u(0), ~Un = ~u(1),

where δ̃ and δ̄ are the discrete operators approximating the second derivatives in

equations (3.1) and (3.2).

Equations (3.1) and (3.3) lead to the system of linear equations

(3.10) AU1 = F1

where A is the tridiagonal matrix and F1 the column-vector defined by

Ajj =
2ε1

ϕ2
j

+ a11,j , j = 1(1)n− 1

Aj,j+1 = − ε1

ϕ2
j

, j = 1(1)n− 2

Aj,j−1 = − ε1

ϕ2
j

, j = 2(1)n− 1

F1,1 = f1,1 − a12,1U21 +
ε1

ϕ2
1

U10;

F1,j = f1,j − a12,jU2j , j = 2(j)n− 2,

F1,n−1 = f1,n−1 − a12,n−1U2n−1 +
ε1

ϕ2
n−1

U1n.

Similarly, equations (3.2) and (3.4) lead to the system of linear equations

(3.11) BU2 = F2
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where B is the tridiagonal matrix and F2 the column-vector defined by

Bjj =
2ε2

ψ2
j

+ a22,j , j = 1(1)n− 1

Bj,j+1 = − ε2

ψ2
j

, j = 1(1)n− 2

Bj,j−1 = − ε2

ψ2
j

, j = 2(1)n− 1

F2,1 = f2,1 − a21,1U11 +
ε2

ψ2
1

U20,

F2,j = f2,j − a21,jU1j, j = 2(j)n− 2,

F2,n−1 = f2,n−1 − a21,n−1U1n−1 +
ε2

ψ2
n−1

U2n.

In the rest of the paper, C denotes various positive constants independent of the

parameters ε1 and ε2 and of the mesh spacing h and may take different values in

different equations and inequalities. Also, the first and second components of Lh
ε1,ε2

~ξj

are respectively denoted by Lh
ε1,ε2

ξ1j and Lh
ε1,ε2

ξ2j .

The discrete operator Lh
ε1,ε2

satisfies the following lemmas:

Lemma 3.1 (Discrete maximum principle). Let {~φj} = {(φ1j , φ2j)} be any mesh

function satisfying ~φ0 ≥ 0, ~φn ≥ 0, and Lh
ε1,ε2

~φj ≥ 0, j = 1(1)n − 1. Then ~φj ≥
0, ∀j = 0(1)n.

Proof. Let k and l be indices such that φ1k = minj φ1j, φ2l = minj φ2j , ∀0 ≤ j ≤ n.

Assume that φ1k < 0. Furthermore assume, without loss of generality, that φ1k < φ2l.

It is easily seen that k 6= 0 and k 6= n. Also, it is clear that φ1k+1 − φ1k ≥ 0 and

φ1k − φ1k−1 ≤ 0. In this way, the first component of Lh
ε1,ε2

~φk reads

−ε1

φ1k−1 − 2φ1k + φ1k+1

ϕ2
k

+ a11(xk)φ1k + a12(xk)φ2k.

We rewrite this expression as follows

− ε1

ϕ2
k

[

(φ1k−1 − φ1k) + (φ1k+1 − φ1k)
]

+[a11(xk)+a12(xk)]φ1k +[φ2k −φ1k]a12(xk) < 0.

This contradiction ends the proof.

Lemma 3.2. If ~Zj = (Z1j , Z2j)
T is any mesh function such that ~Z0 = ~0 and ~Zn = ~0,

then

|~Zi| ≤
1

α
max

1≤j≤n−1
|Lh

ε1,ε2

~Zj |, 0 ≤ i ≤ n.

Proof. Let

N =
1

α
max

1≤j≤n−1
|Lε1,ε2

~Zj|

and (~Ψ±)j be the mesh functions defined by

(Ψk
±)j = N ± Zkj, k = 1, 2.
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It is clear that (~Ψ±)0 ≥ ~0 and (~Ψ±)n ≥ ~0. The first component of Lh
ε1,ε2

(~Ψ±)j is

Lh
ε1,ε2

Ψ1
±
j = −ε1

(N ± Z1j−1) − 2(N ± Z1j) + (N ± Z1j+1)

ϕ2
j

+a11(xj)(N ± Z1j) + a12(N ± Z2j)

=
a11(xj) + a12(xj)

α
max

1≤j≤n−1
|Lh

ε1,ε2

~Zj| ± Lh
ε1,ε2

Z1j

Since 0 < α ≤ a11(xj) + a12(xj), we have Lh
ε1,ε2

Ψ1
±
j ≥ 0. Similarly, Lh

ε1,ε2
Ψ2

±
j ≥ 0.

By virtue of the discrete maximum principle (Lemma 3.1) we have (~Ψ±)j ≥ 0 for

0 ≤ j ≤ n and this ends the proof.

Lemma 3.3. For a fixed mesh and for integers k, we have

lim
ε→0

max
1≤j≤n−1

exp(−Cxj/
√
ε)

εk/2
= 0 and

lim
ε→0

max
1≤j≤n−1

exp(−C(1 − xj)/
√
ε)

εk/2
= 0.

Proof. See [17].

We are now ready to analyze the error of the proposed method.

4. ERROR ANALYSIS

The local truncation error of the scheme for the first component of the solution

is

Lh
ε1,ε2

(u1j − U1j) = −ε1u
′′
1j + ε1

u1j−1 − 2u1j + u1j+1

ϕ2
j

(4.1)

Using Taylor expansions of u1j−1, u1j+1 and ϕj , we obtain

Lh
ε1,ε2

(u1j − U1j)

= −ε1

[

u′′1j −
(

1

h2
−
ρ2

j

12
+
ρ4

jh
2

240

)(

h2u′′1j +
h4

24

(

u1
(iv)(ξ1) + u1

(iv)(ξ2)
)

)]

,

where ξ1 ∈ (xj−1, xj) and ξ2 ∈ (xj , xj+1). Making use of the first equation of (3.7),

rearranging and applying the triangular inequality, we obtain:

∣

∣Lh
ε1,ε2

(u1j − U1j)
∣

∣ ≤ ε1h
2

12

∣

∣u1
(iv)(ξj)

∣

∣+
a11,jh

2

12

∣

∣u1
′′
j

∣

∣+
a11,jh

4

144

∣

∣u1
(iv)(ξj)

∣

∣

+
a2

11,jh
4

240

∣

∣

∣

∣

u1
′′
j

ε1

∣

∣

∣

∣

+
a2

11,jh
6

2880

∣

∣

∣

∣

u1
(iv)(ξj)

ε1

∣

∣

∣

∣

(4.2)
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where ξj ∈ (xj−1, xj+1). The use of lemmas (2.3) and (3.3) shows immediately that

|u1
′′
j | ≤ C and |u1

(iv)(ξj)| ≤ C. Also, we note that

∣

∣

∣

∣

u1
′′
j

ε1

∣

∣

∣

∣

≤ C

[

ε1 + exp
(

−xj

√

α
ε1

)

+ exp
(

−(1 − xj)
√

α
ε1

)

ε2
1

+
exp

(

−xj

√

α
ε2

)

+ exp
(

−(1 − xj)
√

α
ε2

)

ε1ε2

]

.

But, for all s ∈ (0, xj), we have

exp(−xj

√

α/ε1) < exp(−s
√

α/ε1).

When ε1 approaches zero, exp(−xj

√

α/ε1) will tend to zeros faster than exp(−s
√

α/ε1),

thus widening the gap between these two quantities. It follows that

ε1 + exp(−xj

√

α/ε1) < exp(−s
√

α/ε1).

In this way, we have
∣

∣u1
′′
j/ε1

∣

∣ ≤ C. In a similar way, we can prove that |u1
(iv)(ξj)/ε1| ≤

C.

Inequality (4.2) then leads to

(4.3) |Lh
ε1,ε2

(u1j − U1j)| ≤ Ch2.

The local truncation error for the second component of the solution is bounded as

follows.

∣

∣Lh
ε1,ε2

(u2j − U2j)
∣

∣ ≤ ε2h
2

12

∣

∣u2
(iv)(ζj)

∣

∣+
a22,jh

2

12

∣

∣u2
′′
j

∣

∣+
a22,jh

4

144

∣

∣u2
(iv)(ζj)

∣

∣

+
a2

22,jh
4

240

∣

∣

∣

∣

u2
′′
j

ε2

∣

∣

∣

∣

+
a2

22,jh
6

2880

∣

∣

∣

∣

u2
(iv)(ζj)

ε2

∣

∣

∣

∣

,(4.4)

where ζj ∈ (xj−1, xj+1). Note that we have made use of the second equation of (3.7)

in the above inequality. Following similar arguments as the ones used for inequality

(4.2), we obtain

(4.5) |Lh
ε1,ε2

(u2j − U2j)| ≤ Ch2.

From (4.3) and (4.5), we see that

(4.6) |Lh
ε1,ε2

(~u− ~U)j | ≤ Ch2.

Finally, by virtue of Lemma 3.2, we establish our main result which we summarize in

the theorem below.

Theorem 4.1. Let ~u be the analytical solution of problem (1.1)–(1.2) and ~U be the

approximate solution obtained via the scheme (3.1)–(3.4). Then ~U converges uni-

formly to ~u and the convergence is quadratic. In other words there exists a constant
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C independent of ε1, ε2 and h such that

(4.7) sup
0<ε1,ε2≤1

max
0≤j≤n

|(~u− ~U)j | ≤ Ch2.

5. NUMERICAL RESULTS

In our numerical experiments, we will use the following iterative process

(5.1) T1
~Z(k) = ~f1 − D1

~W (k),

(5.2) T2
~W (k+1) = ~f2 − D2

~Z(k),

where T1 and T2 are the tridiagonal matrices A and B in equations (3.10) and (3.11),

respectively and the diagonal matrices D1 and D2 are such that:

(D1)j,j = a12(xj), (D2)j,j = a21(xj).

The Lemma below, the proof of which follows similar steps to the proof of Lemma 8

in [12], guarantees the convergence of the above iterative scheme.

Lemma 5.1. Assume that (A1) holds. Then the iterative scheme (5.1)–(5.2) con-

verges to the solution of the matrix system (3.8)–(3.9).

In order to illustrate our theoretical findings summarized in Theorem 4.1, we

consider the following numerical problem.

−ε1u
′′
1(x) + 2(x+ 1)2u1(x) − (1 + x3)u2(x) = 2 exp(x),

−ε2u
′′
2(x) − 2 cos

(πx

4

)

u1(x) + 2.2 exp(1 − x)u2(x) = 10x+ 1,

with the boundary conditions u1(0) = u1(1) = u2(0) = u2(1) = 0.

This test example was considered in [12] for 0 < ε1 < ε2 = 1 and in [10] for

0 < ε1 ≤ ε2 ≤ 1.

Due to the fact that the exact solution is not available, the maximum errors at

all mesh points are calculated using the formulas

E1
n
ε1,ε2

:= max
0≤j≤n

|Un
1 j − U1

2n
2j |

and

E2
n
ε1,ε2

:= max
0≤j≤n

|Un
2 j − U2

2n
2j |

for the first and second components of the solution, respectively and where ~U2n is the

approximate solution obtained via the scheme (3.1)–(3.4) on the mesh Σ2n.

The numerical rates of convergence are computed using the formula [3]:

rk ≡ rk
ε1,ε2

:= log2(E
nk

ε1,ε2
/E2nk

ε1,ε2
), k = 1, 2, . . .
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In the computations, ~W was initialized to (0.1, 0.1, . . . , 0.1)T and the stopping

criteria were set to be

|| ~W (k+1) − ~W (k)|| < 10−15 and ||~Z(k+1) − ~Z(k)|| < 10−15.

6. DISCUSSION OF RESULTS AND FUTURE PLANS

This paper dealt with the construction and analysis of a fitted operator finite

difference method (FOFDM) for systems of singularly perturbed reaction-diffusion

equations.

We proved that the FOFDM satisfies a discrete maximum principle. A stability

result on this discrete operator was established as a consequence of the maximum

principle. We showed that the numerical method is second order accurate uniformly

convergent. This result is confirmed through our computational investigations. In

our theoretical analysis, we assumed that 0 < ε1 ≤ ε2 ≤ 1. However, in our numerics,

both scenarios ε1 < ε2 and ε1 > ε2 were considered.

Numerical results for the case ε1 < ε2 = 1, are presented in the tables 1–4.

The first two tables show the computed maximum errors in the approximation of the

first component u1 and the second component u2 of the solution, respectively. The

corresponding rates of convergence are given in tables 3 and 4. Results for other cases

are also tabulated following the same pattern: Tables 5–8 for ε1 = 1 > ε2, tables 9–12

for the case ε1 < ε2 = 2−4, tables 13–16 for the case ε1 < ε2 = 2−4, and tables 17–20

for the case ε1 = 2−4 > ε2.

A comparison of results presented in tables 1 and 2 to the results in [12] and in

[10] shows the superiority of our proposed method. Furthermore, while [2] gives an

almost third order method, it turns out that our method performs better in that one

needs only 512 subintervals to get a maximum error of magnitude 10−6 (see Table

10) whereas 4096 subintervals must be used to expect similar degree of accuracy in

[2] (see Table 5 therein).

Currently, we are investigating the possibility of extending the proposed approach

to solve system of time-dependent parabolic partial differential equations.
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Table 1. Maximum errors (ε1 < ε2 = 1) for u1.

ε1 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−4 3.98E-03 1.03E-03 2.65E-04 6.63E-05 1.66E-05 4.15E-06 1.04E-06 2.59E-07

2−8 4.38E-03 3.45E-03 9.80E-04 2.66E-04 6.70E-05 1.68E-05 4.20E-06 1.05E-06

2−28 8.67E-05 2.22E-05 5.64E-06 1.41E-06 3.53E-07 8.82E-08 2.21E-08 5.51E-09

2−32 8.67E-05 2.22E-05 5.64E-06 1.41E-06 3.53E-07 8.82E-08 2.21E-08 5.51E-09

2−34 8.67E-05 2.22E-05 5.64E-06 1.41E-06 3.53E-07 8.82E-08 2.21E-08 5.51E-09
...

...
...

...
...

...
...

...
...

2−60 8.67E-05 2.22E-05 5.64E-06 1.41E-06 3.53E-07 8.82E-08 2.21E-08 5.51E-09

Table 2. Maximum errors (ε1 < ε2 = 1) for u2.

ε1 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−4 1.23E-03 3.18E-04 8.03E-05 2.01E-05 5.03E-06 1.26E-06 3.15E-07 7.86E-08

2−8 7.76E-04 3.17E-04 8.97E-05 2.32E-05 5.84E-06 1.46E-06 3.66E-07 9.15E-08

2−28 3.36E-04 8.38E-05 2.12E-05 5.29E-06 1.32E-06 3.31E-07 8.27E-08 2.07E-08

2−32 3.36E-04 8.38E-05 2.12E-05 5.29E-06 1.32E-06 3.31E-07 8.27E-08 2.07E-08

2−34 3.36E-04 8.38E-05 2.12E-05 5.29E-06 1.32E-06 3.31E-07 8.27E-08 2.07E-08
...

...
...

...
...

...
...

...
...

2−60 3.36E-04 8.38E-05 2.12E-05 5.29E-06 1.32E-06 3.31E-07 8.27E-08 2.07E-08

Table 3. Rates of convergence rk (ε1 < ε2 = 1) for u1, nk = 8 ×
2k−1, k = 1(1)7.

ε1 r1 r2 r3 r4 r5 r6 r7

2−4 1.944 1.966 1.997 1.999 2.000 2.000 2.000

2−8 3.475 1.814 1.882 1.989 1.996 1.999 2.000

2−28 1.967 1.975 2.000 2.000 2.000 2.000 2.001

2−32 1.967 1.975 2.000 2.000 2.000 2.000 2.000

2−34 1.967 1.975 2.000 2.000 2.000 2.000 2.000
...

...
...

...
...

...
...

...

2−60 1.967 1.975 2.000 2.000 2.000 2.000 2.000

Table 4. Rates of convergence rk (ε1 < ε2 = 1) for u2, nk = 8 ×
2k−1, k = 1(1)7.

ε1 r1 r2 r3 r4 r5 r6 r7

2−4 1.946 1.986 1.997 1.999 2.000 2.000 2.000

2−8 1.290 1.823 1.953 1.988 1.997 1.999 2.000

2−28 2.006 1.983 2.000 2.000 2.000 2.000 2.000

2−32 2.006 1.983 2.000 2.000 2.000 2.000 2.000

2−34 2.006 1.983 2.000 2.000 2.000 2.000 2.000
...

...
...

...
...

...
...

...

2−60 2.006 1.983 2.000 2.000 2.000 2.000 2.000
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Table 5. Maximum errors (ε1 = 1 > ε2) for u1.

ε2 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−6 3.17E-03 9.58E-04 2.51E-04 6.35E-05 1.59E-05 3.98E-06 9.96E-07 2.49E-07

2−10 1.79E-03 8.91E-04 3.68E-04 1.06E-04 2.73E-05 6.88E-06 1.72E-06 4.31E-07

2−26 2.46E-03 6.28E-04 1.58E-04 3.95E-05 9.86E-06 2.47E-06 6.17E-07 1.51E-07

2−28 2.46E-03 6.28E-04 1.58E-04 3.95E-05 9.86E-06 2.47E-06 6.17E-07 1.51E-07

2−30 2.46E-03 6.28E-04 1.58E-04 3.95E-05 9.86E-06 2.47E-06 6.17E-07 1.54E-07
...

...
...

...
...

...
...

...
...

2−60 2.46E-03 6.28E-04 1.58E-04 3.95E-05 9.86E-06 2.47E-06 6.17E-07 1.54E-07

Table 6. Maximum errors (ε1 = 1 > ε2) for u2.

ε2 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−4 7.34E-03 1.88E-03 4.74E-04 1.19E-04 2.98E-05 7.46E-06 1.87E-06 4.66E-07

2−6 1.38E-02 4.42E-03 1.14E-03 2.94E-04 7.36E-05 1.84E-05 4.60E-06 1.15E-06

2−26 1.45E-03 3.65E-04 9.16E-05 2.29E-05 5.73E-06 1.43E-06 3.58E-07 8.93E-08

2−28 1.45E-03 3.65E-04 9.16E-05 2.29E-05 5.73E-06 1.43E-06 3.58E-07 8.96E-08

2−30 1.45E-03 3.65E-04 9.16E-05 2.29E-05 5.73E-06 1.43E-06 3.58E-07 8.96E-08
...

...
...

...
...

...
...

...
...

2−60 1.45E-03 3.65E-04 9.16E-05 2.29E-05 5.73E-06 1.43E-06 3.58E-07 8.96E-08

Table 7. Rates of convergence rk (ε1 = 1 > ε2) for u1, nk = 8 ×
2k−1, k = 1(1)7.

ε2 r1 r2 r3 r4 r5 r6 r7

2−6 1.725 1.934 1.984 1.995 1.999 2.000 2.000

2−10 1.006 1.274 1.804 1.952 1.988 1.997 1.999

2−26 1.969 1.994 1.998 2.000 2.000 2.000 2.029

2−28 1.969 1.994 1.998 2.000 2.000 2.000 2.000

2−30 1.969 1.994 1.998 2.000 2.000 2.000 2.000
...

...
...

...
...

...
...

...

2−60 1.969 1.994 1.998 2.000 2.000 2.000 2.000

Table 8. Rates of convergence rk (ε1 = 1 > ε2) for u2, nk = 8 ×
2k−1, k = 1(1)7.

ε2 r1 r2 r3 r4 r5 r6 r7

2−4 1.962 1.991 1.991 1.999 1.999 2.000 2.000

2−6 1.639 1.950 1.961 1.997 1.999 2.000 2.000

2−26 1.985 1.996 1.998 2.000 2.000 2.000 2.005

2−28 1.985 1.996 1.998 2.000 2.000 2.000 2.000

2−30 1.985 1.996 1.998 2.000 2.000 2.000 2.000
...

...
...

...
...

...
...

...

2−60 1.985 1.996 1.998 2.000 2.000 2.000 2.000



186 J. B. MUNYAKAZI AND K. C. PATIDAR

Table 9. Maximum errors (ε1 < ε2 = 2−4) for u1.

ε1 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−6 1.55E-02 5.07E-03 1.41E-03 3.60E-04 9.04E-05 2.27E-05 5.66E-06 1.42E-06

2−14 2.79E-03 7.21E-04 5.38E-04 9.34E-04 5.10E-04 1.41E-04 3.73E-05 9.39E-06

2−22 2.79E-03 7.20E-04 1.82E-04 4.55E-05 1.14E-05 2.85E-06 1.20E-05 3.80E-05

2−26 2.79E-03 7.20E-04 1.82E-04 4.55E-05 1.14E-05 2.85E-06 7.11E-07 1.78E-07

2−30 2.79E-03 7.20E-04 1.82E-04 4.55E-05 1.14E-05 2.85E-06 7.11E-07 1.78E-07
...

...
...

...
...

...
...

...
...

2−60 2.79E-03 7.20E-04 1.82E-04 4.55E-05 1.14E-05 2.85E-06 7.11E-07 1.78E-07

Table 10. Maximum errors (ε1 < ε2 = 2−4) for u2.

ε1 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−6 1.84E-02 5.23E-03 1.36E-03 3.43E-04 8.59E-05 2.15E-05 5.37E-06 1.34E-06

2−14 1.17E-02 3.03E-03 7.79E-04 2.50E-04 8.94E-05 2.46E-05 6.31E-06 1.59E-06

2−22 1.17E-02 3.03E-03 7.64E-04 1.92E-04 4.80E-05 1.20E-05 3.05E-06 1.18E-06

2−26 1.17E-02 3.03E-03 7.64E-04 1.92E-04 4.80E-05 1.20E-05 3.00E-06 7.50E-07

2−30 1.17E-02 3.03E-03 7.64E-04 1.92E-04 4.80E-05 1.20E-05 3.00E-06 7.50E-07
...

...
...

...
...

...
...

...
...

2−60 1.17E-02 3.03E-03 7.64E-04 1.92E-04 4.80E-05 1.20E-05 3.00E-06 7.50E-07

Table 11. Rates of convergence rk (ε1 < ε2 = 2−4) for u1, nk =

8 × 2k−1, k = 1(1)7.
ε1 r1 r2 r3 r4 r5 r6 r7

2−6 1.61 1.84 1.97 1.99 2.00 2.00 2.00

2−14 1.95 0.42 -0.79 0.87 1.85 1.92 1.99

2−26 1.95 1.99 2.00 2.00 2.00 2.00 2.00

2−30 1.95 1.99 2.00 2.00 2.00 2.00 2.00
...

...
...

...
...

...
...

...

2−60 1.95 1.99 2.00 2.00 2.00 2.00 2.00

Table 12. Rates of convergence rk (ε1 < ε2 = 2−4). for u2, nk =

8 × 2k−1, k = 1(1)7
ε1 r1 r2 r3 r4 r5 r6 r7

2−6 1.81 1.95 1.99 2.00 2.00 2.00 2.00

2−14 1.95 1.96 1.64 1.48 1.86 1.96 1.99

2−26 1.95 1.99 2.00 2.00 2.00 2.00 2.00

2−30 1.95 1.99 2.00 2.00 2.00 2.00 2.00
...

...
...

...
...

...
...

...

2−60 1.95 1.99 2.00 2.00 2.00 2.00 2.00
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Table 13. Maximum errors (ε1 < ε2 = 2−12) for u1.
ε1 n=32 n=64 n=128 n=256 n=512 n=1024

2−18 6.38E-03 5.62E-03 3.60E-03 3.46E-03 1.61E-03 5.59E-04

2−26 6.38E-03 5.62E-03 1.65E-03 4.55E-04 1.15E-04 2.88E-05

2−28 6.38E-03 5.62E-03 1.65E-03 4.55E-04 1.15E-04 2.88E-05

2−30 6.38E-03 5.62E-03 1.65E-03 4.55E-04 1.15E-04 2.88E-05
...

...
...

...
...

...
...

2−60 6.38E-03 5.62E-03 1.65E-03 4.55E-04 1.15E-04 2.88E-05

Table 14. Maximum errors (ε1 =< ε2 = 2−12) for u2.
ε1 n=32 n=64 n=128 n=256 n=512 n=1024

2−18 2.59E-02 2.27E-02 6.80E-03 3.12E-03 1.07E-03 2.99E-04

2−26 2.59E-02 2.27E-02 6.64E-03 1.83E-03 4.62E-04 1.16E-04

2−28 2.59E-02 2.27E-02 6.64E-03 1.83E-03 4.62E-04 1.16E-04

2−30 2.59E-02 2.27E-02 6.64E-03 1.83E-03 4.62E-04 1.16E-04
...

...
...

...
...

...
...

2−60 2.59E-02 2.27E-02 6.64E-03 1.83E-03 4.62E-04 1.16E-04

Table 15. Rates of convergence rk (ε1 < ε2 = 2−12) for u1, nk =

32 × 2k−1, k = 1(1)6.
ε1 r1 r2 r3 r4 r5 r6

2−18 0.18 0.65 0.06 1.11 1.52 1.86

2−26 0.18 1.77 1.86 1.98 2.00 -0.21

2−28 0.18 1.77 1.86 1.98 2.00 2.00

2−30 0.18 1.77 1.86 1.98 2.00 2.00
...

...
...

...
...

...
...

2−60 0.18 1.77 1.86 1.98 2.00 2.00

Table 16. Rates of convergence rk (ε1 < ε2 = 2−12) for u2, nk =

32 × 2k−1, k = 1(1)6.
ε1 r1 r2 r3 r4 r5 r6

2−18 0.19 1.74 1.12 1.55 1.84 1.91

2−26 0.20 1.77 1.86 1.98 2.00 1.97

2−28 0.20 1.77 1.86 1.98 2.00 2.00

2−30 0.20 1.77 1.86 1.98 2.00 2.00
...

...
...

...
...

...
...

2−60 0.20 1.77 1.86 1.98 2.00 2.00
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Table 17. Maximum errors (ε1 = 2−4 > ε2) for u1.

ε2 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−6 2.41E-02 7.46E-03 2.05E-03 5.18E-04 1.30E-04 3.26E-05 8.14E-06 2.04E-06

2−16 6.47E-03 1.71E-03 4.12E-04 3.67E-04 3.22E-04 1.18E-04 3.28E-05 8.43E-06

2−26 6.47E-03 1.71E-03 4.29E-04 1.07E-04 2.68E-05 6.70E-06 1.67E-06 4.02E-07

2−28 6.47E-03 1.71E-03 4.29E-04 1.07E-04 2.68E-05 6.70E-06 1.67E-06 4.19E-07

2−30 6.47E-03 1.71E-03 4.29E-04 1.07E-04 2.68E-05 6.70E-06 1.67E-06 4.19E-07
...

...
...

...
...

...
...

...
...

2−60 6.47E-03 1.71E-03 4.29E-04 1.07E-04 2.68E-05 6.70E-06 1.67E-06 4.19E-07

Table 18. Maximum errors (ε1 = 2−4 > ε2) for u2.

ε2 n=8 n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−6 3.81E-02 1.07E-02 2.89E-03 7.27E-04 1.82E-04 4.56E-05 1.14E-05 2.85E-06

2−8 3.65E-02 2.17E-02 5.97E-03 1.53E-03 3.84E-04 9.64E-05 2.41E-05 6.03E-06

2−26 4.01E-03 1.04E-03 2.60E-04 6.51E-05 1.63E-05 4.07E-06 1.02E-06 2.40E-07

2−30 4.01E-03 1.04E-03 2.60E-04 6.51E-05 1.63E-05 4.07E-06 1.02E-06 2.54E-07
...

...
...

...
...

...
...

...
...

2−60 4.01E-03 1.04E-03 2.60E-04 6.51E-05 1.63E-05 4.07E-06 1.02E-06 2.54E-07

Table 19. Rates of convergence rk (ε1 = 2−4 > ε2) for u1, nk =

8 × 2k−1, k = 1(1)7.
ε2 r1 r2 r3 r4 r5 r6 r7

2−6 1.69 1.87 1.98 1.99 2.00 2.00 2.00

2−16 1.92 2.06 0.17 0.19 1.45E 1.85 1.96

2−26 1.92 2.00 2.00 2.00 2.00 2.00 2.06

2−28 1.92 2.00 2.00 2.00 2.00 2.00 2.00

2−30 1.92 2.00 2.00 2.00 2.00 2.00 2.00
...

...
...

...
...

...
...

...

2−60 1.92 2.00 2.00 2.00 2.00 2.00 2.00

Table 20. Rates of convergence rk (ε1 = 2−4 > ε2) for u2, nk =

8 × 2k−1, k = 1(1)7.
ε2 r1 r2 r3 r4 r5 r6 r7

2−6 1.83 1.89 1.99 2.00 2.00 2.00 2.00

2−8 0.75 1.86 1.97 1.99 2.00 2.00 2.00

2−26 1.95 2.00 2.00 2.00 2.00 2.00 2.08

2−30 1.95 2.00 2.00 2.00 2.00 2.00 2.00
...

...
...

...
...

...
...

...

2−60 1.95 2.00 2.00 2.00 2.00 2.00 2.00
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