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ABSTRACT. Pulsed Melodic Affective Processing (PMAP) is a computation protocol 

useable at  ultiple levels in data processing systems. The approach utilizes musically-based 

pulse sets (“melodies”) for processing – capable of representing the arousal and valence of 

affective states. Affective processing and affective input/output is now considered to be a key 

tool in artificial intelligence and computing. In the designing of processing elements (e.g. bits, 

bytes, floats, etc), engineers have primarily focused on the processing efficiency and power. 

Having defined these elements, they then go on to investigate ways of making them 

perceivable by the user/engineer. However the extremely active and productive area of 

Human-Computer Interaction - and the increasing complexity and pervasiveness of 

computation in our daily lives – supports the idea of a complementary approach in which 

computational efficiency and power are more balanced with understandability to the 

user/engineer. PMAP provides the potential for a person to tap into the affective processing 

path to hear a sample of what is going on in that computation, as well as providing a simpler 

way to interface with affective input/output systems. This comes at a cost of developing new 

approaches to processing and interfacing PMAP-based modules - this cost being part of the 

compromise of efficiency/power versus user-transparency and interfacing. In this paper we 

introduce and develop PMAP; and demonstrate and examine the approach using two example 

applications: a military robot team simulation with an affective subsystem, and a text 

affective-content estimation system.  

Key Words: HCI, Logic, Neural Networks, Affective Computing, Fuzzy Logic, Computer 

Music. 

1. INTRODUCTION 

This paper proposes the use of music as a processing tool for affective computation in 

artificial systems. It has been shown that affective states (emotions) play a vital role in 

human cognitive processing and expression [1]. As a result affective state processing 

has been incorporated into artificial intelligence processing and robotics [2]. The issue 

of developing systems with affective intelligence which also provide for greater user-

transparency, is what is addressed in this paper.  

 

Music has often been described as a language of emotions [3]. The general features 

which express emotion in western music are known. Before introducing these, 

affective representation will be discussed. The dimensional approach to specifying 

emotion utilizes an n-dimensional space made up of emotion “factors”. Any emotion 

can be plotted as some combination of these factors. For example, in many emotional 

music systems [4] two dimensions are used: Valence and Arousal (see Figure 1). In 

that model, emotions are plotted on a graph with the first dimension being how 

positive or negative the emotion is (Valence), and the second dimension being how 

intense the physical arousal of the emotion is (Arousal). For example “Happy” is high 

valence high arousal affective state, and “Stressed” is low valence high arousal state.  
______________ 
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Previous research [5] has suggested that a main indicator of valence is musical key 

mode: major or minor. An example of a minor key piece of music is Beethoven’s  

Moonlight Sonata. An example of a major key piece of music is the Spring movement 

of Vivaldi’s Four Seasons. A Major key implies higher valence, minor key implies 

lower valence. It has been shown that tempo is a prime indicator of arousal. High 

tempo indicating higher arousal, low tempo - low arousal. There has been work into 

automated systems which communicate emotions through music [6] and which detect 

emotion embedded in music based on musical features [7]. 

 

Affective Computing [8] focuses on robot/computer affective input/output. Whereas a 

key aim of PMAP is to develop data streams that represent such affective states, and 

use these representations to process data and compute actions. The other aim of 

PMAP is more related to Picard’s work – to aid easier sonification of affective 

processing [9] for user transparency, i.e. representing non-musical data in musical 

form to aid its understanding. Related sonification research has included tools for 

using music to debug programs [10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Valence/Arousal Model of Emotion 

 

2. PMAP REPRESENTATION OF AFFECTIVE STATE 

Pulsed melodic affective processing (PMAP) is a method of representing affective 

state using music. In PMAP the data stream representing affective state is a stream of 

pulses of 10 possible different levels. For example 10 different voltage levels for a 

low level stream, or 10 different integer values for a stream embedded in some sort of 

data structure. Each level represents one of the musical notes 

C,D,Eb,E,F,G,Ab,A,Bb,B. For example 1mV could be C, 2mV be D, 3mV be Eb, etc. 

We will simply use integers here to represent the notes (i.e. 1 for C, 2 for D, 3 for Eb, 

etc). These note values are designed to represent a valence (positivity or negativity of 

emotion). This is because, in the key of C, pulse streams made up of only the notes 

C,D,E,F,G,A,B are the notes of the key C major, and so will be heard as having a 

major key mode – i.e. positive valence. Whereas streams made up of 

C,D,Eb,F,G,Ab,Bb are the notes of the key C minor, and so will be heard as having a 

minor key mode – i.e. negative valence. Furthermore, the pulses are transmitted at a 

variable rate. This pulse rate represents the arousal, since a higher pulse  rate is  
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essentially a series of pitches played at a high tempo (high arousal); whereas a lower 

pulse rate is a series of pitches played at a low tempo (low arousal).  

 

For example a PMAP stream of say [C, C, Eb, F, D, Eb, F, G, Ab, C] (i.e. 

[1,1,3,5,3,4,5,6,7]) would be principally negative valence because it is mainly minor 

key mode. Whereas [C,C,E,F,D,E,F,G,A,C] (i.e. [1,1,4,5,2,4,5,6,8]) would be seen as 

principally positive valence. And the arousal of the pulse stream would be encoded in 

the rate at which the pulses were transmitted. So if [1,1,3,5,3,4,5,6,7] was transmitted 

at a high rate, it would be high arousal and high valence – i.e. a stream representing 

‘happy’. Where as if [1,1,4,5,2,4,5,6,8] was transmitted at a low pulse rate then it will 

be low arousal and low valence – i.e. a stream representing ‘sad’. 

 

Note that [1,1,3,5,3,4,5,6,7] and [3,1,3,5,1,7,6,4,5] both represent high valence (i.e. 

are both major key melodies in C). This has a potential extra use. If there are two 

modules or elements both with the same affective state, the different note groups 

which make up that state representation can be unique to the object generating them. 

This allows other objects, and human listeners, to identify where the affective data is 

coming from. 

 

In performing some of the initial analysis on PMAP, it is convenient to utilize a 

parametric form to represent the data stream form. The parametric form represents a 

stream by a Tempo-value variable and a Key-mode-value variable. The Tempo-value 

is a real number varying between 0 (minimum pulse rate) and 1 (maximum pulse 

rate). The Key-mode-value is an integer varying between -3 (maximally minor) and 3 

(maximally major).  

3. MUSICAL LOGIC GATES 

 

Looking now at elements which process PMAP data streams, three gates which take 

PMAP data as inputs will be examined based on AND, OR and NOT logic gates. The 

PMAP versions of these are respectively: MNOT (pronounced “emm-not”), MAND, 

and MOR. The normal logic gates take binary streams at a constant data rate as input, 

whereas PMAP has more than two levels and is variable rate. A given PMAP stream 

can be represented by a PMAP-value which can be written as mi = [ki, ti] with key-

mode-value ki and tempo-value ti. mi is also referred to as the “KT-Value” of the 

stream. The definitions of the musical gates are (for two PMAP streams m1 and m2): 

 

MNOT(m) = [-k,1-t]      (1) 

m1 MAND m2 = [minimum(k1,k2), minimum(t1,t2)]  (2) 

m1 MOR m2 = [maximum(k1,k2), maximum(t1,t2)]  (3) 

 

These use a similar approach to Fuzzy Logic [11]. MNOT is the simplest – it simply 

reverses the key mode and tempo – minor becomes  major and fast becomes slow, and 

vice versa. The best way to get some insight into what the affective function of the 

music gates is it to utilize music “truth tables”, which will be called Affect Tables 

here. In these, four representative state-labels are used to represent the four quadrants 

of the PMAP-value table: “Sad” for [-3,0], “Stressed” for [-3,1], “Relaxed” for [3,0], 

and “Happy” for [3,1]. Table 1 shows the music tables for MNOT and MAND. 
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Table 1: Music Tables for MAND and MNOT 

MAND MNOT 

State 

Label 1 

State 

Label 2 

KT-

value 1 

KT- 

value 2 

MAND 

value 

State 

Label 

State 

Label 

KT-

value 

MNOT 

value 

State 

Label 

Sad Sad -3,0 -3,0 -3,0 Sad Sad -3,0 3,1 Happy 

Sad Stressed -3,0 -3,1 -3,0 Sad Stressed -3,1 3,0 Relaxed 

Sad Relaxed -3,0 3,0 -3,0 Sad Relaxed 3,0 -3,1 Stressed 

Sad Happy -3,0 3,1 -3,0 Sad Happy 3,1 -3,0 Sad 

Stressed Stressed -3,1 -3,1 -3,1 Stressed  

Stressed Relaxed -3,1 3,0 -3,0 Sad 

Stressed Happy -3,1 3,1 -3,1 Stressed 

Relaxed Relaxed 3,0 3,0 3,0 Relaxed 

Relaxed  Happy 3,0 3,1 3,0 Relaxed 

Happy Happy 3,1 3,1 3,1 Happy 

 

 

Taking the MAND of two melodies, low tempos and minor key modes will dominate 

over high tempos and major key modes. Taking the MOR of two melodies, then the 

high tempos and major keys will dominate the output. Another way of viewing this is 

that the MAND of the melodies from Moonlight Sonata (minor key, low tempo) and 

the Marriage of Figaro Overture (major key, high tempo), the result would be mainly 

influenced by Moonlight Sonata.  However if they are MOR’d, then the Marriage of 

Figaro Overture would dominate. The MNOT of Marriage of Figaro Overture would 

be a slow minor key version. The MNOT of Moonlight Sonata would be a faster 

major key version. It is also possible to construct more complex music functions. For 

example MXOR (pronounced “mex-or”): 

 

m1 MXOR m2 = (m1 MAND MNOT(m2)) MOR (MNOT(m1) MAND m2) (5) 

 

A simple application is now examined. One function of affective states in biological 

systems is that they provide a back-up for when the organism is damaged or in more 

extreme states [12]. For example an injured person who cannot think clearly, will still 

try to get to safety or shelter. An affective subsystem for a robot who is a member of a 

military team is now examined; one that can kick in or over-ride if the higher 

cognition functions are damaged or deadlocked. Figure 2 shows the system diagram. 

A group of mobile robots with built-in weapons are placed in a potentially hostile 

environment and required to search the environment for enemies; and upon finding 

enemies to move towards them and fire on them. The PMAP affective sub-system in 

Figure 2 is designed to keep friendly robots apart (so as to maximize the coverage of 

the space), to make them move towards enemies, and to make them fire when enemies 

are detected.  

 

The modules in Figure 2 are “DetectOther”, “FriendFlag”, “MOTOR”, and 

“WEAPON”. “DetectOther” emits a regular minor melody; then every time another 

agent (human or robot) is detected within firing range, a major-key melody is emitted. 

This is because detecting another agent means that the robots are not spread out 

enough if it is a friendly, or it is an enemy if not. “FriendFlag” emits a regular minor 

key melody except for one condition. Other friends are identifiable (visually or by 

RFI) - when an agent is detected within range, and if it is a friendly robot – this 

module emits a major key melody. “MOTOR” – this unit, when it receives a C major 

key note (E, A, or B) moves the robot forward one step. When it receives a C minor 

key note (Eb, Ab, or Bb) it moves the robot back one step. “WEAPON” - this unit, 

when it receives a minor key note fires one round. The weapon and motor system is 

written symbolically in equations (4) and (5): 
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WEAPON = DetectOther MAND MNOT(FriendFlag)       (4) 

MOTOR = WEAPON MOR MNOT(DetectOther)  (5) 

 
 

 

 

  

 

 

 

 

Figure 2: Affective Subsystem for Military Multi-robot System 

    

 

Using Equations (1) and (2) gives the theoretical results in Table 2. The 5 rows 

displayed are the only feasible input state combinations, and have the following 

interpretations respectively: (a) If alone continue to patrol and explore; (b) If a distant 

enemy is detected move towards it fast and start firing slowly; (c) If a distant friendly 

robot is detected move away so as to patrol a different area of the space; (d) If enemy 

is close-by move slowly (to stay in its vicinity) and fire fast; (e) If a close friend is 

detected move away. This should mainly happen (because of row c) when robot team 

are initially deployed and they are bunched together, hence slow movement to prevent 

collision. 
 

Table 2: Theoretical Effects of Affective Subsystem 

Detect 

Other 

Friend 

Flag 

Detect 

Other- 

Value 

Friend 

Flag- 

Value 

MNOT 

(Friend 

Flag) 

MAND 

Detect 

Other 

WEAPON  MNOT 

(Detect 

Other) 

MOR 

WEAPON 

MOTOR 

Sad Sad -3,0 -3,0 3,1 -3,0 inactive 3,1 3,1 Fast  

forwards 

Relaxed Sad 3,0 -3,0 3,1 3,0 Firing -3,1 3,1 Fast  

forwards 

Relaxed Relaxed 3,0 3,0 -3,1 -3,0 Inactive -3,1 -3,0 Slow 

back 

Happy Stressed 3,1 -3,1 3,0 3,0 Firing -3,0 3,0 Slow 

forwards 

Happy Happy 3,1 3,1 -3,0 -3,0 inactive -3,0 -3,0 Slow 

back 

 

 

To test in simulation, four friendly robots are used, implementing the PMAP-value 

processing described earlier, rather than having actual melodies within the processing 

system. The robots using the PMAP affective sub-system are called “F-Robots” 

(friendly robots).  The movement space is limited by a border and when an F-Robot 

hits this border, it moves back a step and tries another movement. Their movements 

include a perturbation system which adds a random nudge to the robot movement, on 

top of the affectively-controlled movement described earlier. The simulation space of 

is 50 units by 50 units. An F-Robot can move by up to 8 units at a time backwards or 

forwards. Its range (for firing and for detection by others) is 10 units. Its PMAP 

minimum tempo is 100 beats per minute (BPM), and its maximum is 200 BPM. These 

are encoded as a tempo value of 0.5 and 1 respectively. Stationary enemy sentry 

robots are placed at fixed positions (10,10), (20,20) and (30,30).  

Detect 

Other 
WEAPON 

Friend 

Flag MNOT 

MAND 

MOR MOTOR 
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The F-robots are placed at initial positions (10,5), (20,5), (30,5), (40,5), (50,5)– i.e. 

they start at the bottom of the space. The system is run for 2000 movement cycles – in 

each movement cycle each of the 4 F-Robots can move. 30 simulations were run and 

the average distance of the F-Robots to the enemy robots was calculated. Also the 

average distances between F-Robots was calculated. These were done with a range of 

10 and a range of 0. A range of 0 effectively switches off the musical processing. 

Hence the results shown in Table 3 refer to PMAP system switched off and PMAP 

switched on respectively. It can be seen that the affective subsystem keeps the F-

Robots apart encouraging them to search different parts of the space. In fact it 

increases the average distance between them by 72%. Similarly the music logic 

system increases the likelihood of the F-Robots moving towards enemy robots. The 

average distance between the F-Robots and the enemies decreases by 21% thanks to 

the melodic subsystem. And these results are fairly robust with coefficients of 

variation between 4% and 2% respectively across the results. 

 

Table 3: Results for Robot Affective Subsystem  

Range Avg Distance between 

F-Robots 

Std Deviation Average Distance of F-

Robots from Enemy  

Std Deviation 

0 7.6 0.5 30.4 0.3 

10 13.1 0.5 25.2 0.4 

 

 

It was also found that the WEAPON firing rate had a very strong tendency to be 

higher as enemies were closer. This is shown in Figure 3. The x-axis is distance from 

the closest enemy, and the y-axis is tempo. It can be seen that the maximum tempo 

(just under maximum tempo 1) or firing rate is achieved when the distance is at its 

minimum. Similarly the minimum firing rate occurs at distance 10 in most cases. In 

fact the correlation between the two was found to be -0.98 which is very high. The 

line is not straight and uniform because it is possible for robot 1 to be affected by its 

distance from other enemies and from other friendly robots. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Plot of distance of robot 1 from enemy (when firing) and its weapons’ tempo value 

 

 

Finally it is worth considering what these robots actually sound like as they move and 

change status. To allow this each of the 4 robots was assigned a distinctive motif, with 

constant tempo. Motives designed to identify a module, agent, etc will be called 

“Indentive”. The identives for the 4 robots were: 
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1. [1,2,3,5,3,2,1] = C,D,Eb,F,Eb,D,C 

2. [3,5,6,7,6,5,3] = Eb,F,G,Ab,G,F,Eb 

3. [6,7,9,1,9,7,6] = G,Ab,Bb,C,Bb,Ab,G 

4. [7,9,1,6,1,9,7] = Ab,Bb,C,G,C,Bb,Ab 

 

Figure 4 shows the first 500 notes of robots 1 to 3 in the simulation in piano roll 

notation. The octave separation used for the Figure 4 also helped with aural 

perception. (So this points towards octave independence in processing as being a 

useful feature.) It was found that more than 3 robots was not really perceivable. It was 

also found that transforming the tempo minimums and maximums to between 100 and 

200 beats per minute and quantizing by 0.25 beats seemed to make seem to make 

changes more perceivable as well. In this way a human commander can monitor the 

state of a robot team in parallel based on their consonance, dissonance and 

synchronization.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A plot of 500 notes in the “motor” processing of robots 1 to 3 (octave separated). 

 

 

An extension of this system is to incorporate rhythmic biosignals from modern military suits [13][14]. 

For example if “BioSignal” is a tune generating module whose tempo is a heart rate 

reading from a human soldiers military body suit, and whose key is based on EEG 

valence readings, then the MOTOR system becomes: 

 
MOTOR = WEAPON MOR MNOT(DetectOther)  MOR MNOT(BioSignal)   (6) 

 

The diagram for (6) is shown in Figure 5, and the music table in Table 4. The table 

shows that if a (human) friend is detected whose biosignal indicates positive valence, 

then the F-robot will move away from the friend to patrol a different area. If the 

friendly human’s biosignal is negative then the robot will move towards them to aid 

them. 
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Figure 5: Affective Subsystem incorporating Biosignals 

4. MUSICAL NEURAL NETWORKS 

We will now look at a form of learning artificial neural network which uses PMAP. 

These artificial networks take as input, and use as their processing data, pulsed 

melodies. A musical neuron (muron – pronounced MEW-RON) is shown in Figure 6. 

The muron in this example has two inputs, though it can have more than this. Each 

input is a PMAP melody, and the output is a PMAP melody. The weights on the input 

w1 and w2 are two element vectors which define a key transposition, and a tempo 

change. A positive Rk will make the input tune more major by selective transposition, 

and a negative one will make it more minor. (Transposition is the process of 

switching notes unique to one key mode into another, e.g. E to Eb or Ab to A. The 

more of these notes that are switched between, the greater will be the perception of 

changing key mode.) A positive Dt will increase the tempo of the tune, and a negative 

Dt will reduce the tempo. The muron combines input tunes by superposing the spikes 

in time – i.e. overlaying them. Any notes which occur at the same time are combined 

into a single note with the highest pitch being retained. Murons can be combined into 

networks, called musical neural networks, abbreviated to “MNN”. The learning of a 

muron involves setting the weights to give the desired output tunes for the given input 

tunes. Applications for which PMAP is most efficiently used are those that naturally 

utilize temporal or affective data (or for which internal or external sonification is 

particularly important). 
 

Table 4: Music table for Biosignal Extension 

 

Detect 

Other 

Friend 

Flag 

Bio-

signal 

Bio-

signal 

Value 

MNOT 

(Bio-

Signal) 

MNOT 

(Friend 

Flag) 

WEAPON  MOR 

WEAPON 

MOR 

MNOT 

(Bio-

Signal) 

MOTOR 

Relaxed Relaxed Sad -3,0 3,1 -3,1 Inactive -3,0 3,1 forwards 

Relaxed Relaxed Stressed -3,1 3,0 -3,1 Inactive -3,0 3,0 forwards 

Relaxed Relaxed Relaxed 3,0 -3,1 -3,1 Inactive -3,0 -3,1 backwards 

Relaxed Relaxed Happy 3,1 -3,0 -3,1 Inactive -3,0 -3,0 backwards 

Happy Happy Sad -3,0 3,1 -3,0 inactive -3,0 3,1 forwards 

Happy Happy Stressed -3,1 3,0 -3,0 inactive -3,0 3,0 forwards 

Happy Happy Relaxed 3,0 -3,1 -3,0 inactive -3,0 -3,1 backwards 

Happy Happy Happy 3,1 -3,0 -3,0 inactive -3,0 -3,0 backwards 

 

WEAPON 

Detect 

Other 

Friend 

Flag MNOT 

MAND 

 

   MOR 

MOTOR 

Friend 

Bio-

signal 

MNOT 



  

                PULSED MELODIC AFFECTIVE PROCESSING                          235 

 

 

 

 

 

Figure 6: A Muron with two inputs 

 

One such system will now be proposed for the   estimation of affective content of 

real-time typing. The system is inspired by research by the authors on analysing 

QWERTY keyboard typing, in a similar way that piano keyboard playing is analyzed 

to estimate the emotional communication of the piano player [15]. In this a real-time 

system was developed to analyse tempo of typing and estimate affective state. The 

MNN/PMAP version demonstrated in this paper is not real-time, and does not take 

into account base typing speed. This is to simplify simulation and experiments here. 

The proposed architecture for offline text emotion estimation is shown in Figure 7. It 

has 2 layers known as the Input and Output layers. The input layer has four murons – 

which generate notes. Every time a Space character is detected, then a note is output 

by the Space Flag. If a comma is detected then a note is output by the comma flag, if a 

full stop/period then the Period Flag generates a note, and if an end of paragraph is 

detected then a note is output by the Paragraph flag. The idea of these 4 inputs is they 

represent 4 levels of the timing hierarchy in language, and we are proposing that the 

timing hierarchy in language has a comparable affective function to the timing 

hierarchy in music.  

 

The lowest level in the linguistic hierarchy is letters, whose rate is not measured in the 

demo, because offline pre-typed data is used. These letters make up words (which are 

usually separated by a space). The words make phrases (which are often separated by 

commas). Phrases make up sentences (separated by full stops), and sentences make up 

paragraphs (separated by a paragraph end). So the tempo of the tunes output from 

these 4 murons represent the relative word-rate, phrase-rate, sentence-rate and 

paragraph rate of the typist. (Note that for data from a messenger application, the 

paragraph rate will represent the rate at which messages are sent). It has been found 

by researchers that the emotion a musical performer is trying to communicate effects 

not only their basic playing rate, but also the structure of the musical timing hierarchy 

of their performance [16]. Similarly we propose that a person’s mood will affect not 

only their typing rate [15], but also their relative word rate and paragraph rate, and so 

forth. This network is based on this idea, taking as input the relative rates (the timing 

hierarchy) and outputing an estimate of affective communication in the text. 
 

The input identives are built from a series of simple rising melodies. The precise 

shapes of the melodies are not so important here, as they are being used a carriers of 

affective information. The desired output of the MNN will be a tune which represents 

the affective estimate of the text content. A happy tune means the text structure is 

happy, sad means the text is sad. Normally Neural Networks are trained using a 

number of methods, most commonly some variation of gradient descent. A gradient 

descent algorithm will be used here. w1, w2, w3, w4 are all initialised to [0,1] = [Key 

sub-weight, Tempo sub-weight]. So initially the weights have no effect on the key,  

w1 = [R1, D1] 

w2 = [R2, D2] 

 

Output 
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and multiply tempo by 1 – i.e. no effect. The final learned weights are also shown in 

Figure 6. Note, in this simulation actual tunes are used (rather than PMAP-value 

parameterization used in the robot simulation). In fact the Matlab MIDI toolbox is 

used. The documents in the training set were selected from the internet and were 

posted personal or news stories which were clearly summarised as sad or happy 

stories. 15 sad and 15 happy stories were sampled. The happy and sad tunes are 

defined respectively as the targets: a tempo of 90 BPM and a major key, and a tempo 

of 30 BPM and a minor key. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: MNN for Offline Text Affective Analysis 

 

 

At each step the learning algorithm selects a training document. Then it selects one of 

w1, w2, w3, or w4. Then the algorithm selects either the key or the tempo sub-weight. It 

then performs a single one-step gradient descent based on whether the document is 

defined as Happy or Sad (and thus whether the required output tune is meant to be 

Happy or Sad). The size of the one step is defined by a learning rate, separately for 

tempo and for key. Before training, the initial average error rate across the 30 

documents was calculated. The key was measured using a modified key finding 

algorithm [17] which gave a value of 3 for maximally major and -3 for maximally 

minor. The tempo was measured in Beats per minute. The initial average error was 

3.4 for key, and 30 for tempo.  

 

After the 1920 iterations of learning the average errors reduced to 1.2 for key, and 

14.1 for tempo. These results are described more specifically in Table 5 split by 

valence - happy or sad. Note that these are in-sample errors for a small population of 

30 documents. However what is interesting is that there is clearly a significant error 

reduction due to gradient descent. This shows that it is possible to fit the parameters 

of a musical combination unit (a muron) so as to combine musical inputs and give an 

affectively representative musical output, and address a non-musical problem. 

(Though this system could be embedded as music into messenger software to give the 

user affective indications through sound). It can be seen in Table 5 that the mean 

tempo error for Happy documents (target 90 BPM) is 28.2 BPM. This is due to an 

issue similar to linear non-separability in normal artificial neural networks [18]. The 

Muron is approximately adding tempos linearly. So when it tries to approximate two  

w3 = [1, 1.4] 

w1 = [0, 1.4] 

w2 = [2, 1.8] 

w4 = [1, 0.5] PARAGRAPH 

Flag 

FULL STOP 

(PERIOD)  

Flag 

COMMA Flag 

SPACE Flag 
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tempos then it focuses on one more than the other – in this case the Sad tempo. Hence 

adding a hidden layer of murons may well help to increase reduce the Happy error 

significantly (though requiring some form of melodic Back Propagation).  

 

Table 5: Mean Error of MNN after 1920 iterations of gradient descent  

 Key Target Mean Key Error  Tempo Target (BPM) Mean Tempo Error 

(BPM) 

Happy Docs 3 0.8  90 28.2 

Sad Docs -3 1.6 30 0 

 

 

There is a relationship between Musical Neural Networks (MNNs) and spiking neural 

networks (SNNs) [19]. SNNs have been studied both as artificial entities and as part 

of biological neural networks in the brain. In SNN’s the spike height is usually not 

relevant (only the spike rate or “tempo”). In MNNs the pulse (“spike”) height encodes 

a pitch (and through that a key).We mentioned above the desirability of a back 

propagation algorithm for MNNs; [20] develops a back-propagation algorithm for 

SNNs. There has in fact been some biological work suggesting spike height, in 

addition to spike rate, may encode information in SNNs in the brain [21][22].  

5. CONCLUSIONS 

This paper has introduced the concept of pulsed melodic affective processing, a 

complementary approach in which computational efficiency and power are more 

balanced with understandability to humans (HCI); and which can naturally address 

rhythmic and affective processing. As examples music gates and murons have been 

introduced; as well as potential applications for this technology in robotics, and real-

time text analysis. This paper is a summary of the research done, leaving out much of 

the detail and other application ideas; these include sonification experiments, ideas for 

implementing PMAP in a high level language, and programming by music, etc. 

However it demonstrates that music can be used to process affective functions either 

in a fixed way or via learning algorithms. The tasks are not the most efficient or 

accurate solutions, but have been a proof of concept of a sound-based unified 

approach addressing HCI and processing. 

 

There are a significant number of issues to be further addressed with PMAP, a key 

one being is the rebalance between efficiency and understanding useful and practical, 

and also just how practical is sonification - can sonification more advanced than 

Geiger counters, heart rate monitors, etc really be useful and adopted? The 

valence/arousal coding provides simplicity, but is it sufficiently expressive while 

remaining simple? Similarly it needs to be considered if a different representation 

than tempo/key mode be better for processing or transparency. PMAP also has a close 

relationship to Fuzzy Logic and Spiking Neural Networks – so perhaps it can adapted 

based on lessons learned in these disciplines. And finally, most low level processing 

is done in integrated hardware. So the issues involved in designing PMAP hardware 

can be compared to the advantages of implementing PMAP in virtual processing 

systems (such virtual systems becoming more common as computing power continues 

to increase). 
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