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ABSTRACT. Let Qn(x) =
∑n

k=0 Akxk be a random algebraic polynomial in which the coefficients

A0, A1, A2, . . . An form a sequence of independent normally distributed random variables with mean

zero. In this paper we study the case where the variances of the coefficients Ak are increasing in k,

say V ar(Ak) = ek(2n−k)/(n
√

n), k = 0, . . . n. We show that the asymptotic behavior of the expected

number of real zeros of Qn(x), in compare to the case of identically distributed coefficients, will

increase to order n1/4.
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1. Introduction

Let A0, A1, A2, . . . be a sequence of independent normally distributed random

variables. Also let Nn(a, b) denote the number of real zeros of the polynomial

Pn(x) =
n

∑

k=0

Akx
k

in the interval (a, b).

In the literature of random polynomials the coefficients are usually considered

as i.i.d random variables and in all cases the expected densities have two poles on

−1 and 1, when the coefficients have mean zero. In the cases where the coefficients

have non-zero mean, then the expected density have only one pole at −1. One of the

challenging problems in the study of random algebraic polynomials is to find which

character of the coefficients could causes number of real zeros to increase.

Edelman and Kostlan [2], considered the case where the coefficients Ak, k =

1, 2, . . . n, are mean zero independent normally distributed with V ar(Ak) =
(

n
k

)

, where

the middle coefficients Ak with k close to n/2, have substantially larger variances.
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Figure 1. Expected density of Pn(x)

They showed that the expected number of real zeros of Pn(x) is of order
√

n. They

didn’t report on the distribution of zeros. We find that in such a case zeros are

concentrated around zero, and the expected density has only one pole at zero. The

expected density is plotted in Figure 1.

In this paper we consider the case that the variance of the coefficients Ak are

increasing in k, say V ar(Ak) = ek(2n−k)/n
√

n, k = 0, . . . n. By considering such a

changes in the variances of the coefficients, we find that the expected number of

real zeros increases from log(n), which is for polynomials with identically distributed

coefficients, to the order of n1/4.

There is a rich literature on the theory of the expected number of real zeros of

random algebraic polynomials. This area of research was elaborated by the funda-

mental work of M. Kac [5]. The works of Logan and Shepp [6] Ibragimov and Maslova

[4], K. Farahmand [3] and M. Sambandham [10, 11] are other fundamental contribu-

tions to the subject. There has been recent interest in cases where the coefficients

form certain random processes, Rezakhah and Soltani [9]; Rezakhah and Shemehsavar

[7, 8].

For the convenience from now on we consider the polynomial as

(1.1) Qn(x) =
n

∑

k=0

e
k(2n−k)
2n

√

n Akx
k

where the coefficients Ak are i.i.d with standard normal distribution. Since the dis-

tribution of the Ak and −Ak (k = 0, . . . , n ) are the same, thus the transformation

Q(x) → Qn(−x) preserve the coefficients distributions. So the expected density in

general is symmetric about the origin, and

ENn(0, 1) = ENn(−1, 0), ENn(−∞,−1) = ENn(1,∞).

Hence ENn(−∞,∞) = 2ENn(0,∞).



RANDOM ALGEBRAIC POLYNOMIALS 265

2. Expected density of real zeros

In this section we present an explicit formula for the expected density of the

number of real zeros of Qn(x) given by (1.1), expected density in short. The expected

density is a nonnegative function fn on the set of real numbers for which

ENn(a, b) =

∫ b

a

fn(x)dx. (2.1)

The Kac-Rice formula (see Logan and Shepp [6]) reveals that

fn(x) =

∫ ∞

−∞
|t| p(x, 0, t)dt, (2.2)

where p(x, s, t) is the joint density of (Qn(x), Q′
n(x)) at (s, t).

By Cramer and Lead better [1, p. 285] we have that the expected density is given

by

fn(x) =
1

π

(A2(x)G2(x) − F 2(x))
1/2

A2(x)
, (2.3)

in which

A2(x) = Var(Qn(x)) =

n
∑

k=0

a2
k(x)ek(2n−k)/(n

√
n),

G2(x) = Var(Q′
n(x)) =

n
∑

k=0

b2
k(x)ek(2n−k)/(n

√
n) (2.4)

F (x) = Cov(Qn(x), Q′
n(x)) =

n
∑

k=0

ak(x)bk(x)ek(2n−k)/(n
√

n),

where ak(x) = xk, and bk(x) = kxk−1, k = 0, 1, . . . , n.

3. Asymptotic behaviour of EN

In this section we obtain the asymptotic behaviour of the expected number of

real zeros of Qn(x) given by (1.1). We prove the following theorem

Theorem 3.1. Let Qn(x) be the random algebraic polynomial given by (1.1) for which

Ak, k = 0, . . . , n are i.i.d random variables with standard normal distribution, then

the expected number of real zeros of Qn(x) satisfies:

(3.1) EN(1,∞) =

√
π − 2

2
√

2π
n1/4 − 0.142024 + 0.015162 n−1/4 + O(n−1/2).

(3.2) EN(0, 1) =

√
π − 2

2
√

2π
n1/4 + 0.142024 + 0.015162 n−1/4 + O(n−1/2).

and

(3.3) EN(−∞,∞) =
2
√

π − 2√
2π

n1/4 + 0.060646 n−1/4 + O(n−1/2)
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Proof. We begin by computing the asymptotic behaviour of the expected number of

real zeros of Qn(x), given by (1.1), for the interval (1,∞).

For 1 < x < ∞, using the change of variable x = 1 + t
n
, by (2.1) we have

that EN(1,∞) = 1
n

∫ ∞
0

fn

(

1 + t
n

)

dt. As the calculation of the asymptotic behaviour

of fn

(

1 + t
n

)

is somehow complicated, using (2.3) and (2.4) we arrange this job by

calculating the asymptotic behaviour of A2
(

1 + t
n

)

, G2
(

1 + t
n

)

, and F
(

1 + t
n

)

, first.

Now by the equality
(

1 + t
n

)n
= et

(

1 − t2

2n

)

+ O (n−2), we have that

n−1A2

(

1 +
t

n

)

=
n

∑

k=0

e
k(2n−k)

n
√

n

(

n + t

n

)2k

n−1 ≃
∫ 1

0

e
x(2n−nx)

√

n

(

n + t

n

)2 nx

dx

= en1/2

[√
π

2
e2tn−1/4 − e2ttn−1/2 +

√
π

2
e2tt2n−3/4(3.4)

− 2 e2t t3

3 n
+ e2tt2

√
π

4
(t2 − 2)n−5/4 + O(n−3/2)

]

Similarly we have that

n−1G2

(

1 +
t

n

)

=
n

∑

k=0

e
k(2n−k)

n
√

n

(

n + t

n

)2 k−2

k2n−1

≃
∫ 1

0

e
x(2n−nx)

√

n

(

n + t

n

)2 nx−2

n2x2dx(3.5)

= en1/2

[√
π

2
e2tn7/4 − e2tn3/2 − e2tn3/2t +

√
π

2
e2tn5/4t2

+
√

πe2tn5/4t +

√
π

4
e2tn5/4 − e2ttn − 2

3
e2tt3n − 2e2tt2n

+e2tt

√
π

4
(4t2 + t3 + t − 4)n3/4 + O

(

n1/2
)

]

Finally we calculate the asymptotic behaviour of F (·) as

n−1F

(

1 +
t

n

)

=

n
∑

k=0

e
k(2n−k)

n
√

n

(

n + t

n

)2 k−1

kn−1

≃
∫ 1

0

e
x(2n−nx)

√

n

(

n + t

n

)2nx−1

nxdx

= en1/2

[√
π

2
e2tn3/4 − (t + 0.5)e2t

√
n +

√
π

2
e2tt(1 + t)n1/4(3.6)

−2

3
e2tt3 − e2tt2 +e2tt

√
π

4
(t3 − 2t + 2t2 − 2)n−1/4 + O

(

n−1/2
)

]

Using (2.3), (3.5),(3.6) and (3.7) we have that

(3.7) n−1fn

(

1 +
t

n

)

=

√
π − 2√
2πn1/4

− 0.180831t√
n

+
0.028956t2

n3/4
+ O(n−1)
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We know that the expected number of real zeros of the polynomial (1.1) is atmost n,

therefore the integral of n−1fn(1 + t/n), which is the expected number of real zeros

of the polynomial (1.1) in the interval (1,∞), is also finite. On the other hand we see

that (3.8) is not term by term integrable, so we use the following equalities

(3.8)
a

n1/4
=

a

n1/4(1 + t2/n)
+ O

(

n−5/4
)

,

btk =
btk

1 + t2(k+1)/n
+ O

(

n−1
)

,

Using (3.8)–(3.9) and equalities

(3.9)
1

πn1/4

∫ ∞

0

√
π − 2√

2π(1 + t2/n)
dt =

√
π − 2

2
√

2π
n1/4,

∫ ∞

0

btk

1 + t2(k+1)/n
dt =

bπ

2(k + 1)

√
n

we evaluate the asymptotic behaviour of the expected number of real zeros of Qn(x)

as

EN(1,∞) =
1

nπ

∫ ∞

0

fn

(

1 +
t

n

)

dt(3.10)

=

√
π − 2

2
√

2π
n1/4 − 0.142024 + 0.015162n−1/4 + O(n−1/2).

This is by the fact that error terms in (3.9) are polynomials in t, so for integration in

(3.11), (3.10) implies that orders in n comes out to be
√

n times of the corresponding

order of the integrand. Thus we arrive at the first assertion of the theorem, i.e (3.2).

Now we are to evaluate the asymptotic behaviour of the expected number of real

zeros of Qn(x) for the interval (0, 1). Using the change of variable x = 1 − t
n+t

, by

(2.1) we have that EN(0, 1) =
∫ ∞
0

n
(n+t)2

fn

(

1 − t
n+t

)

dt. For the calculation of the

asymptotic behaviour of fn

(

1− t
n+t

)

, using (2.3) and (2.4) we calculate the asymptotic

behaviour of A2
(

1 − t
n+t

)

, G2
(

1 − t
n+t

)

, and F
(

1 − t
n+t

)

, first. Thus we have that

n−1A2

(

1 − t

n + t

)

=
n

∑

k=0

e
k(2n−k)

n
√

n

(

n

n + t

)2k

n−1 ≃
∫ 1

0

e
x(2n−nx)

√

n

(

n

n + t

)2nx

dx

= en1/2

[√
π

2
e−2tn−1/4 + e−2ttn−1/2 +

√
π

2
e−2tt2n−3/4 +

2e−2tt3

3n

+e−2tt2
√

π

4
(t2 + 2)n−5/4 + O(n−3/2)

]

(3.11)
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Similarly we have that

n−1G2

(

1 − t

n + t

)

=
n

∑

k=0

e
k(2n−k)

n
√

n

(

n

n + t

)2k−2

k2n−1

≃
∫ 1

0

e
x(2n−nx)

√

n

(

n

n + t

)2 nx−2

n2x2dx(3.12)

= en1/2

[√
π

2
e−2tn7/4 − e−2t(1 − t)n3/2 +

e−2t
√

π

4
(1 − 4t + 2t2)n5/4

+
e−2tt

3
(3 − 6t + 2t2)n

+
e−2tt

√
π

4
(t3 − 4t2 + 5t + 4)n3/4 + O(n1/2)

]

Finally we calculate the asymptotic behaviour of F (·) as

n−1F

(

1 − t

n + t

)

=
n

∑

k=0

e
k(2n−k)

n
√

n

(

n

n + t

)2 k−1

kn−1

≃
∫ 1

0

e
x(2n−nx)

√

n

(

n

n + t

)2 nx−1

nxdx

= en1/2

[√
π

2
e−2tn3/4 +

e−2t

2
(2t − 1)

√
n +

√
πe−2t

2
(t2 − t)n1/4

+
e−2t

3
(2t3 − 3t2) +

e−2tt
√

π

4
(t3 − 2t2 + 2t + 2)n−1/4 + O(n−1/2)

]

Using (2.3), (3.12), (3.13) and (3.14) we have that

(3.13)
n

(n + t)2
fn

(

1 − t

n + t

)

=

√
π − 2√
2πn1/4

+
0.180831t√

n
+

0.028956t2

n3/4
+ O(n−1)

We know that the expected number of real zeros is atmost n, so the expected

density n
(n+t)2

fn(1 − t
n+t

) is integrable. On the other hand we see that (3.15) is not

term by term integrable, so using (3.9), (3.10) and (3.15) we evaluate the asymptotic

behaviour of the expected number of real zeros of Qn(x) as

EN(0, 1) =
1

π

∫ ∞

0

n

(n + t)2
fn(1 − t

n + t
)dt(3.14)

=

√
π − 2

2
√

2π
n1/4 + 0.142024 + 0.015162 n−1/4 + O(n−1/2).

For the error term, the same reason as for error term of (3.11) can be applied. So we

arrive at the second assertion of the theorem, i.e (3.3), and the theorem is proved.
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