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NUMERICAL APPROACH VIA GENERALIZED MONOTONE
METHOD FOR SCALAR CAPUTO

FRACTIONAL DIFFERENTIAL EQUATIONS
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ABSTRACT. The generalized monotone method for Caputo fractional differential equations using
coupled lower and upper solutions is very useful, since it does not require any additional assumption.
In this work we provide theoretical as well as computational methodology to compute coupled lower
and upper solutions of type I to any desired interval. Further the convergence can be accelerated
using Gauss-Seidel method. We have provided numerical results as well.
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1. INTRODUCTION

Nonlinear problems (nonlinear dynamic systems) occur naturally as mathematical

models in many branches of science, engineering, finance, economics, etc. So far, in

literature, most models are differential equations with integer derivative. However,

the qualitative and quantitative study of fractional differential and integral equations

has gained importance recently due to its applications. See [1, 3, 8, 6] for details. In

solving nonlinear problems, monotone method combined with method of upper and

lower solutions is a popular choice, because the existence of solution by monotone

method is both theoretical and computational. In addition the interval of existence

is guaranteed. Monotone method for various nonlinear problems has been developed

in [4]. Monotone method (monotone iterative technique) combined with method of

lower and upper solutions yields monotone sequences, which converges to minimal

and maximal solutions of nonlinear differential equation.

In many nonlinear problems (nonlinear dynamic systems), the nonlinear term is

the sum of an increasing and decreasing functions. Monotone method extended to

such systems is called generalized monotone method. Generalized monotone method

for first order nonlinear initial value problems and for fractional order nonlinear initial
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value problem has been developed in [10, 7] respectively. See [9] for generalized mono-

tone method for fractional order of N systems. The generalised monotone method

for nonlinear fractional differential equations with initial conditions has an added ad-

vantage over the usual monotone method, since the former method does not need the

computation of Mittag-Leffler function. However the difficulty is in computing the

coupled upper and lower solutions of type I (see [7] for details) to any desired interval.

In this work we provide a methodology to compute coupled lower and upper solutions

of type I for scalar Caputo fractional differential equation with initial conditions on

any given interval. We also develop accelerated convergence results using generalized

monotone method. Finally, we provide a numerical example as an application of all

our theoretical results.

2. PRELIMINARY RESULTS

In this section, we recall known results, which are needed for our main results.

Initially, we recall some definitions.

Definition 2.1. Caputo fractional derivative of order q is given by equation

cDqu(t) =
1

Γ(1− q)

∫ t

0

(t− s)−qu′(s)ds,

where 0 < q < 1.

Also, consider nonlinear Caputo fractional differential equation with initial con-

dition of the form

(2.1) cDqu(t) = f(t, u(t)), u(0) = u0,

where f ∈ C[J × R, R] and J = [0, T ].

The integral representation of (2.1) is given by equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds,

where Γ(q) is the Gamma function.

In order to compute the solution of linear fractional differential equation with

constant coefficients we need Mittag Leffler function.

Definition 2.2. Mittag Leffler function is given by

Eα,β(λ(t− t0)
α) =

∞∑
k=0

(λ(t− t0)
α)k

Γ(αk + β)
,

where α, β > 0. Also, for t0 = 0, α = q and β = 1, we get

Eq,1(λtq) =
∞∑

k=0

(λtq)k

Γ(qk + 1)
,
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where q > 0.

Also, consider linear Caputo fractional differential equation,

(2.3) cDqu(t) = λu(t) + f(t), u(0) = u0, on J

where J = [0, T ], λ is a constant and f(t) ∈ C[J, R].

The solution of (2.3) exists and is unique. The explicit solution of (2.3) is given

by

u(t) = u0Eq,1(λtq) +

∫ t

0

(t− s)q−1Eq,q(λtq)f(s)ds.

See [5] for details.

In particular, if λ = 0, the solution u(t) is given by

(2.4) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(q) is the Gamma function.

Also we recall known results related to scalar Caputo nonlinear fractional differ-

ential equations of the following form:

(2.5) cDqu(t) = f(t, u) + g(t, u), u(0) = u0 on J = [0, T ],

where 0 ≤ q < 1. Here f, g ∈ C(J × R, R), f(t, u) is non-decreasing in u on J and

g(t, u) is non-increasing in u on J .

We recall a basic lemma relative to the Reimann-Liouville fractional derivative.

Lemma 2.3. Let m(t) ∈ Cp[J, R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],

m(t1) = 0 and m(t) ≤ 0, on [0, T ], then Dqm(t1) ≥ 0.

Proof. See [2, 5] for details.

The above lemma is true for Caputo derivative also, using the relation cDqx(t) =

Dq(x(t)−x(0)) between the Caputo derivative and the Reimann-Liouville derivative.

This is the version we will be using to prove our comparison results.

We recall the following known definitions which are needed for our main results.

Definition 2.4. The functions v0, w0 ∈ C1([0, T ], R) are called natural lower and

upper solutions of (2.5) if:

cDqv0(t) ≤ f(t, v0) + g(t, v0), v0(0) ≤ u0,

and

cDqw0(t) ≥ f(t, w0) + g(t, w0), w0(0) ≥ u0.
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Definition 2.5. The functions v0, w0 ∈ C1(J, R) are called coupled lower and upper

solutions of (2.5) of type I if:

cDqv0(t) ≤ f(t, v0) + g(t, w0), v0(0) ≤ u0,

and
cDqw0(t) ≥ f(t, w0) + g(t, v0), w0(0) ≥ u0.

See [7] for other types of coupled lower and upper solutions relative to (2.5).

Denoting F (t, u) = f(t, u) + g(t, u), we state the next comparison result.

Theorem 2.6. Let v, w be natural lower and upper solutions of (2.5), respectively.

Suppose that F (t, w) − F (t, v) ≤ L(w − v) where L is a constant such that L > 0,

then v(0) ≤ w(0) implies that v(t) ≤ w(t), t ∈ J .

Proof. See [5] for details.

Next, we recall a corollary of Theorem 2.6, which we will use in our main result.

Corollary 2.7. Let p ∈ C1[J, R]. cDqp(t) ≤ Lp(t), where L ≥ 0 and p(0) ≤ 0. Then

p(t) ≤ 0 on J .

We define the following sector Ω for convenience. That is, Ω = [(t, u) : v(t) ≤
u(t) ≤ w(t), t ∈ J ].

Theorem 2.8. Suppose v, w ∈ C1[J, R] are coupled lower and upper solutions of

(2.5) such that v(t) ≤ w(t) on J and F ∈ C(Ω, R). Then there exists a solution u(t)

of (2.5) such that v(t) ≤ u(t) ≤ w(t) on J , provided v(0) ≤ u0 ≤ w(0).

Proof. See [5] for details.

Theorem 2.9. Assume that

(i) v0, w0 ∈ C1[J, R]. v0, w0 are coupled lower and upper solutions of (2.5) of type

I, with v0(t) ≤ w0(t) on J .

(ii) f(t, u), g(t, u) ∈ C[J × R, R], where f(t, u) is increasing in u on J , and g(t, u)

is decreasing in u on J .

Then there exist monotone sequences, vn(t) and wn(t), such that vn(t) → v(t) and

wn(t) → w(t) uniformly and monotonically, where v(t) and w(t) are coupled minimal

and maximal solutions of equation (2.5) on J . That is, for any solution u(t), of

(2.5), with v0 ≤ u ≤ w0 on J , we get natural sequences, {vn} and {wn}, satisfying,

v0(t) ≤ v1(t) ≤ v2(t) ≤ · · · ≤ vn(t) ≤ u(t) ≤ wn(t) ≤ · · · ≤ w2(t) ≤ w1(t) ≤ w0(t), for

each n ≥ 1 on J , where v(t) and w(t) satisfy the coupled system,

(2.6)
cDqv(t) = f(t, v(t)) + g(t, w(t)), v(0) = u0,

cDqw(t) = f(t, w(t)) + g(t, v(t)), w(0) = u0.
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Here we use type (ii) iterative schemes,

cDqvn+1(t) = f(t, vn(t)) + g(t, wn(t)), vn+1(0) = u0,
cDqwn+1(t) = f(t, wn(t)) + g(t, vn(t)), wn+1(0) = u0.

Also, v(t) ≤ u(t) ≤ w(t) on J .

Theorem 2.10. Let all the hypothesis of Theorem 2.9 be satisfied. Further, let

f(t, u1)− f(t, u2) ≤ L1(u1 − u2),

g(t, u1)− g(t, u2) ≥ −M1(u1 − u2),

where L1 and M1 are constants, whenever v0 ≤ u2 ≤ u1 ≤ w0, then v = w = u is the

unique solution of equation (2.5).

The next result is monotone method for (2.5) where we use natural lower and

upper solutions.

Theorem 2.11. Assume that

(i) v0, w0 ∈ C1(J, R) are natural lower and upper solutions (2.5) with v0(t) ≤ w0(t)

on J .

(ii) f, g ∈ C(J × R, R), f(t, u) is nondecreasing in u and g(t, u) is nonincreasing in

u on J .

Then there exists monotone sequences vn(t) and wn(t) on J such that vn(t) → v(t)

and wn(t) → w(t) uniformly and monotonically and (v, w) are coupled minimal and

maximal solutions, respectively to equation (2.5). That is, (v, w) satisfy

(2.7)
cDqv(t) = f(t, v) + g(t, w), v(0) = u0, on J,
cDqw(t) = f(t, w) + g(t, v), w(0) = u0, on J,

provided v0 ≤ v1 and w1 ≤ w0 on J .

See [5] for details of the proofs of Theorems 2.9, 2.10, 2.11. Also note that the

iterative schemes used in Theorems 2.9 and 2.11 are one and the same. Theorem

2.11, uses v0, w0 as natural lower and upper solutions. Then v1, w1 will be coupled

lower and upper solutions only on some interval [0, t1) and not necessarily on [0, T ].

This is the motivation for our main result relative to equation (2.5).

3. MAIN RESULTS

The generalized monotone method is well known for scalar Caputo differential

equations with initial conditions using coupled lower and upper solutions of type

I as described in our preliminaries. It is easy to observe that coupled lower and

upper solutions of type I implies that they are also natural lower and upper solution.

However, the converse is not true. In theory, we know that the existence of natural

lower and upper solutions, where the lower solution is less than or equal to the
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upper solution, we have a solution of (2.5) such that v0 ≤ u ≤ w0 on J , whenever

v0(0) ≤ u0 ≤ w0(0). In the generalized monotone method, if we use natural lower and

upper solution we need an extra assumption, that is v0(t) ≤ v1(t) and w1(t) ≤ w0(t)

on J . Note that in this case, the sequences are developed as in Theorem 2.9.

Consider the example

cD
1
2 u(t) = u− u2, u(0) =

1

2
, t ∈ [0, T ], T ≥ 1.

Then v0(t) = 0 and w0(t) = 1 are natural lower and upper solutions respectively.

Then using the iterations as in Theorem 2.11, we get

v1(t) = 0.5− 1.1284t
1
2 and w1(t) = 0.5 + 1.1284t

1
2 .

It is easy to observe v1(t) ≥ v0(t) and w1(t) ≤ w0(t) on [0, 0.1963]. However in order

to apply Theorem 2.9, we need

v1(t) ≥ v0(t) and w1(t) ≤ w0(t) on [0, T ].

This is the motivation for our main result. Our aim is to develop a method to

construct coupled lower and upper solutions on the interval J = [0, T ], so that we

can apply Theorem 2.9 to compute the coupled minimal and maximal solutions for

equation (2.5). If f and g satisfies one sided Lipschitz condition, we can also prove

that the coupled minimal and maximal solutions of (2.5) will converge to the unique

solution of (2.5). The next result provides a method to construct coupled lower and

upper solutions to any desired interval using natural lower and upper solutions.

Theorem 3.1. Assume that

(i) v0, w0 ∈ C[J, R] are natural lower and upper solutions of (2.5) such that v0(t) ≤
w0(t) on J .

(ii) f, g ∈ C[J × R, R], f(t, u) is nondecreasing and g(t, u) is nonincreasing in u on

J . Then there exists monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t) → v(t) and wn(t) → w(t) uniformly and monotonically to v and w where

v and w are coupled lower and upper solutions of (2.5) such that v ≤ w on J .

The iterative scheme is given by

cDqvn+1(t) = f(t, vn) + g(t, wn), on [0, tn], vn+1(0) = u0

cDqwn+1(t) = f(t, wn) + g(t, vn), on [0, tn ], wn+1(0) = u0,

where vn(t) ≥ v0(t) on [0, tn) and wn(t) ≤ w0(t) on [0, tn).

Also define vn+1(t), wn+1(t) on [tn, T ] and [ tn, T ] respectively as the solution

of

cDqvn+1(t) = f(t, v0) + g(t, w0), vn+1(tn) = lim
h→0

vn+1(tn − h),

cDqwn+1(t) = f(t, w0) + g(t, v0) wn+1(tn) = lim
h→0

wn+1( tn − h).
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Proof. From Theorem 2.11 we have v0(t) ≤ v1(t) on [0, t1] and w1(t) ≤ w0(t) on

[0, t1 ]. If t1 ≥ T , and t1 ≥ T there is nothing to prove since one can use Theorem 2.9

to compute coupled minimal and maximal solutions. If not, certainly t1 < T and

t1 < T . Also v1(t1) = v0(t1) and w1(t1) = w0(t1). We will now redefine v1(t) and

w1(t) on [0, T ] as follows

cDqv1(t) = f(t, v0) + g(t, w0), v1(0) = u0 on [0, t1],

cDqw1(t) = f(t, w0) + g(t, v0), w1(0) = u0 on [0, t1 ],

and

v1(t) = v0(t) on [t1, T ],

w1(t) = w0(t) on [ t1, T ].

Proceeding in this manner, we will have vn(tn) = v0(tn), and wn(tn) = w0(tn). Now

we can redefine vn, wn as follows.

cDqvn(t) = f(t, vn−1) + g(t, wn−1), vn(0) = u0 on [0, tn)

vn(t) = v0(t) on [tn, T ],

Similarly,

cDqwn(t) = f(t, wn−1) + g(t, vn−1), wn(0) = u0 on [0, tn)

wn(t) = w0(t) on [ tn, T ]

vn, wn intersect v0 and w0 at tn, tn respectively. If tn ≥ T, and tn ≥ T we can stop

the process. Certainly vn ≤ wn and vn and wn are coupled minimum and maximum

solutions of (2.5) respectively.

Now we can show that the sequences {vn(t)} and {wn(t)} constructed above

are equicontinuous and uniformly bounded on J . Hence by Ascoli Arzela’s theo-

rem, a subsequence converges uniformly and monotonically. Since the sequences are

monotone, the entire sequence converges uniformly and monotonically to v and w

respectively.

It is easy to observe that

cDqvn(t) = f(t, vn−1) + g(t, wn−1), vn(0) = u0 on [0, tn),

vn(t) = v0(t) on [tn−1, T ], such that vn(tn−1) = v0(tn),

and
cDqwn(t) = f(t, wn−1) + g(t, vn−1), wn(0) = u0 on [0, tn),

wn(t) = w0(t) on [ tn−1, T ], such that wn( tn) = w0( tn−1),

for all n ≥ 1.

As n → ∞, tn, tn → T, vn(t) → v(t), and wn(t) → w(t), uniformly and mono-

tonically.
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Further,

cDqv(t) = f(t, v) + g(t, w), v(0) = u0 on J,

and

cDqw(t) = f(t, w) + g(t, v), w(0) = u0 on J.

Hence v, w are coupled lower and upper solutions of (2.5) on J . This concludes the

proof.

Remark 3.2. Note that Theorem 3.1 provides coupled lower and upper solutions of

(2.5) on J . Now we can develop sequences {vn} and {wn} using Theorem 2.9. These

sequences converge uniformly and monotonically to coupled minimal and maximal

solutions. Further if uniqueness condition is satisfied, the sequences converge to the

unique solution of (2.5). However, in generalized monotone method even for scalar

equations like (2.5), we can apply Gauss-Seidel method such that sequences converge

faster. This is precisely the next result.

Theorem 3.3. Let all the hypothesis of Theorem 2.9 hold. Then there exist monotone

sequences vn and wn, where the iterative scheme is given by

(3.1)
cDqv∗n+1 = f(t, v∗n) + g(t, w∗

n), v∗n+1(0) = u0,
cDqw∗

n+1 = f(t, w∗
n) + g(t, v∗n+1), w∗

n+1(0) = u0,

where v∗0 = v1 and w∗
0 is the solution of cDqw∗

0 = f(t, w0) + g(t, v1),w
∗
0(0) = u0, or

(3.2)
cDqv∗n+1 = f(t, v∗n) + g(t, w∗

n+1), v∗n+1(0) = u0,
cDqw∗

n+1 = f(t, w∗
n) + g(t, v∗n), w∗

n+1(0) = u0,

where w∗
0 = w1 and v∗0 is the solution of cDqv∗0 = f(t, v0) + g(t, w1),v

∗
0(0) = u0.

Proof. We provide a brief proof. One can easily see that v0(t) ≤ v1(t) on J . Now it

is enough if we prove that w∗
0 ≤ w1. Let

p(t) = w∗
0 − w1, p(0) = 0

cDqp(t) = cDqw0
∗ − cDqw1

= f(t, w0) + g(t, v1)− (f(t, w0) + g(t, v0))

= g(t, v1)− g(t, v0) ≤ 0

since v1(t) ≥ v0(t) on J .

This implies p(t) ≤ 0 on J , using Corollary 2.7. That is w∗
0 ≤ w1 on J. Continuing

the process, we can show that that the sequences {v∗n} and {w∗
n} converges faster than

the sequences {vn} and {wn} which are computed using Theorem 2.9.
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4. NUMERICAL RESULTS

In this section, we provide numerical examples justifying our results of section 3.

Initially we take a simple logistic equation and apply Theorem 2.9. In order to apply

Theorem 2.9, we assume that v1 and w1 should satisfy v0 ≤ v1, w1 ≤ w0 on [0, T ].

Consider the example

(4.1) cD
1
2 u(t) = u− u2, u(0) =

1

2
, t ∈ [0, T ], T ≥ 1.

It is easy to observe that v0(t) = 0 and w0(t) = 1 are natural lower and upper

solutions respectively of (4.1) such that v0 ≤ w0 on [0, T ].

Using our main result namely Theorem 3.1 we can compute coupled lower and

upper solutions on [0, T ]. In the graph below we apply Theorem 3.1 to the above

example.

Figure 1. Coupled Lower and Upper Solutions of (4.1) using Theorem 3.1

In the above graph we have computed v and w such that v ≤ w on the interval

[0, 0.4618].

In the next graph we use the coupled upper and lower solutions of Figure 1 and

apply Theorem 2.9 to obtain the coupled minimal and maximal solutions.

We have plotted the above graph on the interval [0, 0.45] showing six iterations.

In the next graph we use the coupled upper and lower solutions of Figure 1 and

apply Theorem 3.3 to obtain the coupled minimal and maximal solutions.

We can observe that Figure 3 took only five iterations compared to six iterations

in Figure 2, as we have used accelerated convergence.
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Figure 2. Coupled Lower and Upper Solutions of (4.1) using Theorem 2.9

Figure 3. Coupled Lower and Upper Solutions of (4.1) using Theorem 3.3
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5. CONCLUSION

In general in order to compute the coupled lower and upper solutions of linear

fractional differential equations, using the usual monotone method we need the Mit-

tag Leffler function. In this work, we have computed the coupled lower and upper

solutions of scalar Caputo fractional differential equations, on a desired interval us-

ing the generalised monotone method. The advantage of the generalised monotone

method over the usual monotone method is that it does not require the computation

of Mittag Leffler function. As we are using generalised monotone method, even for

scalar equations we were able to accelerate the convergence by using Gauss-Seidel

method. In our future work we would like to extend this method to system of frac-

tional differential equations like the Volterra-Lotka model.
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