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ABSTRACT. This paper provides a methodology to compute coupled upper and lower solutions.
We will use mathematical modeling to examine population growth and decay of a single and dual
animal species, of a nonlinear differential equations with initial conditions to compute solutions. In
this work we provide a methodology to compute coupled lower and upper solutions on any given
interval. We develop Accelerated convergence results using generalized monotone method. We have
both theoretical and numerical results.
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1. Introduction

Mathematical Modeling of many nonlinear problems in science and engineer-

ing leads to the qualitative study of nonlinear differential equations with initial and

boundary conditions. It is rarely possible to compute such solutions in explicit form

using standard methods. In this study, we will be examining population growth and

decay of a single and dual animal species and the available theories used for such stud-

ies. We study the General Logistic Equation for single species and the Volterra-Lotka

Model for dual species. Such models are also useful in the infectious diseases and eco-

logical models. They are also useful in the study of periodic solutions with impulses.

See [7, 10] for details. The classical results known for the existence of solutions are

the Peano’s Theorem and the Picard’s Theorem. Peano’s Theorem assumes that the
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nonlinear function is continuous and bounded and provides only theoretical existence

results, locally. Picard’s Theorem assumes the nonlinear function is continuous and

satisfies Lipschitz Condition and provides the existence and uniqueness of solutions

locally. However, Picard’s Theorem is theoretical as well as computational. It is well

known that the monotone method combined with the method of upper and lower

solutions provides both theoretical and computational method to compute minimal

and maximal solutions. In addition, the interval of existence is guaranteed by the

upper and lower solutions. In the usual monotone method, they assume that the

nonlinear function is increasing or could be made increasing in the unknown variable.

Monotone method has been developed when the nonlinear function is decreasing in

the unknown variable. See [4,8,6] for details.

Monotone method when extended to include the situation when the nonlinear

function is the sum of an increasing and decreasing function combined with coupled

upper and lower solutions is known as Generalized monotone method. See [5,3] for

details. In order to apply the Generalized monotone method, the major hurdle is to

compute the coupled upper and lower solutions of type I to our desired interval. In this

paper, we develop both theoretical and numerical methods to compute the coupled

upper and lower solutions to any desired interval when we know the natural lower

and upper solutions on that interval. Certainly, equilibrium solutions are natural

upper and lower solutions for all time. Our results are developed for both the scalar

equation and the dual system model. In addition, we can also accelerate this process

by implementing the Gauss-Seidel Iteration Method, which can be used when studying

scalar and vector equations. Finally, we provide numerical results as an application

to our theoretical main result. We provide a scalar and a dual system model in our

examples.

2. Preliminary Results

In this section, we recall known results related to scalar and two system first

order differential equations of the following form:

(2.1) u′ = f(t, u) + g(t, u), u(0) = u0 on [0, T ] = J

and

(2.2) u′i = fi(t, u) + gi(t, u), ui(0) = u0i on [0, T ] = J for i = 1, 2

where f, g ∈ C([J ]× R, R), where as in (2.2) fi, gi ∈ C([J ]× R2, R2)

Here and throughout this paper we assume f(t, u) is non-decreasing in u on J

and g(t, u) is non-increasing in u on J . Similarly, we also assume fi(t, u1, u2) is non-

decreasing in u1 and u2, and gi(t, u1, u2) is non-increasing in u1 and u2 for i = 1, 2

and for t ∈ [0, T ] = J .
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We recall the following known definitions which are needed for our main results.

Definition 2.1. The function v0, w0 ∈ C1([0, T ], R) are called natural lower and

upper solutions of (2.1) if:

v′0 ≤ f(t, v0) + g(t, v0), v0(0) ≤ u0

and

w′
0 ≥ f(t, w0) + g(t, w0), w0(0) ≥ u0

Definition 2.2. The functions v0, w0 ∈ C1([J ], R) are called coupled lower and upper

solutions of (2.1) of Type I if:

v′0 ≤ f(t, v0) + g(t, w0), v0(0) ≤ u0

and

w′
0 ≥ f(t, w0) + g(t, v0), w0(0) ≥ u0

The next known result is relative to natural lower and upper solutions of (2.1) .

For this purpose we let F (t, u) = f(t, u) + g(t, u)

Theorem 2.3. Let v, w ∈ C1(J, R) be lower and upper solutions of the first order

initial value problem (2.1) respectively. Suppose that

F (t, x)− F (t, y) ≤ L(x− y) whenever x ≥ y, and L > 0

and where L represents a constant. Then v(0) ≤ w(0) implies that v(t) ≤ w(t), t ∈ J .

Next we state a Corollary of Theorem 2.1 which is useful in monotone method

or generalized monotone method.

Corollary 2.4. Let p(t) ∈ C1(J, R) such that p′(t) ≤ Lp(t), and p(0) ≤ 0 implies

p(t) ≤ 0.

We define the following sector Ω for convenience. That is:

(2.3) Ω = [(t, u) : v(t) ≤ u(t) ≤ w(t), t ∈ J ].

Theorem 2.5. Suppose v, w ∈ C1[J, R] are coupled lower and upper solutions of (2.1)

such that v(t) ≤ w(t) on J and F ∈ C(Ω, R). Then there exists a solution u(t) of

(2.1) such that v(t) ≤ u(t) ≤ w(t) on J , provided v(0) ≤ u0 ≤ w(0).

Theorem 2.6. Assume that

(i) v0, w0 ∈ C1[J, R] are coupled lower and upper solutions of type I with

v0(t) ≤ w0(t) on J .

(ii) f, g ∈ C[J × R, R], f(t, u) is nondecreasing in u and g(t, u) is nonincreasing in

u on J .
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Then there exists monotone sequences vn(t) and wn(t) on J such that vn(t) → v(t)

and wn(t) → w(t) uniformly and monotonically and (v, w) are coupled minimal and

maximal solutions, respectively to equation (2.1). That is, (v, w) satisfy

(2.4) v′ = f(t, v) + g(t, w), v(0) = u0, on J,

(2.5) w′ = f(t, w) + g(t, v), w(0) = u0, on J.

Here the iterative scheme is given by

(2.6) v′n+1 = f(t, vn) + g(t, wn), vn+1(0) = u0, on J.

(2.7) w′
n+1 = f(t, wn) + g(t, vn), wn+1(0) = u0, on J.

Theorem 2.7. Let all the hypothesis of Theorem 2.6 be satisfied. Further, let

f(t, u1)− f(t, u2) ≤ L1(u1 − u2)

g(t, u1)− g(t, u2) ≥ −M1(u1 − u2)

where L1 and M1 are constants, whenever v0 ≤ u2 ≤ u1 ≤ w0 then v = w = u is the

unique solution of equation (2.1)

The next result is monotone method for (2.1) where we use natural lower and

upper solutions.

Theorem 2.8. Assume that

(i) v0, w0 ∈ C1(J, R) are natural lower and upper solutions with v0(t) ≤ w0(t) on J .

(ii) f, g ∈ C(J × R, R), f(t, u) is nondecreasing in u and g(t, u) is nonincreasing in

u on J .

Then there exists monotone sequences vn(t) and wn(t) on J such that vn(t) → v(t)

and wn(t) → w(t) uniformly and monotonically and (v, w) are coupled minimal and

maximal solutions, respectively to equation (2.1). That is, (v, w) satisfy

(2.8) v′ = f(t, v) + g(t, w), v(0) = u0, on J,

(2.9) w′ = f(t, w) + g(t, v), w(0) = u0, on J,

provided v0 ≤ v1 and w1 ≤ w0 on J .

The above theorem uses v0, w0 as natural lower and upper solutions. Then v1, w1

will be coupled lower and upper solutions only on some interval [0, t1) not necessarily

on [0, T ]. This is the motivation for our main result relative to equation (2.1).

The next result is existence of the solution to two systems of differential equations

with initial conditions. The two system of equations with initial conditions is a

generalization of the Volterra-Lotka population model of two species. The following

definition is needed relative to the system (2.2).
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Definition 2.9. Let vi, wi for i = 1, 2 be C(J, R). Then vi and wi are called coupled

lower and upper solutions of (2.2) if they satisfy the following inequalities:

(2.10) v′i ≤ fi(t, v1, v2) + gi(t, w1, w2), vi(0) ≤ u0i

(2.11) w′
i ≥ fi(t, w1, w2) + gi(t, v1, v2), wi(0) ≥ u0i

The next result is the Existence Theorem for the solutions of the system (2.2).

Theorem 2.10. Let fi, gi ∈ C(J × R2, R2) such that fi(t, u) is nondecreasing in u

and gi(t, u) is nonincreasing in u for t ∈ J , and for each i = 1, 2. Let v0, w0 ∈
C1(J, R2] be coupled lower and upper solutions of (2.2), such that v0,i(t) ≤ w0,i(t)

for i = 1, 2 on J . Then, there exists monotone sequences {vn,i} and {wn,i} which

converges uniformly and monotonically to coupled minimal and maximal solutions of

(2.2) such that vn,i → vi and wn,i → wi as n →∞, provided v0,i(0) ≤ ui(0) ≤ w0,i(0)

for i = 1, 2. Further, if u is any solution of (2.2) such that v0,i ≤ ui ≤ w0,i, then

v ≤ u ≤ w on J .

Proof. See [3] for details.

The following result is a comparison theorem related to coupled lower and upper

solutions.

Theorem 2.11. Let (v01, v02) and (w01, w02) be coupled lower and upper solutions of

(2.2). Further let

(i) fi(t, u) is nondecreasing in ui components and gi(t, u) is nonincreasing in ui

components for i = 1, 2;

(ii) fi(t, u) and gi(t, u) satisfy the one sided Lipschitz condition of the form,

fi(t, u)− fi(t, u) ≤ Li

2∑
j=1

(uj − uj), Li > 0, i = 1, 2

and

gi(t, u)− gi(t, u) ≥ −Mi

2∑
j=1

(uj − uj), Mi > 0, i = 1, 2

whenever ui ≥ ui for i = 1, 2.

Then vi(t) = wi(t) = ui(t) for i = 1, 2, where ui(t) is the unique solution of (2.2).

Proof. See [3] for details.

The following Corollary is useful in the generalized monotone method.
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Corollary 2.12. Let

p′i(t) ≤
2∑

j=1

(Lij + Mij)pj, for i = 1, 2

Then we have pi(t) ≤ 0 for i = 1, 2 on J = [0, T ], whenever pi(0) ≤ 0 for i = 1, 2.

3. Main Results

The generalized monotone method is well known for scalars and system of first

order differential equations with initial conditions using coupled lower and upper

solutions of type I as described in our preliminaries. It is easy to observe that coupled

lower and upper solutions of type I implies that they are also natural lower and upper

solution. However, the converse is not true. In theory, we know that the existence of

natural lower and upper solutions, where the lower solution is less than or equal to

the upper solution, we have a solution of (2.1) such that v0 ≤ u ≤ w0 on J whenever

v0(0) ≤ u0 ≤ w0(0).In the generalized monotone method, if we use natural lower and

upper solution we need an extra assumption, that is v0(t) ≤ v1(t) and w1(t) ≤ w0(t)

on J . Note that the sequences are developed as in theorem 2.6.

Consider the example

u′ = 2u− 3u2, u(0) =
1

2
, t ∈ [0, T ], T ≥ 1.

Then v0(t) = 0 and w0(t) = 2
3

are natural lower and upper solutions respectively.

Then using the iterations in Theorem 2.6 we get

v1(t) =
1

2
− 4t

3
and w1(t) =

4t

3
+

1

2
.

It is easy to observe v1(t) ≥ v0(t) and w1(t) ≤ w0(t) on [0, 3
8
]. In order to apply

Theorem 2.6, we need

v1(t) ≥ v0(t) and w1(t) ≤ w0(t) on [0, T ].

This is the motivation for our main result. Our aim is to develop a method to

construct coupled lower and upper solutions on the interval J = [0, T ], so that we

can apply Theorem 2.6 to compute the coupled minimal and maximal solutions for

equation (2.1).If f and g satisfies one sided Lipschitz Condition, we can also prove

that the coupled minimal and maximal solutions of (2.1) will converge to the unique

solution of (2.1).

Theorem 3.1. Assume that

(i) v0, w0 ∈ C[J, R] are natural lower and upper solutions of (2.1) such that v0(t) ≤
w0(t) on J .
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(ii) f, g ∈ C[J × R, R], f(t, u) is nondecreasing and g(t, u) is nonincreasing in u on

J . Then there exists monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t) → v(t) and wn(t) → w(t) uniformly and monotonically and (v, w) are

coupled lower and upper solutions of (2.1) such that v ≤ w on J . The iterative

scheme is given by

v′n+1 = f(t, vn) + g(t, wn), on [0, tn], vn+1(0) = u0

w′
n+1 = f(t, wn) + g(t, vn), on [0, tn ], wn+1(0) = u0,

where vn(t) ≥ v0(t) on [0, tn) and wn(t) ≤ w0(t) on [0, tn). Also define vn+1(t),

wn+1(t) on [tn, T ] and [tn, T ] respectively as the solution of

v′n+1 = f(t, v0) + g(t, w0), vn+1(tn) = lim
h→0

vn=1(tn − h)

w′
n+1 = f(t, w0) + g(t, v0), wn+1(tn) = lim

h→0
wn+1( tn − h).

Proof. From Theorem 2.6 we have v0(t) ≤ v1(t) on [0, t1] and w1(t) ≤ w0(t) on [0, t1 ].

If t1 ≥ T , and t1 ≥ T there is nothing to prove since one can use Theorem 2.6 to

compute coupled minimal and maximal solutions. If not, certainly t1 < T and t1 < T .

Then redefine v1(t) and w1(t) as follows

v′1(t) = f(t, v0) + g(t, w0), v1(0) = u0 on [0, t1],

w′
1(t) = f(t, w0) + g(t, v0), w1(0) = u0 on [0, t1 ],

and

v1(t) = v0(t) on [t1, T ],

w1(t) = w0(t) on [ t1, T ],

such that v1(t1) = v0(t1) and w1(t1) = w0(t1 ).

Proceeding in this manner, we get

v′n = f(t, vn−1) + g(t, wn−1), vn(0) = u0 on [0, tn−1)

vn(t) = v0(t) on [tn−1, T ], such that vn(tn−1) = v0(tn−1)

Similarly,

w′
n = f(t, wn−1) + g(t, vn−1), wn(0) = u0 on [0, tn−1)

wn(t) = w0(t) on [ tn−1, T ], such that wn( tn−1) = w0( tn−1).

Now let vn, wn intersect v0 and w0 at tn, tn respectively. If tn ≥ T , and tn ≥ T we

can stop the process. Certainly vn ≤ wn and vn and wn are coupled minimum and

maximum solutions of (2.1) respectively.

Now we can show that the sequence {vn(t)} and {wn(t)} constructed above are

equicontinuous and uniformly bounded on J . Hence by Ascoli Arzela’s theorem, a sub-

sequence converges uniformly and monotonically. Since the sequences are monotone,

the entire sequence converges uniformly and monotonically to u, and w respectively.
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It is easy to observe:

v′n = f(t, vn−1) + g(t, wn−1), vn(0) = u0 on [0, tn−1)

vn(t) = v0(t) on [tn−1, T ], such that vn(tn−1) = v0(tn−1)

and

w′
n = f(t, wn−1) + g(t, vn−1), wn(0) = u0 on [0, tn−1)

wn(t) = w0(t) on [ tn−1, T ], such that wn( tn−1) = w0( tn−1)

for all n ≥ 1.

As n → ∞, tn, tn → T , vn(t) → v(t), and wn(t) → w(t), uniformly and mono-

tonically.

Further,

v′ = f(t, v) + g(t, w), v(0) = u on J

and

w′ = f(t, w) + g(t, v), w(0) = u on J.

Hence v, w are coupled lower and upper solutions of (2.1) on J . This concludes the

proof.

Remark 3.2. Now that Theorem 3.1 provides coupled lower and upper solutions of

(2.1) we can develop sequences {vn} and {wn} using Theorem 2.6. These sequences

converge uniformly and monotonically to coupled minimal and maximal solutions.

Further if uniqueness condition is satisfied, the sequences converge to the unique

solution of (2.1). However, in generalized monotone method even for scalar equations

like (2.1), we can apply Gauss Seidel method such that sequences converge faster.

This is precisely the next result.

Theorem 3.3. Let all the hypothesis of Theorem 2.6 hold. Then there exist monotone

sequences vn and wn where the iterative scheme is given by

(3.1) v∗′n+1 = f(t, v∗n) + g(t, w∗
n), v∗n+1(0) = u0

(3.2) w∗′
n+1 = f(t, w∗

n) + g(t, v∗n+1), w∗
n+1(0) = u0

where v∗0 = v1 and w∗
0 is the solution of w0

∗′ = f(t, w0) + g(t, v1) , w∗
0(0) = u0.

OR

(3.3) v∗′n+1 = f(t, v∗n) + g(t, w∗
n+1), v∗n+1(0) = u0

(3.4) w∗′
n+1 = f(t, w∗

n) + g(t, v∗n), w∗
n+1(0) = u0

where w0
∗ = w1 and v∗0 is the solution of v∗′0 = f(t, v0) + g(t, w1), v∗0(0) = u0.
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Proof. We provide a brief proof. One can easily see that v0(t) ≤ v1(t) on J . Now it

is enough if we prove that w∗
0 ≤ w1. Let p(t) = w∗

0 − w1, p(0) = 0.

p′(t) = w0
∗′ − w′

1

= f(t, w0) + g(t, v1)− (f(t, w0) + g(t, v0))

= g(t, v1)− g(t, v0)

≤ 0,

since v1(t) ≥ v0(t) on J .

This implies p(t) ≤ 0 on J .That is w∗
0 ≤ w1 on J . Continuing the process, we

can show that that the sequences {v∗n} and {w∗
n} converges faster than the sequence

{vn} and {wn} computed using Theorem 2.6.

Theorem 3.4. Assume that

(i) v0i, w0i ∈ C[J, R2] for i = 1, 2 are natural lower and upper solutions of systems

(2.2) such that v0i(t) ≤ w0i(t) on J .

(ii) fi, gi ∈ C[J × R2, R2] such that fi(t, u) is nondecreasing in u and gi(t, u) is

nonincreasing in u for t ∈ J , and for each i = 1, 2. Then there exists monotone

sequences {vn,i(t)} and {wn,i(t)} on J such that vn,i(t) → v(t) and wn,i(t) → w(t)

uniformly and monotonically and (v, w) are coupled lower and upper solutions

of (2.2) such that v ≤ w on J . The iterative scheme for two system is given by

v′n,1 = f1(t1, vn−1,1, vn−1,2) + g1(t1, wn−1,1, wn−1,2), vn,1 = u01 on [0, tn−1,1]

v′n,2 = f2(t1, vn−1,1, vn−1,2) + g2(t1, wn−1,1, wn−1,2), vn,2 = u02 on [0, tn−1,2]

w′
n,1 = f1(t1, wn−1,1, wn−1,2) + g1(t1, vn−1,1, vn−1,2), wn,1 = u01 on[0, tn−1,1]

w′
n,2 = f2(t1, wn−1,1, wn−1,2) + g2(t1, vn−1,1, vn−1,2), wn,2 = u02 on[0, tn−1,2]

and

vn,1(t) = v0,1(t) on [tn−1,1, T ]

vn,2(t) = v0,2(t) on [tn−1,2, T ]

wn,1(t) = w0,1(t) on [tn−1,1, T ]

wn,2(t) = w0,2(t) on [tn−1,2, T ]

Remark 3.5. Note that Theorem 3.4 provides a method to compute coupled lower

and upper solutions of (2.2) on the desired interval [0, T ]. We can develop an acceler-

ated convergence result for the system (2.2) similar to Theorem 3.4. This is precisely

our next result.

Theorem 3.6. Let all the hypothesis of Theorem 2.10 hold. Then there exists se-

quences {v∗n,i}, {w∗
n,i} for i = 1, 2, on [0, T ], such that it converges uniformly and
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monotonically to coupled minimal and maximal solutions of (2.2). These sequences

converge at a much faster pace than the sequences of Theorem 2.10. The sequences

{v∗n,i}, and {w∗
n,i}, are developed as follows: where the iterative scheme is given by

v∗′n+1,1 = f1(t, v
∗
n,1, v

∗
n,2) + g1(t, w

∗
n,1, w

∗
n,2), vn,1(0) = u0,1

v∗′n+1,2 = f2(t, v
∗
n+1,1, v

∗
n,2) + g2(t, w

∗
n,1, w

∗
n,2), vn,2(0) = u0,2

w∗′
n+1,1 = f1(t, w

∗
n,1, w

∗
n,2) + g1(t, v

∗
n+1,1, v

∗
n+1,2), wn,1(0) = u0,1

w∗′
n+1,2 = f2(t, w

∗
n+1,1, w

∗
n,2) + g2(t, v

∗
n+1,1, v

∗
n+1,2), wn,2(0) = u0,2

Proof. Let v1,1 = v∗0,1, then

v∗′0,2 = f2(t, v
∗
0,1, v0,2) + g2(t, w0,1, w0,2)

w∗′
0,1 = f1(t, w0,1, w0,2) + g1(t, v

∗
0,1, v

∗
0,2)

w∗′
0,2 = f2(t, w

∗
0,1, w0,2) + g2(t, v

∗
0,1, v

∗
0,2)

We will prove that v∗0,2 ≥ v1,2 on J . For that purpose, set p(t) = v∗0,2 − v1,2, p(0) = 0

p′(t) = v∗′0,2 − v∗′1,2

= f2(t, v
∗
0,1, v0,2) + g2(t, w0,1, w0,2)− (f2(t, v0,1, v0,2) + g2(t, w0,1, w0,2))

= f2(t, v1,1, v0,2)− f2(t, v0,1, v0,2)

≥ 0 since v1,1 ≥ v0,1

This proves v∗0,2 ≥ v1,2. Similarly, we can prove w∗
0,1 ≥ w1,1 using the information

v0,1 ≤ v1,1 = v∗0,1 and v0,2 ≤ v1,2 ≤ v0,2. Continuing this process we can show

the sequences {v∗n,i} and {w∗
n,i} converges faster than the sequence {vn,i} and {wn,i}

computed using Theorem 2.10.

4. Numerical Results

In this section, we provide several numerical examples justifying our results of

section 3. Initially we take a simple logistic equation and apply Theorem 2.6 of the

preliminary. In order to apply Theorem 2.6, we assume that v1 and w1 should satisfy

v0 ≤ v1, w1 ≤ w0 on [0, T ]. However, we have not used the best estimate of v0 and

w0 on the entire interval. Consider the example

(4.1) u′ = u− u2, u0(0) =
1

2

It is easy to observe, v0(t) ≡ 0 and w0(t) ≡ 1, are lower and upper solutions of

equation (4.1). The following graph is an application of Theorem 2.6.

From the graph v0 ≤ v1, w1 ≤ w0 on [0, 0.5]. Theorem 2.6 only guarantees

that v1 ≤ v2 and w2 ≤ w1 on [0, 0.5]. However in this example vn(t) and wn(t) are

computed till n = 7. This estimate of vn(t) and wn(t) are not useful since they will not
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Figure 1. Coupled Lower and Upper Solutions of (4.1)

be coupled lower and upper solutions beyond 0.5. In order to make our method more

accurate, we apply Theorem 3.1 to special logistic equation. Note that Theorem 3.1

provides a method to compute coupled lower and upper solutions. This is precisely

what we have done for equation (4.1) in the following graphs.

Figure 2. Coupled Lower and Upper Solutions of (4.1) using Theorem 3.1

In the next graph, we use the coupled and lower solutions of Figure 2 and apply

Theorem 2.6.

Figure 3. 4 iterations of (4.1) using Theorem 2.6

In the next graph, we use the coupled and lower solutions of Figure 2 and apply

Theorem 3.3. This provides accelerated convergence compared with the result of

Figure 3.

Remark 4.1. Notice Figure 3 took four iterations to approximate the unique solution

and Figure 4 only took three iterations and provided a better approximate unique

solution of 4.1.
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Figure 4. 3 iterations of (4.1) using Theorem 3.3

Next we consider the prey-predator model

(4.2)
u′1 = u1(5− 2u1 − 3u2) = 0, u0 =

1

2

u′2 = u2(−2 + u1 + u2) = 0, u0 =
1

2


It is easy to observe (v01, v02) = (0, 0) and (w01, w02) = (1, 1) are the equilibrium

solutions. Hence they are also natural lower and upper solutions. Using w01 ≡ 1 and

w02 ≡ 1 and v01 ≡ 0 and v02 ≡ 0, we obtained our graph representing coupled lower

and upper solutions of (4.2) below.

Figure 5. Coupled Lower and Upper Solutions of (4.2) using Theorem 3.4

Next, using the coupled lower and upper solutions from Figure 5, and Theo-

rem 2.10 we obtain:

In the next graph we use the coupled lower and upper solutions of Figure 5 and

apply Theorem 3.6.

Observe that Figure 7 converges faster than that of Figure 6.

5. Conclusion

In this paper, we developed both theoretical and numerical methods to compute

the coupled upper and lower solutions to any desired interval when we know the
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Figure 6. Coupled Lower and Upper Solutions of (4.2) using Theorem 2.10

Figure 7. Coupled Lower and Upper Solutions of (4.2) using Theorem 3.6.

natural lower and upper solutions on that interval. Our results are developed for both

the scalar equation and the dual system model.In addition, we can also accelerate this

process by implementing the Gauss-Seidel Iteration Method. We also provided several

numerical results as an application to our theoretical main results.
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