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ABSTRACT. In this paper, we consider a problem of the estimation for the stochastic system with

multiplicative noise. For the current state the system with additive noise, the estimation problem is

solved by Kalman-Bucy filter. For stochastic systems, this filter is widely used in the control theory

for the construction of optimal regulators under the incomplete information. Many results of this

theory, a separation theorem, e.g., rely on the following important property of the systems with

additive noise. The fact is that in linear systems with additive noise, a choice of the control strategy

does not influence on the uncertainty of the system state. It allows us to distinguish a control

and observation. However, systems with multiplicative noises do not exhibit such independence.

Estimation errors in these systems depend on the control, so one can regulate the accuracy of the

estimation choosing this control. In this paper, we construct a regulator which provides the highest

accuracy for the estimator.
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1. Statement of Problem

Consider a stochastic system

(1.1) ẋ = Ax + Bu + ρ(x, u)v̇1 + v̇2

(1.2) ẏ = Cx + ẇ, ρ(x, u)
.
=

√

x⊤Qx + u⊤Pu,

where x is a n-vector of the state, u is a r-vector of the control, y is a m-vector of

observable variables, v1(t), v2(t) are n-dimensional and w(t) is m-dimensional inde-

pendent Wiener processes with parameters:

E (vi(t) − vi(s)) = 0, E (w(t) − w(s)) = 0,

E
(

[vi(t) − vi(s)][vi(t) − vi(s)]
⊤
)

= Vi|t − s|,

E
(

[w(t) − w(s)][w(t) − w(s)]⊤
)

= W |t − s|.
Here An×n, Bn×r and Cm×n are constant matrices. Quadratic n × n-matrices V1, V2

and Qn×n, Pr×r, Wr×r are constant, symmetric and positive definite.
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The control u is formed by the observations of y by the following regulator:

(1.3) u = −Kz,

(1.4) ż = Az + Bu + L(ẏ − Cz).

A study of stabilizing abilities of such regulator in the systems with multiplicative

noise is based on the theory of mean-square stability of systems with state-dependent

noise [1]–[9].

The system (1.1), (1.2) with the regulator (1.3), (1.4) forms a closed-loop system

ẋ = Ax − BKz + ρ(x,−BKz)v̇1 + v̇2

ż = LCx + (A − BK − LC)z + Lẇ.

It is convenient to rewrite this system in a more compact form:

(1.5) Ẋ = A(R)X +
√

X⊤Q(R)Xξ̇ + η̇.

Here

X =

[

x

z

]

,A(R) =

[

A −BK

LC A − BK − LC

]

, R = [K, L],

Q(R) =

[

Q 0

0 K⊤PK

]

, ξ =

[

v1

0

]

, η =

[

v2

Lw

]

.

Excluding the additive noise η̇ in (1.5), we get the following system:

(1.6) Ẋ = A(R)X +
√

X⊤Q(R)Xξ̇.

Consider a set

R = {R|the system (1.6) is exponentially mean square stable} .

The system (1.6) is said to be stabilizable if R 6= ∅. Necessary and sufficient conditions

of the stabilizability can be found in [7].

If R ∈ R then the system (1.5) has a unique stationary distributed state X(R) =

[xR, zR]⊤ and

E (X(R)) = 0, E
(

X(R)X⊤(R)
)

= X(R).

The matrix X(R) of second moments satisfies the following equation

(1.7) A(R)X + XA⊤(R) + tr(Q(R)X)V1 + V2(R) = 0.

Here

V1 =

[

V1 0

0 0

]

, V2(R) =

[

V2 0

0 LWL⊤

]

.

Now, when the regulator has been chosen, consider the estimation problem.

Using [8], [10] one can show that the system

(1.8) ˙̂x = Ax̂ + Bu + F (ẏ − Cx̂)
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is a linear optimal stationary filter for the system (1.1), (1.2) with the regulator (1.3),

(1.4). Here

(1.9) F = ΛC⊤W−1,

and the matrix Λ can be found from the following equation:

(1.10) AΛ + ΛA⊤ − ΛC⊤W−1CΛ + λV1 + V2 = 0.

In (1.10), λ = E (ρ2(xR, uR)) ; xR and uR = −KxR are stationary distributed vectors

of state and control, respectively, of the system (1.1), (1.2) with the regulator R ∈ R.

The matrix

Λ = lim
t→∞

E
(

[x(t) − x̂(t)][x(t) − x̂(t)]⊤
)

= E
(

[xR − x̂R][xR − x̂R]⊤
)

characterizes an asymptotic estimation error.

In the case when the system is forced by additive noise only (λ = 0), the matrix

Λ does not depend on R, so the control has no influence on the estimation error. This

is a case of classical stationary Kalman-Bucy filter [11].

In the case of multiplicative noise, there is no such independence. Varying R one

can change Λ, so one can control the estimation error x̂ by the regulator (1.3), (1.4).

Consider a scalar value g(t) = a⊤x(t), where a is a constant n-dimensional vector.

For g(t), the estimation is ĝ(t) = a⊤x̂(t). As a criterion of the accuracy of this

estimation, we consider a value

J(R) = E(gR − ĝR)2,

where gR = a⊤xR, ĝR = a⊤x̂R.

The aim of this paper is to solve the following optimization problem.

Problem 1. It is necessary to find

inf
R∈R

J(R).

As far as

J(R) = E
(

a⊤xR − a⊤x̂R

)2
= E

(

a⊤(xR − x̂R)(xR − x̂R)⊤a
)

= a⊤Λa,

where the positive definite matrix Λ is a solution of the algebraic Riccaty equation

(1.10), and the quadratic form a⊤Λa monotonically decreases as λ decreases, the

Problem 1 is reduced to the following.

Problem 2. It is necessary to find

inf
R∈R

E
(

ρ2(xR, uR)
)

,

where xR, uR are stationary distributed vectors of the state and control, respectively,

of the system (1.1), (1.2) with the regulator (1.3), (1.4).
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The Problem 2 is a well known problem of the optimization of the standard

quadratic criterion under the incomplete information.

For systems with additive noise only, this problem can be easily solved via the

separation theorem [12]. For systems with multiplicative noise, there is no such

effective method. It is worth noting one essential feature of the Problem 2. The

minimized quantity E (ρ2(xR, uR)) is directly connected with the value of the intensity

ρ(x, u) of multiplicative noise ρ(x, u)v̇1 in the system (1.1). Therefore, by minimizing

the criterion we at the same time minimize an influence of multiplicative noise on the

system. This specific feature allows us to solve the Problem 2.

2. Solution of Stabilization Problem

At first, consider the Problem 2 for the case of complete information. These

results we will use in what follows.

Suppose that the control u in the system (1.1) is formed by the following feedback

u = −Kx

and a closed-loop system looks as

(2.1) ẋ = (A − BK)x + ρ(x,−BK)v̇1.

Consider a set

K .
=

{

K
∣

∣

∣ the system (2.1) is exponentially mean square stable
}

.

For any K ∈ K, a state xK and control uK = −KxK in the system (1.1) have a

stationary distribution.

Theorem 1. Let the system (1.1) be stabilizable under complete information (K 6= ∅).
Then a solution of the minimization problem

inf
K∈K

E
(

ρ2(xK , uK)
)

for the system (1.1) can be written as

K̄ = P−1B⊤M,

where the positive definite matrix M is governed by the equation

(2.2) A⊤M + MA − MBP−1B⊤M + Q = 0.

One can find a proof of this Theorem in Appendix.

It is worth noting that the matrix K̄ does not depend on the parameters V1, V2

of the system (1.1) noise. As for additive noise v̇2, this result is well known. The fact

that the optimal control does not depend on the parameter V1 of the multiplicative
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noise ρ(x, u)v̇1, is quite unexpected. In a general case of the arbitrary quadratic

criterion, there is no such independence.

The regulator found in Theorem 1 is optimal for any V1. But this fact is true

only if K 6= ∅ and hence if tr(MV1) < 1 [7].

In the case of incomplete information, the Problem 2 because of the following

equalities

E
(

ρ2(xR, uR)
)

= E
(

X⊤(R)Q(R)X(R)
)

= tr(Q(R)X(R))

can be reduced to the deterministic Problem 3.

Problem 3. It is necessary to find

I = inf
R∈R

tr(Q(R)X),

where X is a solution of the system (1.7).

Assign some sequence Rs, s = 0, 1, 2, . . . . Let us prove that lim
s→∞

Rs = R̄ ∈ R and

tr(Q(R̄)X(R̄)) = I. For the constructing Rs let us consider the following auxiliary

problem with the parameter λ.

Problem 4. It is necessary to find

I(λ) = inf
R∈R0

tr(Q(R)Y(R, λ)),

where Y(R, λ) is a solution of the system

(2.3) A(R)Y + YA⊤(R) + λV1 + V2 = 0, λ ≥ 0.

Here

R0 =
{

R
∣

∣

∣ all eigenvalues of A(R) have negative real parts
}

.

This problem is a problem of the optimization of the stationary quadratic criterion

E (ρ2(xR, uR)) for the system

ẋ = Ax + Bu +
√

λv̇1 + v̇2

ẏ = Cx + ẇ

with the regulator (1.3), (1.4).

Due to the separation theorem, the solution of this problem for R0 6= ∅ can be

written as

(2.4) K = K̄ = P−1B⊤M

(2.5) L = L̄(λ) = ΣC⊤W−1,

where M is a solution of the equation (2.2), and Σ is a solution of the following

equation

(2.6) AΣ + ΣA⊤ − ΣC⊤W−1CΣ + λV1 + V2 = 0.
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So, if R0 6= ∅, the optimal value I(λ) of the criterion of the Problem 4 is attained for

R =
[

K̄, L̄(λ)
]

∈ R0.

Assign the sequence Rs by the following recurrent formulas:

(2.7) λ0 = 0, λs+1 = tr(Q(Rs)Ys), s = 0, 1, . . . ,

where Rs is a solution of the Problem 4 for λ = λs, Ys = Y(Rs, λs) is a solution of

the system (2.3) for R = Rs, λ = λs. Note that

λs+1 = inf
R∈R0

tr (Q(R)Y(R, λs)) .

Theorem 2. Suppose that the system (1.1), (1.2) is stabilizable by the regulator (1.3),

(1.4) (R 6= ∅). Then

(a) the sequence Rs converges;

(b) lim
s→∞

Rs = R̄ ∈ R;

(c) the regulator R̄ solves the Problem 3.

Here, R̄ = [K̄, L̄], L̄ = lim
s→∞

L̄(λs), I = lim
s→∞

λs, I = tr
(

Q(R̄)Y(R̄)
)

.

Proof of this theorem is in Appendix.

As far as I = tr
(

Q(R̄)Y(R̄)
)

= E (ρ2(xR̄, uR̄)) the equation (2.6) for λ = I

coincides with the equation (1.10). Hence, it holds that L̄ = F , that is the optimal

filter (1.8) coincides with the dynamical system (1.4) which belongs to the optimal

regulator. In this case, x̂ = z and the optimal estimation can be got from the system

(1.4). Here, the system (1.8) becomes redundant.

3. Algorithm of Construction of Optimal Regulator

Now we will write the above theoretical results in the form adapted for the fol-

lowing analysis.

One can show that the matrix X which is a solution of the system (1.7) for R = R̄,

consists of the matrices Λ1 and Λ2:

X =

[

Λ1 + Λ2 Λ2

Λ2 Λ2

]

.

These matrices satisfy to the system

(3.1) AΛ1 + Λ1A
⊤ − Λ1C

⊤W−1CΛ1 + tr
[

Q(Λ1 + Λ2) + K̄⊤PK̄Λ2

]

V1 + V2 = 0,

(3.2) (A − BK̄)Λ2 + Λ2(A − BK̄)⊤ + Λ1C
⊤W−1CΛ1 = 0.

Here K̄ can be found from (2.4). The other parameters of the optimal regulator R̄

are calculated by the formula:

L̄ = Λ1C
⊤W−1.



MINIMIZATION OF THE ESTIMATION ERROR BY CONTROL 355

Now a method of successive approximations can be written as follows.

Algorithm of the construction of regulator R̄.

1. To find K̄ using (2.4), (2.2);

2. To find sequences Λs

1 and Λs

2 from the recurrent formulas

(3.3)
AΛs+1

1 + Λs+1

1 A⊤ − Λs+1

1 C⊤W−1CΛs+1

1 + λsV1 + V2 = 0,

λs = tr
[

Q(Λs

1 + Λs

2) + K̄⊤PK̄Λs

2

]

,

(3.4) (A − BK̄)Λs+1

2 + Λs+1

2 (A − BK̄)⊤ + Λs+1

1 C⊤W−1CΛs+1

1 = 0

with the initial data Λ0
1 = 0, Λ0

2 = 0.

3. To find Λ1 = lim
s→∞

Λs

1 and calculate L̄ = Λ̄1C
⊤W−1.

Values K̄ and L̄ are the parameters of the optimal regulator R̄.

This algorithm is reduced to the solution of the Riccaty equation (2.2) and re-

peated solution of the pair of equations (3.3), (3.4). First of them is a Riccaty

equation, second one is a Lyapunov equation. These equations are well studied and

can be solved by standard numerical procedures.

Appendix

Proof of the Theorem 1. Using [13], one can prove the fact that the feedback

coefficient K̄ of the optimal control u = −K̄x can be found as

K̄ = (P + tr(DV1)P )−1 B⊤D,

where D is a solution of the equation

A⊤D + DA + tr(DV1)Q + Q − DB (P + tr(DV1)P )−1 B⊤D = 0.

The matrix M = D/(1 + tr(DV1)) satisfies the equation (2.2), and K̄ = P−1B⊤M .

Theorem 1 is proved.

For the proof of Theorem 2, consider two Lemmas.

Lemma 3. For the sequence λs (s = 0, 1, . . . ) in (2.7) it holds that λs ≤ λs+1 ≤ I.

Proof. For any R ∈ R0 it holds that

0 = λ0 ≤ I ≤ tr(Q(R)X(R)).

From these inequalities it follows that

0 ≺ Y(R, λ0) ≺ Y(R, tr(Q(R)X(R))) = X(R),

λ0 ≤ tr(Q(R)Y(R, λ0)) ≤ tr(Q(R)X(R)).

Here X ≺ Y means that Y − X is non-negative definite.
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Using R ∈ R0, we get

λ0 ≤ inf
R0

tr(Q(R)Y(R, λ0)) ≤ inf
R

tr(Q(R)X(R)).

So, it holds that λ0 ≤ λ1 ≤ I. By induction, it can be proved that λs ≤ λs+1 ≤ I.

Lemma 4. If the system (1.7) for R ∈ R0 has a positive definite solution X then

R ∈ R.

Proof. Let R ∈ R0. Then the inequality (see [7])

(3.5) tr(Q(R)Z) < 1

is a necessary and sufficient condition for R ∈ R. Here Z is a solution of the system

A(R)Z + ZA⊤(R) + V1 = 0.

Consider also a system

A(R)Y + YA⊤(R) + V2(R) = 0

with the solution Y. Suppose that the system (1.7) for R ∈ R0 has a solution X ≻ 0.

Then it holds that tr(Q(R)X) ≥ 0.

If tr(Q(R)X) > 0 then Z = (X − Y)/tr(Q(R)X) and the inequality (3.5) holds.

If tr(Q(R)X) = 0 then X = Y. For V2 > 0 there exists µ > 0 satisfying V1 ≺
µV2(R) that is Z ≺ µY = µX. So, it holds that tr(Q(R)Z) = 0 < 1.

In two above cases, the inequality (3.5) holds, hence R ∈ R0.

Proof of the Theorem 2. Let Rs be a solution of the Problem 4 for λ = λs.

Because of (2.4)-(2.6) it holds that Rs = [K̄, L̄(λs)]. From Lemma 1 it follows that

λ̄ = lim
s→∞

λs ≤ I

and so there exists a limit of Rs:

R̄ = lim
s→∞

Rs = [K̄, L̄(λ̄)] ∈ R0.

Theorem 2 (a) is proved.

A convergence of the sequences λs and Rs imply the convergence of the sequence

Ys. Denote

Ȳ = lim
s→∞

Ys = Y(R̄, λ̄) ≻ 0.

Passing to the limit in (2.3) for λ = λs, R ∈ Rs and (2.7) we get Ȳ ≻ 0 as a solution

of the following system

A(R̄)Y + YA⊤(R̄) + λ̄V1 + V2(R̄) = 0, λ̄ = tr(Q(R̄)Y).

Thus, we have proved that for R = R̄ the system (1.7) has a solution X(R̄) = Ȳ ≻ 0.

Due to Lemma 2, this means that R̄ ∈ R. Theorem 2 (b) is proved.
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From the inequalities

I ≤ tr
(

Q(R̄)X(R̄)
)

= tr
(

Q(R̄)Ȳ
)

= λ̄ ≤ I

it follows that

tr
(

Q(R̄)X(R̄)
)

= λ̄ = I.

Theorem 2 (c) is proved.
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