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ABSTRACT. A stage-structured predator-prey model with Beddington-DeAngelis functional re-

sponse is introduced. By analyzing the characteristic equation, criteria are established for the local

stability of equilibria. Further, it is proved that system undergoes Hopf bifurcation at the positive

equilibrium when τ = τ0. By using an iteration technique and comparison argument, sufficient

conditions are derived for the global stability of equilibria. Numerical simulations are also presented

to illustrate our main results.
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1. Introduction

The predator-prey system is a very important model that has been discussed by

many mathematicians. There are two components that play important role in it,

one is stage structure, another is the predator’s functional response. In the natural

world, there are many species (especially insects) whose individual members have

a life history that takes them through two stages, immature and mature. Let Ni(t)

denotes the immature density at time t and Nm(t) for the mature. Then the following

stage-structured single-species model is discussed in [1]:

(1.1)

{

Ṅi(t) = B(t) −Di(t) −W (t),

Ṅm(t) = αW (t) −Dm(t).

where B(t) is the birth rate of the immature population at time t; Di(t) and Dm(t)

are the death rates of the immature and the mature population at time t, respectively;

W (t) represents the transformation rate of the immature into the mature; α is the

probability of the successful transformation of the immature into the mature.
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In [2], a model of single-species population growth incorporating stage structure

as a reasonable generalization of the classical logistic model is formulated and dis-

cussed. This model assumes an average age to maturity which appears as a constant

time delay reflecting a delayed birth of immature and a reduced survival of immature

to their maturity. The model takes the form:

(1.2)

{

ẋ1(t) = αx2(t) − γx1(t) − αe−γτx2(t− τ),

ẋ2(t) = αe−γτx2(t− τ) − βx2
2(t), t > τ,

where x1(t), x2(t) denote the immature and mature population densities, respectively.

Here, α > 0 represents the per-capita birth rate; γ > 0 is the per-capita immature

death rate; β > 0 is death rate due to overcrowding and τ is the “fixed” time to

maturity; and the term αe−γτx2(t − τ) denotes the immature individuals who were

born at time t − τ (i.e., αx2(t − τ)) and survive at time t. On the basis of above

two models, many kinds of predator-prey models with stage structure have been

investigated (see [3, 4] and the references therein).

As for predator’s functional response, there have been several famous functional

response type: Holling types I-III; Beddington-DeAngelis type by Beddington [5] and

DeAngelis et al. [6]; the Crowley-Martin type [7]; ratio-dependent type, and so forth.

Of them, the Holling types I-III are labeled “prey-dependent” and the other types that

consider the interference among predators are labeled “predator-dependent” by Arditi

and Ginzburg [8]. Skalski and Gilliam [9] pointed out that the predator-dependent

functional response can provide better descriptions of predator feeding over a range of

predator-prey abundances, and in some cases, the Beddington-DeAngelis-type func-

tional response performed even better. Cantrell and Cosner [10] consider the fol-

lowing stage-structured predator-prey system with Beddington-DeAngelis functional

response

(1.3)

{

ẋ1(t) = x(t)(1 − x(t)) − cx(t)y(t)
1+nx(t)+my(t)

,

ẋ2(t) = fx(t)y(t)
1+nx(t)+my(t)

− dy(t),

where x(t) and y(t) represent prey and predator densities, respectively. The Beddington-

DeAngelis functional response is different from the traditional monotone or non-

monotone functional response. It is similar to the Holling type II functional response

but contains an extra term my(t) describing mutual interference by predator. It

can be derived mechanistically via considerations of time utilization [5, 11] or spatial

limits on predation [12].

The ratio-dependent form also incorporates mutual interference by predators, but

it has somewhat singular behavior at low densities and has been criticized on other

grounds. See [13] for a mathematical analysis and the references in [12] for some

aspects of the debate among biologists about ratio dependence. The Beddington-

DeAngelis form of functional response has some of the same qualitative features as
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the ratio-dependent models form but avoids some of the same behaviors of ratio-

dependent models at low densities which have been the source of controversy. In ad-

dition, Harrision [14] showed that the Beddington-DeAngelis functional response (for

intraspecific interference competition) was superior to functional response without

such competition in a microbial predator-prey interaction. Therefore, it is interest-

ing and important to study the following stage-structured predator-prey system with

Beddington-DeAngelis functional response

(1.4)















ẋ(t) = x(t)
(

r − ax(t) − αy2(t)
k+bx(t)+cy2(t)

)

,

ẏ1(t) = βx(t−τ)y2(t−τ)
k+bx(t−τ)+cy2(t−τ)

− d1y1(t) − γy1(t),

ẏ2(t) = γy1(t) − d2y2(t).

The initial conditions for system (1.4) take the form

x (θ) = Φ (θ) , y1 (θ) = Ψ1 (θ) , y2 (θ) = Ψ2 (θ) ,

Φ (θ) ≥ 0, Ψ1 (θ) ≥ 0, Ψ2 (θ) ≥ 0, θ ∈ [−τ, 0] ,(1.5)

Φ (0) > 0, Ψ1 (0) > 0, Ψ2 (0) > 0.

where (Φ (θ) ,Ψ1 (θ) ,Ψ2 (θ)) ∈ C([−τ, 0], R3
+0), the Banach space of continuous func-

tions mapping the interval [−τ, 0] into R3
+0, where R3

+0 = {(x1, x2, x3, ) : xi ≥ 0,

i = 1, 2, 3}.

It is well known by the fundamental theory of functional differential equations [15]

that system (1.4) has a unique solution (x(t), y1(t), y2(t)) satisfying initial conditions

(1.5).

This paper is organized as follows. In the next section, we will introduce some

notation and state several lemmas. In Section 3, we discuss the local stability of

equilibria of system (1.4). Further, we study the existence of a Hopf bifurcation for

system (1.4) at the positive equilibrium. In Section 4, by using an iteration technique

and comparison theorem, sufficient conditions are derived for the global stability of

equilibria of system (1.4). Numerical simulations are also carried out to illustrate the

main results.

2. Preliminaries

In this section, we introduce some notations and state several results which were

introduced in [3]. Let Rn
+ be the cone of nonnegative vectors in Rn. If x, y ∈ Rn, we

write x ≤ y (x < y) if xi ≤ yi (xi < yi) for 1 ≤ i ≤ n. Let {e1, e2, . . . , en} denote the

standard basis in Rn. Suppose r ≥ 0 and let C = C ([−r, 0] , Rn) be the Banach space

of continuous functions mapping the interval [−r, 0] into Rn with supremum norm. If

φ, ψ ∈ C, we write φ ≤ ψ (φ < ψ) when the indicated inequality holds at each point of

[−r, 0]. Let C+ = {φ ∈ C : φ ≥ 0} and let ˆ denote the inclusion Rn → C ([−r, 0] , Rn)
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by x → x̂, x̂(θ) = x, θ ∈ [−r, 0]. Denote the space of functions of bounded variation

on [−r, 0] by BV [−r, 0]. If t0 ∈ R, A ≥ 0 and x ∈ C ([t0 − r, t0 + A] , Rn), then for

any t ∈ [t0, t0 + A], we let xt ∈ C be defined by xt(θ) = x(t+ θ), −r ≤ θ ≤ 0.

We now consider

(2.1) ẋ(t) = f(t, xt)

We assume throughout this section that f : R × C → Rn is continuous; f(t, φ)

is continuously differentiable in φ; f(t + T, φ) = f(t, φ) for all (t, φ) ∈ R × C+, and

some T > 0. Then by [15], there exists a unique solution of (2.1) through (t0, φ) for

t0 ∈ R, φ ∈ C+. This solution will be denoted by x(t, t0, φ) if we consider the solution

in Rn, or by xt(t0, φ) if we work in the space C. Again by [15], x(t, t0, φ) (xt(t0, φ)) is

continuously differentiable in φ. In the following, the notation xt0 = φ will be used

as the condition of the initial data of (2.1), by which we mean that we consider the

solution x(t) of (2.1) which satisfies x(t0 + θ) = φ (θ), θ ∈ [−r, 0].

To proceed further, we need the following results from [16, 17]. Let r = (r1, r2, . . . ,

rn) ∈ Rn
+, |r| = max {ri}, and define Cr =

n
∏

i=1

C ([−ri, 0] , R), we write φ = (φ1, φ2, . . . ,

φn) for a generic point of Cr. Let C+
r = {φ ∈ Cr : φ ≥ 0}. Due to the ecological

applications, we choose C+
r as the state space of (2.1) in the following discussions.

Fix φ0 ∈ C+
r arbitrarily. Then we set L(t, ·) = Dφ0

f(t, φ0), Dφ0
f(t, φ0) denotes

the Frechet derivation of f with respect to φ0. It is convenient to have the standard

representation of L = (L1, L2, . . . , Ln) as Li (t, φ) =
n
∑

j=1

∫ 0

−rj
φj (θ) dθηij (θ, t), (1 ≤ i ≤

n), in which ηij : R× R→ R satisfies

ηij (θ, t) = ηij (0, t) , θ ≥ 0,

ηij (θ, t) = 0, θ ≤ −rj ,

ηij (·, t) ∈ BV [−rj , 0] ,

where ηij (·, t) is continuous from the left in (−rj , 0).

We make the following assumptions for (2.1):

(h0) If φ, ψ ∈ C+, φ ≤ ψ, and φi (0) = ψi (0) for some i, then fi(t, φ) ≤ fi(t, ψ).

(h1) For all φ ∈ C+ with φi (0) = 0, Li (t, φ) ≥ 0 for t ∈ R.

(h2) The matrixA(t) defined by A(t) = col(L(t, ê1), L(t, ê2), . . . , L(t, ên)) = (ηij (0, t))

is irreducible for each t ∈ R.

(h3) For each j, for which rj > 0, there exists i such that for all t ∈ R and for positive

constant ε sufficiently small, ηij (−rj + ε, t) > 0.

(h4) If φ = 0, then x(t, t0, φ) ≡ 0 for all t ≥ t0.

The following results was established by Wang et al. [17].

Lemma 2.1. Let (h1)–(h4) hold. Then the hypothesis (h0) is valid and
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(i) If φ and ψ are distinct elements of C+
r with φ ≤ ψ and [t0, t0 + σ) with n|r| <

σ ≤ ∞ is the intersection of the maximal intervals of existence of x(t, t0, φ) and

x(t, t0, ψ), then

0 ≤ x(t, t0, φ) ≤ x(t, t0, ψ) for t0 ≤ t < t0 + σ,

0 ≤ x(t, t0, φ) < x(t, t0, ψ) for t0 + n|r| ≤ t < t0 + σ.

(ii) If φ ∈ C+
r , φ 6= 0, t0 ∈ R and x(t, t0, φ) is defined on [t0, t0 + σ) with σ > n|r|,

then

0 < x(t, t0, φ) for t0 + n|r| ≤ t < t0 + σ.

This lemma shows that if (h1)–(h4) hold, then the positivity of solutions of (2.1)

follows.

Definition 2.2 ([18]). Let A = (aij)n×n be an n× n matrix and let p1, p2, . . . , pn be

distinct points of the complex plane. For each nonzero element aij of A, connect pi

to pj with a directed line pipj. The resulting figure in the complex plane is a directed

graph for A. We say that a directed graph is strongly connected if, for each pair of

nodes pi, pj with i 6= j, there is a directed path

−−→pipk1
,−−−→pk1

pk2
, . . . ,−−−−→pkr−1

pj

connecting pi and pj . Here, the path consists of r directed lines.

Lemma 2.3 ([18]). A square matrix is irreducible if and only if its directed graph is

strongly connected.

Lemma 2.4 ([16]). If (2.1) is cooperative and irreducible in D, where D is an open

subset of C, and the solutions with positive initial data is bounded, then the trajectory

of (2.1) tends to some single equilibrium.

Setting M > 0 be a constant. We now consider the following delay differential

system

ẏ1(t) =
βMy2(t− τ)

k + bM + cy2(t− τ)
− d1y1(t) − γy1(t),

ẏ2(t) = γy1(t) − d2y2(t).(2.2)

with initial conditions

yi(s) = φi(s) ≥ 0, s ∈ [−τ, 0), φi(0) > 0, φi ∈ C ([−τ, 0] , R+) (i = 1, 2) .

System (2.2) always has a trivial equilibrium E0(0, 0). IfM [γβ−bd2(d1+γ)]−kd2(d1+

γ) > 0, then system (2.2) has a unique positive equilibrium E+(y0
1, y

0
2), where

y0
1 =

M [γβ − bd2(d1 + γ)] − kd2(d1 + γ)

cγ(d1 + γ)
, y0

2 =
M [γβ − bd2(d1 + γ)] − kd2(d1 + γ)

cd2(d1 + γ)
.
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The characteristic equation of E+ takes the form

λ2 + a1λ+ a0 + b0e
−λτ = 0,

where

a0 = d2(d1 + γ), a1 = d2 + d1 + γ, b0 = −
d2

2(d1 + γ)(k + bM)

Mγβ
.

Noting that

a0 + b0 =
d2(d1 + γ)

Mγβ
[M [γβ − bd2(d1 + γ)] − kd2(d1 + γ)] ,

We can see a1 > 0, if M [γβ − bd2(d1 + γ)]− kd2(d1 + γ) > 0, then a1(a0 + b0) > 0, by

Routh-Hurwitz Theorem the positive equilibrium E+ is locally stable when τ = 0. If

M [γβ − bd2(d1 + γ)] − kd2(d1 + γ) < 0, then E+ is unstable when τ = 0.

It is easy to show that

a2
1 − 2a0 = (d1 + γ)2 + d2

2 > 0,

a0 − b0 =
d2(d1 + γ)

Mγβ
[M [γβ + bd2(d1 + γ)] + kd2(d1 + γ)] > 0.

So, if M [γβ− bd2(d1 +γ)]−kd2(d1 +γ) > 0, then by Lemma B in Kuang and so [19],

the equilibrium E+ is locally asymptotically stable for all τ > 0. If M [γβ − bd2(d1 +

γ)] − kd2(d1 + γ) < 0, then E+ is unstable for all τ > 0.

Using a similar arguments as above we can obtain that if M [γβ − bd2(d1 + γ)]−

kd2(d1 +γ) < 0, the equilibrium E0(0, 0) is locally asymptotically stable for all τ ≥ 0.

If M [γβ − bd2(d1 + γ)] − kd2(d1 + γ) > 0, then E0(0, 0) is unstable for all τ ≥ 0.

Lemma 2.5. For system (2.2), we have

(i) If M [γβ− bd2(d1 + γ)] > kd2(d1 + γ), then the positive equilibrium E+(y0
1, y

0
2) is

globally stable.

(ii) If M [γβ − bd2(d1 + γ)] < kd2(d1 + γ), then the equilibrium E0(0, 0) is globally

stable.

Proof. We represent the right-hand side of (2.2) by f(t, xt) = (f1(t, xt), f2(t, xt)), and

set

L(t, ·) = Dφf(t, φ).

We have

L1(t, h) =
bM

(k + bM + cφ2(−τ))2
h2(−τ) − (d1 + γ)h1(0),

L2(t, h) = γh1(0) − d2h2(0).
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We now claim that the hypotheses (h1)–(h4) hold for system (2.2). It is easy to

show that (h1) and (h4) hold for system (2.2), the matrix A(t) takes the form
(

−(d1 + γ) bM
(k+bM+cφ2(−τ))2

γ −d2

)

.

Clearly, the matrix A(t) is irreducible for each t ∈ R, hence, (h2) holds. From the def-

inition of A(t) and ηij , we can readily seen that η12(θ, t) = η12(0, t) = bM
(k+bM+cφ2(−τ))2

,

η21(θ, t) = η21(0, t) = γ for θ ≥ 0; and ηij(θ, t) = 0, i 6= j for θ ≤ −τ ; and

ηij(·, t) ∈ BV [−τ, 0], where ηij is a positive Borel measure on [−τ, 0]. Therefore,

ηij(·, t) > 0. Thus, for each j, there is i 6= j such that ηij(−rj+ε, t) = ηij(−τ+ε, t) > 0

for all t ∈ R and for ε > 0 sufficiently small, i = 1, 2. Hence, (h3) holds.

Thus, by Lemma 2.1, the positivity of solution of system (2.1) follows. It is

easy to see that system (2.2) is cooperative. By Lemma 2.3 we see that any solution

starting from D ∈ C+
τ converges to some single equilibrium. However, system (2.2)

has only two equilibria: E0 and E+. Note that if M [γβ − bd2(d1 + γ)] > kd2(d1 + γ),

then the positive equilibrium E+ is locally stable, and the equilibrium E0 is unstable.

Hence, any solution starting from D converges to E+(y0
1, y

0
2) if M [γβ− bd2(d1 +γ)] >

kd2(d1 + γ). similarly, we can show the global stability of the equilibrium E0 when

M [γβ − bd2(d1 + γ)] < kd2(d1 + γ). This completes the proof.

By a similar argument we can show that all solutions of system (1.4) with initial

conditions (1.5) are defined on [0,+∞) and remain positive for all t ≥ 0.

3. Local stability and Hopf bifurcation

In this section, we discuss the local stability of equilibria and the existence of

Hopf bifurcation.

Let D = d1 + γ, it is obvious that system (1.4) has a boundary equilibrium

E1(
r
a
, 0, 0). Further, if the following condition holds:

(H1)
(

A1 +
√

A2
1 + A2

)

(γβ − bd2D) − 2acγβkd2D > 0, where

A1 = α (bd2D − γβ) + rcγβ, A2 = 4acγβαkd2D.

then system (1.4) has a unique positive equilibrium E∗(x∗, y∗1, y
∗

2), where

x∗ =
A1 +

√

A2
1 + A2

2acγβ
,

y∗1 =
(γβ − bd2D)x∗ − kd2D

cγD
,(3.1)

y∗2 =
(γβ − bd2D)x∗ − kd2D

cd2D
.
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We study E∗ under the condition (H1). The characteristic equation of E∗ is

(3.2) λ3 + a2λ
2 + a1λ+ a0 + (b1λ+ b0)e

−λτ = 0.

where

a0 = d2D

(

ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2

)

,

a1 = d2D + (d2 +D)

(

ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2

)

,

a2 = d2 +D + ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2
,(3.3)

b0 = −
γβx∗(k + bx∗)

(k + bx∗ + cy∗2)
2

(

ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2

)

+
αγβx∗y∗2(k + bx∗)(k + cy∗2)

(k + bx∗ + cy∗2)
4

,

b1 = −
γβx∗(k + bx∗)

(k + bx∗ + cy∗2)
2
.

It is easy to show that

a0 + b0 =
d2D[acγβ(x∗)2 + αkd2D]

cγ2β2(x∗)2
A3,

a0 − b0 =
d2D

γβx∗
[x∗ (γβ − bd2D) + kd2D] ×

{

r −
αA3 [x∗ (γβ + 3bd2D) + 2kd2D]

cγβx∗ [x∗ (γβ + bd2D) + kd2D]

}

,

a1 + b1 =
d2D

γβx∗
A3 + (d2 +D) ×

{

r −
α [A4 − kd2Dx

∗ (γβ + bd2D)]

cγ2β2(x∗)2

}

.

where A3 = x∗ (γβ − bd2D) − kd2D, A4 = (x∗γβ)2 − (bd2Dx
∗)2.

If iω (ω > 0) is a solution of (3.2), separating real and imaginary parts yield

a2ω
2 − a0 = b0 cosωτ + b1ω sinωτ,

−ω3 + a1ω = b0 sinωτ − b1ω cosωτ.(3.4)

From (3.4), we have

(3.5) ω6 + (a2
2 − 2a1)ω

4 + (a2
1 − 2a0a2 − b21)ω

2 + a2
0 − b20 = 0



PREDATOR-PREY MODEL WITH BEDDINGTON-DEANGELIS TYPE 299

It is easy to show that

a2
2 − 2a1 = d2

2 +D2 +

(

ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2

)2

> 0,

a2
1 − 2a0a2 − b21 =

d2
2D

2

(γβx∗)2

[

(γβx∗)2 − ((k + bx∗)d2D)2
]

+
[

d2
2 +D2

]

(

ax∗ −
bαx∗y∗2

(k + bx∗ + cy∗2)
2

)2

.

Then, we have the following lemma.

Lemma 3.1 ([20]). Eq. (3.2) has a unique pair of purely imaginary roots if a0 < b0.

From (H1) we can deduce x∗ (γβ − bd2D)− kd2D > 0, consequently, a0 + b0 > 0.

Hence if a2 > 0, a2(a1 + b1) > a0 + b0, then by Routh-Hurwitz Theorem the positive

equilibrium E∗ of system (1.4) is locally stable when τ = 0.

From (H1), we have a2
1 − 2a0a2 − b21 > 0. If a0 > b0 then equation (3.5) has no

positive roots, then stability of E∗ unchange. Hence, if a2 > 0, a2(a1 + b1) > a0 + b0,

a0 > b0, then the positive equilibrium E∗ of system (1.4) is locally asymptotically

stable for all τ > 0. If a0 < b0, then from Lemma 3.1 we know Eq. (3.5) has a unique

positive root ω0, that is, (3.2) has a unique pair of purely imaginary roots of the form

±ω0. From (3.4) we see that τn corresponding to ω0 is

τn =
1

ω0
arccos

b1ω
4
0 − (a2b0 − a1b1)ω

2
0 − a0b0

b20 + b21ω
2
0

+
2nπ

ω0
, n = 0, 1, 2, . . .

Note that if a2 > 0, a2(a1 + b1) > a0 + b0, E
∗ is locally stable when τ = 0. Hence,

by the general theory on characteristic equations of delay differential equations from

[21], if a2 > 0, a2(a1 + b1) > a0 + b0, a0 < b0, E
∗ remains locally stable for τ < τ0.

Next, we turn to show

(3.6)
dReλ)

dτ

|τ=τ0 > 0.

This will signify that there exists at least one eigenvalue with positive real part for

τ > τ0. Moreover, the conditions for the existence of a Hopf bifurcation [15] are then

satisfied yielding a periodic solution. We differentiating equation (3.2) with respect

τ , it follows that

[3λ2 + 2a2λ+ a1 + b1e
−λτ − τ(b1λ+ b0)e

−λτ ]
dλ

dτ

= λ(b1λ+ b0)e
−λτ .

That is
(

dλ

dτ

)

−1

=
(3λ2 + 2a2λ+ a1) + b1e

−λτ

λ(b1λ+ b0)e−λτ
−
τ

λ

=
3λ2 + 2a2λ+ a1

λ(λ3 + a2λ2 + a1λ+ a0)
+

b1
λ(b1λ+ b0)

−
τ

λ
.
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Thus

ℜ

(

dλ

dτ

)

−1
∣

∣

∣

∣

∣

λ=iω0

= ℜ

[

−
a1 − 3ω2

0 + 2a2iω0

iω0 [(a0 − a2ω2
0) + iω0(a1 − ω2

0)]
+

b1
iω0(b1iω0 + b0)

]

=
2b21ω

6
0 + [3b20 + b21(a

2
2 − 2a1)]ω

4
0 + 2b20(a

2
2 − 2a1)ω

2
0 + b20(a

2
1 − 2a0a2) − a2

0b
2
1

(b20 + b21ω
2
0) [ω2

0(a1 − ω2
0)

2 + (a0 − a2ω2
0)

2]
.

It is easy to show that a2
2 − 2a1 > 0, a2

1 − 2a0a2 − b21 > 0. Hence, if a0 < b0, then

b20(a
2
1 − 2a0a2) − a2

0b
2
1 > b20(a

2
1 − 2a0a2 − b21) > 0. Then we obtain

d(ℜλ)

dτ

|τ=τ0 > 0.

We know the transversal condition holds and a Hopf bifurcation occurs at ω = ω0,

τ = τ0.

The characteristic equation of system (1.4) at the boundary equilibrium E1(r/a, 0, 0)

takes the form

λ3 + p2λ
2 + p1λ+ p0 + (q1λ+ q0)e

−λτ

where

p0 = d2Dr, p1 = d2D + r(d2 +D), p2 = d2 +D + r > 0,

q0 = −
γβr2

ak + br
, q1 = −

γβr

ak + br
.

Noting that if r
a
[γβ − bd2D] < kd2D, then p2 > 0, p2(p1 + q1) > p0 + q0 > 0, the

equilibrium E1(r/a, 0, 0) is locally stable when τ = 0. Hence, using a similar argument

as above we see that if r
a
[γβ − bd2D] < kd2D, then the equilibrium E1(r/a, 0, 0) is

locally stable for all τ ≥ 0; if r
a
[γβ − bd2D] > kd2D, then E1 is unstable.

We therefore obtain the following results.

Theorem 3.2. Let (H1) hold. For system (1.4), we have

(i) If a2 > 0, a2(a1 + b1) > a0 + b0, a0 > b0, then the positive equilibrium E∗ of

system (1.4) is locally asymptotically stable.

(ii) If a2 > 0, a2(a1 + b1) > a0 + b0, a0 < b0, system (1.4) undergoes Hopf bifurcation

at E∗ when τ = τn, n = 0, 1, 2, . . . ; furthermore E∗ is locally asymptotically

stable if τ ∈ [0, τ0) and unstable if τ > τ0.

Theorem 3.3. If r
a
[γβ − bd2D] < kd2D, then the boundary equilibrium E1 is locally

stable; if r
a
[γβ − bd2D] > kd2D, then E1 is unstable.

4. Global stability

In this section, we discuss the global stability of E∗ and E1 of system (1.4),

respectively.



PREDATOR-PREY MODEL WITH BEDDINGTON-DEANGELIS TYPE 301

Theorem 4.1. The positive equilibrium E∗(x∗, y∗1, y
∗

2) of system (1.4) is globally stable

provided that (H2) holds and either (H3) or (H4) hold true:

(H2) rc− α > 0, rc−α
ac

[γβ − bd2D] − kd2D > 0

(H3) bd2D − γβ < 0, γβ − 2bd2D ≤ 0

(H4)
[

rc− (αγβ−bd2D)(γβ+2bd2D)
γ2β2

]

(x+x)+
4bαkd2

2
D2

γ2β2 > 0 where, x+x is defined by (4.14).

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial

conditions (1.5). By the first equation of system (1.4), for sufficiently small ε > 0,

there exists a T1 > 0 such that x(t) ≤ r
a
+ε := x1 for t ≥ T1. Replacing this inequality

into the second equation of (1.4), it follows that for t ≥ T1 + τ

ẏ1(t) ≤
βx1y2(t− τ)

k + bx1 + cy2(t− τ)
− (d1 + γ)y1(t).

Consider the following auxiliary system

u̇1(t) =
βx1u2(t− τ)

k + bx1 + cu2(t− τ)
− (d1 + γ)u1(t),

u̇2(t) = γu1(t) − d2u2(t),(4.1)

u1(t) ≡ y1(t), u2(t) ≡ y2(t), t ∈ [T1, T1 + τ ].

Obviously, for sufficiently small ε > 0, x1 >
rc−α

ac
, by (H2) we know, x1[γβ − bd2D]−

kd2D > 0, by Lemma 2.4 it follows from (4.1) that

lim
t→+∞

u1(t) =
x1[γβ − bd2D] − kd2D

cγD
,

lim
t→+∞

u2(t) =
x1[γβ − bd2D] − kd2D

cd2D
.

By comparison theorem, we have y1(t) ≤ u1(t), y2(t) ≤ u2(t) for t ≥ T1 + τ . Then for

sufficiently small ε > 0, there is a T2 > T1 + τ such that if t ≥ T2

y1(t) ≤
x1[γβ − bd2D] − kd2D

cγD
+ ε := y11,

y2(t) ≤
x1[γβ − bd2D] − kd2D

cd2D
+ ε := y21.(4.2)

Replacing the second inequality of (4.2) into the first equation of system (1.4) that

for t ≥ T2

ẋ(t) ≥ x(t)

(

r − ax(t) −
αy21

k + cy21

)

.

By (H2), we know rc− α > 0. Using the comparison theorem , for ε > 0 sufficiently

small, there is a T3 > T2 such that if t ≥ T3

x(t) ≥
rk + (rc− α)y21

a(k + cy21)
− ε := x1 > 0.
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Replacing this inequality into the second equation of (1.4), it follows that for t ≥ T3+τ

ẏ1(t) ≥
βx1y2(t− τ)

k + bx1 + cy2(t− τ)
− (d1 + γ)y1(t).

Consider the following auxiliary system

u̇1(t) =
βx1u2(t− τ)

k + bx1 + cu2(t− τ)
− (d1 + γ)u1(t),

u̇2(t) = γu1(t) − d2u2(t),(4.3)

u1(t) ≡ y1(t), u2(t) ≡ y2(t), t ∈ [T3, T3 + τ ]

It is easy to show that x1 = r
a
− α

ac− ak
y21

− ε. We can choose ε > 0 sufficiently small

such that r
a
− α

ac− ak
y21

− ε > r
a
− α

ac
= rc−α

ac
, hence, x1[γβ − bd2D] − kd2D > 0, by

Lemma 2.4 it follows from (4.3) that

lim
t→+∞

u1(t) =
x1[γβ − bd2D] − kd2D

cγD
,

lim
t→+∞

u2(t) =
x1[γβ − bd2D] − kd2D

cd2D
.

By comparison theorem, we have y1(t) ≥ u1(t), y2(t) ≥ u2(t) for t ≥ T3 + τ . Then for

sufficiently small ε > 0, there is a T4 > T3 + τ such that if t ≥ T4

y1(t) ≥
x1[γβ − bd2D] − kd2D

cγD
− ε := y11,

y2(t) ≥
x1[γβ − bd2D] − kd2D

cd2D
− ε := y21.(4.4)

Therefore we have that for t ≥ T4

x1 ≤ x(t) ≤ x1, yi1 ≤ yi(t) ≤ yi1, (i = 1, 2).

hold for system (1.4).

Replacing the second inequality of (4.4) into the first equation of system (1.4)

that for t ≥ T4,

(4.5) ẋ(t) ≤ x(t)

(

r − ax(t) −
αy21

k + bx1 + cy21

)

.

Since rc − α > 0, by comparison theorem, for ε > 0 sufficiently small, there is a

T5 > T4 such that if t ≥ T5

(4.6) x(t) ≤
rk + rbx1 + (rc− α)y21

a(k + bx1 + cy21)
+ ε := x2 > 0.

It is easy to show that

x2 ≤
r

a
≤ x1.

Replacing (4.6) into the second equation of (1.4), it follows that for t ≥ T5 + τ

ẏ1(t) ≤
βx2y2(t− τ)

k + bx2 + cy2(t− τ)
− (d1 + γ)y1(t).
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Similarly, we can find ε > 0 sufficiently small such that x2 >
rc−α

ac
, hence, x2[γβ −

bd2D] − kd2D > 0. By Lemma 2.4 and the similar arguments to yi1, (i = 1, 2), for

the above selected ε > 0, there is a T6 > T5 + τ such that if t ≥ T6

y1(t) ≤
x2[γβ − bd2D] − kd2D

cγD
+ ε := y12,

y2(t) ≤
x2[γβ − bd2D] − kd2D

cd2D
+ ε := y22.(4.7)

by (4.2) and (4.7) we obtain yi2 ≤ yi1, (i = 1, 2). Replacing the second inequality of

(4.7) into the first equation of system (1.4) that for t ≥ T6

ẋ(t) ≥ x(t)

(

r − ax(t) −
αy22

k + bx1 + cy22

)

.

Since rc− α > 0. Then by comparison theorem, for ε > 0 sufficiently small, there is

a T7 > T6 such that if t ≥ T7

x(t) ≥
r(k + bx1) + (rc− α)y22

a(k + bx1 + cy22)
− ε := x2 > 0

Replacing this inequality into the second equation of (1.4), then by arguments similar

to those for yi1, (i = 1, 2), we obtain that there exists a T8 > T7 + τ such that

y1(t) ≥
x2[γβ − bd2D] − kd2D

cγD
− ε := y12 > 0,

y2(t) ≥
x2[γβ − bd2D] − kd2D

cd2D
− ε := y22 > 0.

and we obtain yi2 ≥ yi1, (i = 1, 2).

Therefore, it follows that

0 < x1 ≤ x2 ≤ x(t) ≤ x2 ≤ x1, 0 < yi1 ≤ yi2 ≤ yi(t) ≤ yi2 ≤ yi1, (i = 1, 2), t ≥ T8.

Repeating the above arguments, we obtain six sequences {xn}
∞

n=1,
{

xn

}

∞

n=1
{yin}

∞

n=1
{

yin

}

∞

n=1
(i = 1, 2) with the form

0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ x(t) ≤ xn ≤ · · · ≤ x2 ≤ x1,

0 < yi1 ≤ yi2 ≤ · · · ≤ yin ≤ yi(t) ≤ yin ≤ · · · ≤ yi2 ≤ yi1, (i = 1, 2), t ≥ T4n.(4.8)

From (4.8) follows that the limit of each sequences in {xn}
∞

n=1,
{

xn

}

∞

n=1
{yin}

∞

n=1
{

yin

}

∞

n=1
exists. Denote

x = lim
n→+∞

xn, x = lim
n→+∞

xn,

yi = lim
n→+∞

yin, yi = lim
n→+∞

yin (i = 1, 2).
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By the definition of xn, xn, yin, yin, we have

xn =
rk + rbxn−1 + (rc− α)y2(n−1)

a(k + bxn−1 + cy2(n−1))
, xn =

rk + rbxn−1 + (rc− α)y2n

a(k + bxn−1 + cy2n)
,

y1n =
xnm1 −m2

cγD
, y1n =

xnm1 −m2

cγD
,(4.9)

y2n =
xnm1 −m2

cd2D
, Ny2

n =
xnm1 −m2

cd2D
.

where

m1 = γβ − bd2D, m2 = kd2D.

We therefore obtain from (4.8) and (4.9) that

x =
rk + rbx+ (rc− α)y2

a(k + bx+ cy2)
, x =

rk + rbx+ (rc− α)y2

a(k + bx+ cy2)
,

y1 =
xm1 −m2

cγD
, y1 =

xm1 −m2

cγD
,(4.10)

y2 =
xm1 −m2

cd2D
, y2 =

xm1 −m2

cd2D
.

We obtain x ≥ x, yi ≥ yi. To complete the proof, it suffices to prove x = x, yi = yi.

It follows from (4.10) that

(4.11) abx2 +
am1

d2D
xx = rbx+

(rc− α)m1

cd2D
x+

αk

c
.

(4.12) abx2 +
am1

d2D
xx = rbx+

(rc− α)m1

d2D
x+

αk

c
.

(4.11) minus (4.12)

(4.13) ab(x + x)(x− x) = rb(x− x) +
(rc− α)m1

cd2D
(x− x).

Assume that x 6= x. Then we derive from (4.13) that

(4.14) (x+ x) =
r

a
−

(rc− α)m1

abcd2D
.

(4.11) plus (4.12)

(4.15) ab(x+ x)2 +
2a[γβ − 2bd2D]

d2D
xx = rb(x+ x) +

(rc− α)m1

cd2D
(x+ x) +

2αk

c
.

On substituting (4.14) into (4.15), it follows that

(4.16) a[γβ − 2bd2D]xx =
(rc− α)m1

c
(x+ x) +

αkr2(r1 +D)

c
.

Note that x > 0, x > 0.
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(i) Let (H2) and (H3) hold. If rc > α, γβ > bd2D, we derive from (4.16) that

γβ > 2bd2D. This is a contradiction. Hence, we have x = x. It therefore follows

from (4.10) that y1 = y1, y2 = y2. Hence, the positive equilibrium E∗ is globally

stable.

(ii) Let (H2) and (H4) hold. It follows from (4.14) and (4.16) that

(x+x)2−4xx = −
γ2β2

abcd2D[γβ − 2bd2D]
×

{[

rc−
α[γβ − bd2D][γβ + 2bd2D]

γ2β2

]

(x+ x) +
4bαkd2

2D
2

γ2β2

}

.

Hence, we have (x + x)2 − 4xx < 0. This is a contradiction. Accordingly, we have

x = x. It therefore follows from (4.10) that y1 = y1, y2 = y2. Hence, the positive

equilibrium E∗ is globally stable. The proof is complete.

Theorem 4.2. The boundary equilibrium E1(r/a, 0, 0) is globally stable provided that

(H5) rc > α, r
a
[γβ − bd2D] < kd2D holds true.

Proof. Let (x(t), y1(t), y2(t)) be any positive solution of system (1.4) with initial con-

dition (1.5). We derive from the first equation of system (1.4) that

ẋ(t) ≤ x(t)(r − ax(t)).

By comparison it follows that

(4.17) lim
t→+∞

sup x(t) ≤
r

a
.

Then for ε > 0 sufficiently small there exists a T1 > 0 such that if t ≥ T1, x(t) ≤
r
a
+ε.

Replacing this inequality into the second equation of system (1.4) that for t ≥ T1 + τ

ẏ1(t) ≤
β( r

a
+ ε)y2(t− τ)

k + b( r
a

+ ε) + cy2(t− τ)
− d1y1(t) − γy1(t).

Consider the following auxiliary system

u̇1(t) =
β( r

a
+ ε)u2(t− τ)

k + b( r
a

+ ε) + cu2(t− τ)
− d1u1(t) − γu1(t),

u̇2(t) = γu1(t) − d2u2(t),(4.18)

u1(t) ≡ y1(t), u2(t) ≡ y2(t), t ∈ [T1, T1 + τ ].

If r
a
[γβ − bd2D] < kd2D, then by Lemma 2.4 it follows from (4.18) that

lim
t→+∞

u1(t) = 0, lim
t→+∞

u2(t) = 0.

By comparison theorem, it follows that

lim
t→+∞

y1(t) = 0, lim
t→+∞

y2(t) = 0.

Therefore, for ε > 0 sufficiently small there exists a T2 > T1 + τ such that if t ≥ T2,

y1(t) < ε, y2(t) < ε. It follows from the first equation of system (1.4) that for t > T2

ẋ(t) ≥ x(t)

(

r − ax(t) −
αε

k + bx(t) + cε

)

.
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By comparison theorem, it follows that

lim
t→+∞

inf x(t) ≥
br − ak − acε+

√

(br − ak − acε)2 + 4ab (rk + ε(rc− α))

2ab
> 0.

Setting ε→ 0, we have that lim
t→+∞

inf x(t) ≥ r
a
. This, together with (4.17), yields

lim
t→+∞

x(t) =
r

a
.

Noting that if r
a
[γβ−bd2D] < kd2D, by Theorem 3.2, the equilibrium E1(r/a, 0, 0)

is locally stable. Hence, if (H5) holds, then the equilibrium E1 is globally stable. This

completes the proof.

5. Numerical simulation

In this section, we present some numerical simulations to verify our theoretical

results proved in previous sections by using MATLAB(7.0) programming.

Example 1. In system (1.4), we let r = 5, a = 1, α = 2, β = 2, k = 1, b = 1,

c = 2, γ = 2, d1 = d2 = 1. System (1.4) with above coefficients has a unique

positive equilibrium E∗(4.9030, 0.1586, 0.3172). It is easy to show that rc− α = 8,
rc−α

ac
[γβ − bd2D] − kd2D = 1, bd2D − γβ = −1, γβ − 2bd2D = −2, hence, (H2) and

(H3) hold. By Theorem 4.1 we see that the positive equilibrium E∗ is globally stable.

Numerical simulation illustrates our result (see Fig. 1).

Example 2. In system (1.4), we let r = 2.5, a = 1, α = 1, β = 2, k = 1, b = 1,

c = 1, γ = 2, d1 = 1, d2 = 0.5. System (1.4) with above coefficients has a unique

positive equilibrium E∗(2.0573, 0.6072, 2.4288). It is easy to show that rc−α = 1.5,
rc−α

ac
[γβ − bd2D]−kd2D = 2.25,

[

rc− α[γβ−bd2D][γβ+2bd2D]
γ2β2

]

(x+x)+
4bαkd2

2
D2

γ2β2 = 0.5625,

hence, (H2) and (H4) hold. By Theorem 4.1 we see that the positive equilibrium E∗

is globally stable. Numerical simulation illustrates our result (see Fig. 2).

Example 3. In system (1.4), we let r = 0.5, a = 1, α = 2, β = 2, k = 0.1,

b = 0.5, c = 1.5, γ = 2, d1 = 1, d2 = 0.2. System (1.4) with above coefficients

has a unique positive equilibrium E∗(0.0263, 0.0042, 0.0416). It is easy to show

that p0 − q0 = −0.1786 < 0, ω0 = 0.2166, τ0 = 0.843. By Theorem 3.1, there is a

τ0 = 0.843 > 0 such that for τ < τ0, the positive equilibrium E∗ is locally stable; for

τ > τ0, the positive equilibrium E∗ undergoes Hopf bifurcation. Numerical simulation

illustrates our result (see Fig. 3 and Fig. 4).

Example 4. In system (1.4), we let r = 2, a = 1, α = 2, β = 3, k = 2, b = 1, c = 2,

γ = 2, d1 = 1, d2 = 1.5. It is easy to show that rc − α = 2 > 0, r
a
[γβ − bd2D] <

kd2D = −6 < 0. By Theorem 4.2 we see that the boundary equilibrium E1(2, 0, 0)

of system (1.4) is globally stable. Numerical simulation illustrates our result (see

Fig. 5).
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Figure 1. When τ = 2 and the initial value (Φ (θ) ,Ψ1 (θ) ,Ψ2 (θ)) =

(1, 1, 1), the positive equilibrium E∗(4.9030, 0.1586, 0.3172) is globally

stable.
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Figure 2. When τ = 2 and the initial value (Φ(θ), Ψ1(θ), Ψ2(θ)) =

(1, 1, 1), the positive equilibrium E∗(2.0573, 0.6072, 2.4288) is globally

stable.
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Figure 3. When τ = 0.8 < τ0 and the initial value (Φ(θ), Ψ1(θ),

Ψ2(θ)) = (0.1, 0.1, 0.1), the positive equilibrium E∗(0.0263, 0.0042,

0.0416) is locally stable.
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Figure 4. When τ = 1 > τ0 and the initial value (Φ(θ), Ψ1(θ),

Ψ2(θ)) = (0.1, 0.1, 0.1), the positive equilibrium E∗(0.0263, 0.0042,

0.0416) undergoes Hopf bifurcation.
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Figure 5. When τ = 2 and initial value (Φ (θ) ,Ψ1 (θ) ,Ψ2 (θ)) =

(1, 1, 1). The boundary equilibrium E1(2, 0, 0) is globally stable.
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