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Abstract: In this paper, we discuss the application of smart alternating group explicit (SMAGE) 

iteration and Newton-SMAGE iteration methods for the cubic spline solution of non-linear 

differential equation ( , , )u f x u u   subject to given natural boundary conditions. We compared 

the results of proposed SMAGE iteration method with the results of corresponding two parameter 

alternating group explicit (TAGE) iteration methods to demonstrate computationally the 

efficiency of the proposed method. 
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1. INTRODUCTION 
 

Consider the two point boundary value problem  

 

 
 ( ) ( ) ( , , ) 0, 0 1L u x u x f x u u x                                                               (1) 

 

with natural boundary conditions 

 

 (0) , (1)u A u B                                                                                               (2) 

 

where A and B are constants. We assume that for 0 1x   and ,u v   

 

(i) ( , , )f x u v is continuous,  

______________ 
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(ii) 
f

u




and 

f

v




exist and are continuous, and 

(iii) 0
f

u





and 

f
W

v





for some positive constant W. 

 

These conditions assure that the boundary value problem (1)-(2) has a unique solution 

(Keller, 1992).  

 

(Chawla & Subramanian, 1988) constructed a fourth order cubic spline method for 

second-order mildly nonlinear two point boundary value problems. In the recent past, 

many authors have suggested various numerical methods based on cubic spline 

approximations for the solution of linear singular two point boundary value problems 

(Al-Said, 2001; Ravi Kanth & Reddy, 2005; Al-Said & Noor, 2006). (Evans, 1985) 

developed the group explicit method for solving large linear systems arising from the 

discretization of differential equations. (Sukon & Evans, 1996) introduced two parameter 

alternating group explicit (TAGE) iterative methods for the solution of tri-diagonal linear 

system of equations. Later, (Mohanty & Evans, 2003; Mohanty et al, 2004) discussed the 

application of TAGE iterative method to fourth order accurate cubic spline 

approximation for the solution of non-linear singular two point boundary problems.  In 

this paper, we discuss the smart alternating group explicit (SMAGE) and Newton-

SMAGE iteration methods, and fourth order cubic spline finite difference approximation 

and their application to linear and nonlinear differential equations. 

 

2. CUBIC SPLINE APPROXIMATION AND APPLICATION 

 

To obtain a cubic spline solution of the boundary value problem (1) and (2), we choose a 

uniform mesh spacing 0h  along the x-direction. The interval [0, 1] is divided into a set 

of points with interval spacing of 1/( 1),h N N  being a positive integer. The cubic spline 

approximation to equation (1) is obtained on [0,1] which consists of the central point 

kx kh  and the two neighboring points 1k kx x h    and 1k kx x h   , 1(1)k N , where x0 = 0 

and xN+1 = 1. Let ( )k kU u x be the exact solution of u at the grid point kx and is 

approximated by uk.  

 

At each internal mesh point xk, we denote: 

  

  
( ) ( , ( ), ( )), 0(1) 1.k k k k kM u x f x u x u x k N    
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Given the values 0 1 1, , , Nu u u  of the function ( )u x at the mesh points 0 1 1, , , Nx x x   

and the values of the second derivatives of u at the end points 0u  and 1Nu 
 , there exists a 

unique interpolating cubic spline function S(x) with the following properties: 

 

(i) S(x) coincides with a polynomial of degree three on each 
1[ , ], 1(1) 1k kx x k N    

(ii) 2( ) [0,1]S x C  and 

(iii) ( ) , 0(1) 1k kS x u k N    

 

The interpolating cubic spline polynomial may be written as: 

 

 

     

 

3 3 2
1

1 1 1

2
1

1

( )
6 6 6

, , 1(1) 1
6

k k k

k k k k

k

k k k k

x x x x x xh
S x M M u M

h h h

x xh
u M x x x k N

h



  





   
    

 

 
      
 

 (3) 

 

We consider the following approximations: 

 

 , 0 1,k kx x h      
 

 (4.1)

 

 

 1 1
,

2

k k

k k

u u
m u

h

 
 

 (4.2) 

 

 1 1

1

3 4
,

2

k k k

k

u u u
m

h





 


 (4.3) 

 
( , , ),k k k kf f x u m

 (4.4)
 

 1 1 1 1( , , ),k k k kf f x u m   
 (4.5) 

            
2

1 1(1 ( ),k k k k ku u u h pf qf        
 

 (4.6) 

 

* *

1 1

1
( ) ( ),k k k k km u u h p f q f

h
      

                                   

         (4.7)
 

 
1 1

ˆ ( ),
12

k k k k

h
m m f f   

                                                          

      (4.8)
 

 
( , , ),k k k kf f x u m      

                                                          
      (4.9)

 

 
ˆ ˆ( , , ),k k k kf f x u m

                                                                   
       (4.10) 
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where 
2

* 2( 1) 1 1
, ,

6 2 3

dp
p p

d

 




  
    

 
   

2

* 2
(1 ) (1 ) 1 1 1

, (1 ) .
6 2 3

dq
q q

d

 




    
    

 
    

 

Then the cubic spline method with order of accuracy four for the differential equation (1) 

may be written as: 

 

 

2
2

1 1 2
ˆ2 (12 2) , 0 1, 1(1)

12
k k k k k k k

h
U U U f f f T k N   


   

          
 

 

  

(5) 

 

where 6( )kT O h ( Jain & Aziz, 1983) with 0 1 and Nu A u B  . 

 

Let us discuss the application of the difference formula (5) to the following singular 

problems 

 

 ( ) ( ) ( ), 0 1u D x u E x u f x x        (6) 

and 

( ) ( ) ( ), 0 1vu B x u uu C x u g x x       
                          

      (7) 

 

where  1 0ev R   is a constant and  

2( )  and ( )D x x E x x   , 2( )  and ( ) .B x v x E x v x     

For 0  , the non-linear singular problem (7) represents steady-state Burger’s equation in 

Cartesian coordinates. 

Now applying the difference formula (5) to the singular equations (6) and (7) and using 

the technique discussed by (Mohanty et al., 2003), we may obtain the following fourth 

order difference scheme  

 

1 12 , 0 1, 1(1) ,k k k k k k ka u b u c u d k N        (8) 

 

for the numerical solution of the differential equation (6), where
 

 

 

 
 

3 2

26 1
1 6 2 ,

12 2
ka

k k k

   
       

 
  

 

   2 4

1 1
1 6 2 6 2 ,

12 2
kb

k k
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3 2

26 1
1 6 2 ,

12 2
kc

k k k

    
       

 

  
2

2 2

2
12 3 2 .

12
k k k k k

h h
d f f h f f

k k
 



    
        

    
 

and the following fourth order difference scheme  

 

 

     

     

      

 

2

1 1 1 1 1 2 1 1

2

3 1 1 4 5 1 1 6 1 1

2 2 2 2 2

7 1 1 8 1 1 1 1 9 1 1

2

10 1 1

, , 2
12

2 2

2

0, 1(1) ,

k k k k k k k k k

k k k k k k k k k k k

k k k k k k k k k k

k k k

h
u u u v u u u I u I u u

I u u u I u I u u u I u u u u

I u u I u u u u I u u u u

I u u u P k N

      

     

       

 

       

        

       

     


  (9) 

 

for the numerical solution of the differential equation (7), where 

  

   
 

 

 

2

1 2

1 2 4

612
,k

k k

vhv
I v h f

x x

 
  

 

 

 

1

2 3

66
,

22
k

k k

vhv v h
I f

hx x

  
    

 

       

2

3 4 5 62 3 2

2 2 4 2 2
, , , ,

3 kk k k

v h h
I I I I

h xx x x

    
      

   
 

1 1
1

7 8 9 102

1
, , , ,

6 33 k

h v v
I I I v I

h x

 


        

and  

   
 

2
2

2
12 .k k k k k

k

h
P f h f f x f

x


     

 

In order to avoid the numerical complexity, we consider 1  . 

 

If the differential equation is linear, we can apply the two parameter SMAGE iterative 

method and in the non-linear case, we can use the Newton-SMAGE iterative method to 

obtain the solution. 

 

3 SMAGE AND NEWTON-SMAGE ALGORITHMS 

 

The linear system (8) in matrix form may be written as: 

   

  Ay RH   (10) 
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where 

1 1

2 2 2

1 1 1

2

2

2

2

N N N

N N N N

b c

a b c

a b c

a b

  



 
 
 
 
 
 
 
 
  

A

0

0

,

1

2

1N N

y

y

y


 
 
 
 
 
 
 
 

y and 

1 1 0
1

2 2

11

1

N NN N N

N

f a y
RH

f RH

RHf c y 



 
   
   
   
    
   
   
   

   
 






RH (say). 

 

 

To implement the SMAGE iterative method, we split the coefficient matrix A into two 

sub-matrices 1 2 A G G , where 1 G I and 2 G I are non-singular for any 0  . Now 

we discuss the case when N is odd (with 0 1= 0, = 1Nx x  ). 

 

Let      

1

2 2

3 31

1 1

,

N N

N N N N

b

b c

a b

b c

a b

 



 
 
 
 
 

  
 
 
 
 
  

G

0

0

and    

1 1

2 2

2
1 1N N

N N

N N N

b c

a b

b c

a b

b

 



 
 
 
 
 

  
 
 
 
 
  

G

0

0

 
 

So that the system (10) can be re-written as 

   1 2 G G y RH  (11) 

Then a SMAGE method for solving the above system may be written as 

 

     
 ( ) ( )

2 , 0,1,2,...s s s  z G I y
 

(12)
 

  
  ( 1/ 2) ( )

1 , 0,1,2,...s s s    G I y RH z
 

(13) 

  
  ( 1) ( 1/ 2) ( )

2 2 , 0,1,2,...s s s s    G I y y + z
 

(14) 

where   ( )

1 2, , ,
Ts

Nz z zz and ( 1/ 2)sy is an intermediate vector. The SMAGE iterative 

method saves time because of the single evaluation of the common term   ( )

2

sG I y on 

the right-hand side of the iterative method (12)-(14). 

The algorithm for the method (12)-(14) is as follows: 
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For simplicity, let us denote ,k k k kp b q b      , then the SMAGE method in the 

matrix form may be written as: 

 

( ) ( )

1 1 1 1 2

2 2 1 2 2
( )

1 1 2 1 1

s s

s

N N N N N

N N N

z q y c y

z a y q y

z a y q y

z q y

    

   
   

   
    
   

   
   
   

z

 

 

( 1/ 2) ( )

1 1 1
1

2 2 2

2 2 3 3 3

3 3

2 2 2

1 1 11 1

,

s s

N N N

N N NN N

N N NN N

y RH z
p

y RH z

p c y RH z

a p

y RH z

y RH zp c

y RH za p



  

   

     
     

     
     
     

     
     
     

     
              

0

0

 

 

 

( 1) ( 1/ 2) ( )

1 1 11 1

2 2 22 2

3 3 3

2 2

2 2 2
1 1

1 1 1

2

s s s

N N

N N N
N N

N N N

N N NN

y y zp c

y y za p

y y z

p c
y y z

a p
y y z

y y zp



 

 

  
 

  

       
       
       
       
       

        
       
       
       
       

             

0

0

 

 

By carrying out the necessary algebra (12)-(14) can be written in the explicit form. We 

obtain the following SMAGE algorithms: 

 

Step I  For 1(2) 1,k N  we have 

   
( ) ( ) ( )

1

( ) ( ) ( )
1 1 1 1

, 0,1,2,

, 0,1,2,

s s s
k k k k k

s s s
k k k k k

z q y c y s

z a y q y s



   

  

  
 

and   ( ) ( ) , 0,1,2,s s
N N Nz q y s   

 

Step II For k = 1, we have 

  
 ( ) ( )

1 1( 1/ 2)
1

1

, 0,1,2,

s s

s
RH z

y s
p




     

For 2(2) 1,k N  let 1 1 0,k k k kp p c a      

  ( ) ( ) ( ) ( )
1 2 1 1,s s s s

k k k kR RH z R RH z      
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Then,   
 1 1 2( 1/ 2) , 0,1,2,

k ks
k

R p R c
y s

 
 


 

  
 2 1 1( 1/ 2)

1 , 0,1,2,
k ks

k

R p R a
y s





 


 

 

Step III  For 1(2) 2,k N  let 1 1 0,k k k kp p c a      

  ( 1/2) ( ) ( 1/2) ( )
3 4 1 12 , 2s s s s

k k k kR y z R y z  
      

   

Then,   
 3 1 4( 1) , 0,1,2,

k ks
k

R p R c
y s

 
 


 

  
 4 3 1( 1)

1 , 0,1,2,
k ks

k

R p R a
y s





 


 

Finally, for k = N,  

  

 ( 1/ 2) ( )

( )
2

, 0,1,2,

s s
N Ns

N

N

y z
y s

p

  
   

In a similar manner, we can write the SMAGE algorithm when N is even. 

Now, we discuss the Newton-SMAGE algorithm. We follow the technique used by 

(Evans, 1985).
 

 

Let us define 

  

1

2

1

,

N N

y

y

y


 
 
 
 
 
  

y

            

1

2

1

( )

( )
( )

( )N N








 
 
 
 
 
  



y

y
y

y
 

 

and 

                          
1

( ) , 2(1) ,k
k

k

a k N
y






 


y  

                                2 ( ) , 1(1)k
k

k

b k N
y


 


y , 

  
1

( ) , 1(1) 1.k
k

k

c k N
y






  


y

 

 

Then the Jacobian of  ( ) y  can be written as the Nth-order tri-diagonal matrix 
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1 1

2 2 2

2 ( ) ( )

( ) 2 ( ) ( )
( )

( ) 2 ( )N N N N

b c

a b c

a b


 
 
 
  

  
 
 
 



y y 0

y y y
y

T
y

0 y y
  

 (15) 

 

Now with any initial vector 
(0)y , we define 

 

  
( 1) ( ) ( ) ,   0,1,2,...s s s s    y y y  (16) 

 

where 
( )sy  is the solution of the nonlinear system 

 

   ( ) ( )( ),   0,1,2,...s s s   T y y  (17) 

 

For the Newton-SMAGE method, we consider the case when N is odd. We split the 

matrix T as 1 2 T T T , where 

 

1

2 2

3 3
1

1 1

,

N N

N N N N

b

b c

a b

b c

a b

 



 
 
 
 
 

  
 
 
 
 
  

T

0

0
     

1 1

2 2

2
1 1N N

N N

N N N

b c

a b

b c

a b

b

 



 
 
 
 
 

  
 
 
 
 
 

T

0

0
 (18) 

 

then we write Newton-SMAGE method as: 
 

   
( ) ( )

2( ) , 0(1)5r r r   z T I y
 

(19)
 

   ( 1/ 2) ( ) ( )

1( ) , 0(1)5r r r r      T I y y z
 

(20) 

  
( 1) ( 1/ 2) ( )

2( ) 2 , 0(1)5r r r r     T I y y + z
 

(21) 

 

where 0   are relaxation parameters and 1( )T I  and 2( )T I  are non-singular.  

Since 1( )T I  and 2( )T I  consists of (2 2)  sub-matrices, they can be easily inverted. 

In order for this Newton-SMAGE method to converge it is sufficient that the initial 

vector u
(0)

 be close to the solution. 

 

In a similar manner, we can write the Newton-SMAGE algorithm when N is even. 
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4 CONVERGENCE OF SMAGE METHOD 

The SMAGE iteration method is given by: 

 

      

  

1( 1) ( )

2 2 1 2 1 1 2 1

1

1 2 1 1                               + , 0,1,2,...

s s

s

    

  





      
 

  

G I u I G I G I u

G I RH
 

or,  ( 1) ( ) , 0,1,2,...s s

w w s   u T u RH
   

(22) 
 

where 

          
1 1

2 2 2 1 1 2 1 1 2 1w      
        
 

T G I G I G I G I  
and 

      
1 1

1 2 2 2 1 1w    
 

   RH G I G I RH  
 

The matrix wT  is called the SMAGE iteration matrix. 

To prove the convergence of the method, we need to prove that   1wS T , where 

 wS T denotes the spectral radius of wT . 

Lemma 1. For 1  , the eigenvalues of 1 2 and G G are all real, provided 
2

1
7

  , 

and for 2  , the eigenvalues of 1 2 and G G are all real, provided 
1

1
3

  . 

 

Proof:  Consider 1  , 

  
 

 
3 2

21 6 1
1 7 2 , 1(1)

12 2
ka k N

k k k

  
       

   

    

 
 

 

   

21 6 1
1 7 2

12 2

1 1
1 17 2

12 2

1 1 1 2
1 17 2 7 2 0, for 1

12 2 24 7

k k k

k

  
      

 

 
    

 

 
          

  

 

  
 

 
3 2

21 6 1
1 7 2 , for 1(1)

12 2
kc k N

k k k

   
       

   

     
     

2

2 2 2 131 2
1 1 0, for 1

12 12 12 7k

     
         

   
. 
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Therefore, for 1  , we have 1 0, for 1(2) 1.k kca k N   
 

Similarly,  for 2  , we can show 1 0, for 1(2) 1.k kca k N     

Let ,   = 1(1) ,i i N be the eigenvalues of 1G . Then 'i s are the roots of the quadratic 

equation  

 

 
   2

1 1 1 0i i i i i i i ib b b b a c         (23) 

 

Simplifying, we get 

 

     
2

1 1 1

1
4

2
i i i i i i ib b b b a c   

 
    

  
 (24) 

The discriminants of the quadratic equations are  

  

 
 

2

1 14 0, 1(2) 1i i i ib b a c k N     
 

 

Hence the eigenvalues of 1G are real.In a similar manner we can show that the 

eigenvalues of 2G are real. 

 

Now we give the sufficient condition for the convergence of the SMAGE method. 

 

Theorem 1: Let  and ,   = 1(1) ,i i i N  be the eigenvalues of 1 2 and G G , respectively. If 

  1 1max{0, , , }N      (25) 

  2 1max{0, , , }N      (26) 

  2 1 22min 2mini i
i i

         (27) 

then the SMAGE iterative method is convergent for the system (10). 

 

Proof:   

 Let  1 2 11 1 2
1 2 3

2 2 3 2 3

1, , , , , , ,N
N

N

c c cc c c
diag diag d d d d

a a a a a a


 
  
 

 D

 
 

Since the off diagonal entries of A are negative. Therefore 1 0, 1, , 1k ka c k N    .  

Therefore the diagonal entries of D are positive. 
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The SMAGE iteration matrix is given by: 

  

 
        

1 1

2 2 2 1 1 2 1 1 2 1w      
        
 

T G I G I G I G I
 

  
      

1 1

2 2 1 2 1 1 2 1    
       
 

G I I G I G I
 

Define  

 

   

     

1*

2 2 2 2

1 1

1 2 1 1 2 1 2 2

w w 

    



 

  

      
 

T G I T G I

I G I G I G I  

 
     * 1/ 2 * 1/ 2

w w w

S T = S T S D T D
 

      
1 1

1/ 2 * 1/ 2

1 2 1 1 2 1 2 2w     
 

       
  

D T D I G I G I G I
 

 

where  
1/ 2 1/ 2 1/ 2 1/ 2

1 1 2 2 and  G = D G D G = D G D .  

 

     

     

* 1/ 2 * 1/ 2 1/ 2 * 1/ 2

2

1 1

1 2 1 1 2 1 2 2
22

                                                      

w w w w

    

 

 

 

      
  

S T = S T S D T D D T D

I G I G I G I  

            It is easy to verify that 1G and 2G are symmetric. Therefore, the matrices 

  
1

2 1 2 2 


 G I G I and   
1

1 2 1 1  
   

  
I G I are also symmetric.  

Hence,  

  
1

2 1 2 2
2

 


 G I G I = 
 

 
 2

1

2

max
i

i

i
 

 

 



G
 

        
1 1 1

1 2 1 1 1 1 1 1 1 2 1 1
2 2

       
             

      
I G I G I G I G I  

     
   

1

1 2 1 1
2

 
    

    
G I G I

 
 

  
1

1 2 1 1 


 G I G I is symmetric, therefore  

 

 

   
 

 
 1

1 2

1 2 1 1
2 1

max
i

i

i
 

 
 

 





    
     G

G I G I   

 

Therefore, we have 
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 1 2

2 1

1 2

max max
i i

i i

w

i i
   

   

    

 


 G G
S T

 

 

 From equations (25) and (26) we have: 1 2 1, 0 and 0 for 1,...,i k N       , hence 

  2

1

1, 1(1)i

i

k N
 

 


 


 

 

Also, from (27) we have: 

 

 2 1 12min 2 , 1(1)i i
i

i N        
 

 

 2

1

1 , 1(1)i

i

k N
 

 


  


 

Hence, we conclude that 2

1

1, 1(1)i

i

k N
 

 


 


 

Thus, 
 

 
 1

2

1

max 1
i

i

i
 

 

 




G
 

Similarly, we can prove that 
 

 
 2

1

2

max 1
i

i

i
 

 

 




G
 

Hence,   1w S T .  

 

Hence, the convergence of the SMAGE method (22) follows. 

 

 

5 NUMERICAL ILLUSTRATIONS 
 

We have solved the following two problems to illustrate the proposed SMAGE iterative 

method, whose exact solutions are known. We have also compared the proposed SMAGE 

iterative methods with the corresponding TAGE iterative methods. The right-hand side 

functions and boundary conditions can be obtained by using the exact solutions. The 

initial vector 0 is used in all iterative methods, and iterations were stopped when 

( 1) ( ) 1010s s  u u was achieved. While solving non-linear difference equations, we have 

considered five inner iterations only.  

 

Problem 1 , 0 1u u x     (Convection-Diffusion equation)  (28) 
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The exact solution is    (1 )( ) 1 1xu x e e      .The root mean square (RMS) errors and 

the number of iterations both for SMAGE and TAGE methods are tabulated in table 1 for 

various values of  .  

 

Problem 2   , 0 1u u u x       (Burgers’ equation)  (29) 

 

The exact solution is  ( ) 1 tanh 2u x x      .The root mean square (RMS) errors and 

the number of iterations both for both Newton-SMAGE and Newton-TAGE methods are 

tabulated in table 2 for 1 2  and various values of 1
eR    .  

 

 

 

Table 1: Problem 1: the  RMS errors 

 

 

 TAGE method SMAGE method  

N 
1 2opt opt

opt

 







 

Iter cpu 

time 

(in sec) 

1 2opt opt

opt

 






 

Iter cpu time 

(in sec) 

RMS errors 

(for both TAGE 

and CAGE 

method) 

10         

10 0.725 24 0.0016  0.72 24 0.0013 0.1619(-03) 

20 0.41 48 0.0034 0.4 42 0.0021 0.1169(-04) 

30 0.28 70 0.0062 0.27 66 0.0038 0.2428(-05) 

40 0.21 100 0.0108 0.21 85 0.0059 0.7884(-06) 

60 0.15 150 0.0228 0.137 125 0.0116 0.1599(-06) 

80 0.11 200 0.0398 0.103 163 0.0193 0.5131(-07) 

100         

10 6.0 18 0.0014 5.98 18 0.00118 0.8820(-01) 

20 2.4 17 0.0019 2.38 17 0.00145 0.1977(-01) 

30 1.61 20 0.0024 1.61 21 0.00182 0.6125(-02) 

40 1.22 26 0.0035 1.22 27 0.00249 0.2331(-02) 

60 0.82 38 0.0065 0.835 39 0.00423 0.5187(-03) 

80 0.62 50 0.0105 0.617 52 0.00669 0.1684(-03) 
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Table 2: Problem 2: the RMS errors 

 Newton-TAGE method Newton-SMAGE method  

N 

1 2opt opt

opt

 







 

Iter 
cpu time 

(in sec) 

1 2opt opt

opt

 







 

iter 
cpu time 

(in sec) 

RMS errors 

(for both Newton-

TAGE and Newton-

CAGE method) 

10, 1/ 2R          

20 0.0270 15 0.0190 0.0270 15 0.0173 0.6970(-06) 

30 0.0202 21 0.0212 0.0196 21 0.0182 0.1452(-06) 

40 0.0154 28 0.0248 0.0150 28 0.0194 0.4719(-07) 

60 0.0105 43 0.0353 0.0105 41 0.0228 0.9581(-08) 

80 0.0093 57 0.0505 0.0077 55 0.0273 0.3081(-08) 

50, 1/ 2R          

20 0.0100 06 0.0176 0.012 05 0.0168 0.1992(-03) 

30 0.0080 06 0.0180 0.0079 06 0.0169 0.4113(-04) 

40 0.0054 08 0.0191 0.006 07 0.0172 0.1295(-04) 

60 0.0041 09 0.0208 0.0041 09 0.0179 0.2571(-05) 

80 0.0029 12 0.0246 0.0031 11 0.0189 0.8188(-06) 

100, 1/ 2R          

20 0.0070 05 0.0175 0.007 05 0.0164 0.1016(-02) 

30 0.0078 05 0.0182 0.0061 05 0.0169 0.3038(-03) 

40 0.0044 06 0.0183 0.0059 05 0.0171 0.1518(-03) 

60 0.0041 06 0.0195 0.004 06 0.0176 0.3085(-04) 

80 0.00303 07 0.0212 0.003 07 0.0181 0.9571(-05) 

 

 

6 FINAL REMARKS 
 

The TAGE method requires two sweeps to solve a problem and also, it requires a lot of 

algebra for computational work. In SMAGE method the amount of computational work is 

comparatively reduced because of the evaluation of the common term. Experimentally, 

although both TAGE and SMAGE method require approximately the same number of 

iterations, but as compared to the TAGE method the corresponding SMAGE method 

requires less time. We have solved two problems and numerical results shows the 

efficiency of the proposed SMAGE method.  
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