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ABSTRACT. We consider a general two point boundary value problem for dynamical equations

on time scales and establish a criterion for the existence of solution by using a fixed point theorem

on cones. We also establish the existence of solution to two-point boundary value problem by the

method of upper and lower solutions.
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1. Introduction

The existence of a solution via lower and upper solutions, coupled with a mono-

tone iterative technique, provides an effective and flexible mechanism that offers the-

oretical as well as constructive results for nonlinear boundary value problems on a

closed set. The lower and upper solutions for two point boundary value problems

on time scales, an improvement by a monotone iterative process, serve as bounds for

solution. The idea imbedded in this technique has proved to be of immense value and

has played an important role in unifying a variety of nonlinear problems.

The history of the existence of solutions via upper and lower solutions for bound-

ary value problems (BVPs) also enjoys a good history, first for BVPs associated

with differential equations, then finite difference equations, and recently, unifying

the theory on time scales. The development of the theory has gained attention by

many researchers; to mention a few, we list some papers Habets and Zanolin [9], and

Lee [13] for ordinary differential equations, Kelley and Peterson [12], and Atici and

Cabada [5] for finite difference equations, and the results for time scales by Akin [2].

Later the results extended to infinite interval by Agarwal, Bohner and O’ Regan [1].

We extend these results to second order nonlinear differential equation on time scales
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satisfying two-point nonhomogeneous Sturm Liouville boundary conditions when f is

taken as general nonlinear function.

This paper considers the existence of solution and the existence of a solution via

upper and lower solutions to the second order dynamic equation,

(1.1) y∆2

(x) + f(x, y(x), y∆(x)) = 0, t ∈ [a, b]

subject to the Sturm Liouville boundary conditions,

(1.2) αy(a) + βy∆(a) = A,

(1.3) γy(σ2(b)) + δy∆(σ(b)) = B,

where α, β, γ, δ, A, B ∈ R such that α > 0, β ≤ 0, γ > 0, δ ≥ 0, and |α−1δ + βγ−1| <

σ2(b) − a.

We make the following assumptions throughout:

(A1) f : [a, σ2(b)] × R
2 → R is continuous, and

(A2) f : [a, σ2(b)] × R
2 → R is increasing in its last argument.

The rest of the paper is organized as follows. In Section 2, we briefly describe

some salient features of time scales and we state some basic concepts which are needed

for later discussion. In Section 3, we establish the existence of solution for the BVP

(1.1)–(1.3) by using fixed point theorem on cones. In Section 4, we establish the

existence of solution for the BVP (1.1)–(1.3) via upper and lower solutions. Finally,

as an application, we give examples to demonstrate our result.

2. Preliminaries

For the information on time scale calculus and notation for delta differentiation,

as well as concepts for dynamic equations on time scales, we refer to the introductory

book on time scales by Bohner and Peterson [7]. By a time scale we mean a nonempty

closed subset of R. We denote the time scale by the symbol T. By an interval we

mean the intersection of the real interval with a given time scale. The jump operators

introduced on a time scale T may be connected or disconnected. To overcome this

topological difficulty the concept of jump operators is introduced in the following way.

The operators σ and ρ from T → T, defined as σ(x) = inf{ξ ∈ T : ξ > x} and ρ(x) =

sup{ξ ∈ T : ξ < x} are called jump operators. If σ is bounded above and ρ is bounded

below then we define σ(maxT)=maxT and ρ(minT)=minT. These operators allow

us to classify the points of time scale T. A point x ∈ T is said to be right-dense if

σ(x) = x, left-dense if ρ(x) = x, right-scattered if σ(x) > x, left-scattered if ρ(x) < x,

isolated if ρ(x) < x < σ(x) and dense if ρ(x) = x = σ(x). The set T
κ which is derived
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from the time scale T as follows

T
κ =







T\(ρ(sup T), sup T], if sup T < ∞

T, if sup T = ∞
.

Finally, if f : T → R is a function, then we define the function fσ : T → R by

fσ(x) = f(σ(x)) for all x ∈ T.

We define the set D={y : y∆2

is continuous on [a, b] }. For any u, v ∈ D, we

define the sector [u, v] by [u, v] = {w ∈ D : u(x) ≤ w(x) ≤ v(x), x ∈ [a, σ2(b)]}.

Definition 2.1. A real valued function u(x) ∈ D on [a, σ2(b)] is a lower solution for

the BVP (1.1)–(1.3), if

−u∆2

(x) ≤ f(x, u(x), u∆(x)), x ∈ [a, b]

αu(a) + βu∆(a) ≤ A

and

γu(σ2(b)) + δu∆(σ(b)) ≤ B.

Definition 2.2. A real valued function v(x) ∈ D on [a, σ2(b)] is an upper solution

for the BVP (1.1)–(1.3), if

−v∆2

(x) ≥ f(x, v(x), v∆(x)), x ∈ [a, b]

αv(a) + βv∆(a) ≥ A

and

γv(σ2(b)) + δv∆(σ(b)) ≥ B.

3. An Existence Theorem

In this section, we establish the general solution for the BVP (1.1)–(1.3), and

then we establish the existence of solutions for the BVP (1.1)–(1.3) by using the

Schauder-Tychonov fixed point theorem [10].

Define C1 to be the Banach space of all continuously differentiable functions on

[a, σ2(b)] equipped with the norm ‖ · ‖ defined by

max

{

max
x∈[a,σ2(b)]

|y(x)|, max
x∈[a,σ(b)]

|y∆(x)|

}

.

Theorem 3.1. The solution of the BVP (1.1)–(1.3) is

y(x) = l(x) +

∫ σ(b)

a

G(x, ξ)f(ξ, y(ξ), y∆(ξ))∆ξ,

where G(x, ξ) is the Green’s function for the associated homogeneous BVP of (1.1)–

(1.3) and

l(x) =
(Bα − Aγ)x + (γσ2(b) + δ)A − (aα + β)B

αγ(σ2(b) − a) + αδ − βγ
,
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for all x ∈ [a, σ2(b)].

Proof. We define l(x) = (Bα−Aγ)x+(γσ2(b)+δ)A−(aα+β)B
αγ(σ2(b)−a)+αδ−βγ

on [a, σ2(b)], where l(x) satisfies

the boundary conditions

αl(a) + βl∆(a) = A,

γl(σ2(b)) + δl∆(σ(b)) = B.

Hence, if y(x) is a solution of the BVP (1.1)–(1.3) then w(x) = y(x)−l(x) is a solution

of the following second order dynamical equation,

(3.1) w∆2

(x) + F (x, w(x), w∆(x)) = 0

satisfying the two-point boundary conditions,

(3.2) αw(a) + βw∆(a) = 0,

(3.3) γw(σ2(b)) + δw∆(σ(b)) = 0,

where F (x, w(x), w∆(x)) = f(x, w(x)+ l(x), w∆(x)+ l∆(x)). The Green’s function for

the BVP −w∆2

(x) = 0 satisfying the boundary conditions (3.2)–(3.3) can be obtained

easily by elementary methods and is given by

G(x, ξ) =











[γ(σ2(b)−σ(ξ))+δ][α(x−a)−β]
αγ(σ2(b)−a)+αδ−βγ

, a ≤ x ≤ ξ < σ2(b),

[γ(σ2(b)−x)+δ][α(σ(ξ)−a)−β]
αγ(σ2(b)−a)+αδ−βγ

, a < σ(ξ) ≤ x ≤ σ2(b),

for all (x, ξ) ∈ [a, σ2(b)] × [a, b]. The solution for the BVP (3.1)–(3.3) is

(3.4) w(x) =

∫ σ(b)

a

G(x, ξ)F (ξ, w(ξ), w∆(ξ))∆ξ,

for all x ∈ [a, σ2(b)]. Hence, y(x) is the solution of the BVP (1.1)–(1.3) and is given

by

y(x) = l(x) +

∫ σ(b)

a

G(x, ξ)f(ξ, y(ξ), y∆(ξ))∆ξ,

for all x ∈ [a, σ2(b)].

Theorem 3.2. Let K = {y ∈ C1 : |y(x)| ≤ 2M, |y∆(x)| ≤ 2N}, then K is closed,

bounded and convex set.

Proof. Let {yn}
∞
n=1 ⊆ K and let y0 ∈ C1 be such that ‖yn − y0‖ → 0 as n →

∞, which implies {yn} uniformly converges to y0 on [a, σ2(b)] and {y∆
n } uniformly

converges to y∆
0 on [a, σ(b)], thus |y0(x)| ≤ 2M, |y∆

0 (x)| ≤ 2N on [a, σ(b)], implies
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that y0 ∈ K and hence K is closed. Clearly K is bounded. Let y, z ∈ K and consider

λy(x) + (1 − λ)z(x), 0 ≤ λ ≤ 1,

|λy(x) + (1 − λ)z(x)| ≤ λ|y(x)| + (1 − λ)|z(x)|

≤ λ2M + (1 − λ)2M

= 2M,

for all x ∈ [a, σ2(b)]. Similarly |λy∆(x) + (1 − λ)z∆(x)| ≤ 2N , for all x ∈ [a, σ(b)].

Thus λy(x) + (1 − λ)z(x) ∈ K, and hence K is convex.

Define T : K → C1 by

(3.5) Ty(x) = l(x) +

∫ σ(b)

a

G(x, ξ)f(ξ, y(ξ), y∆(ξ))∆ξ,

for all x ∈ [a, σ2(b)]. Let us take

K1 = max
x∈[a,σ2(b)]

∫ σ(b)

a

G(x, ξ)∆ξ and K2 = max
x∈[a,σ2(b)]

∫ σ(b)

a

G∆(x, ξ)∆ξ.

Theorem 3.3. The operator T , as defined in equation (3.5), is continuous on K.

Proof. The set K is compact subset of [a, σ2(b)] × R
2, where K is defined as in

Theorem 3.2. Hence, given ǫ > 0 there exists δ(ǫ) > 0 such that for each (x1, y1, y2),

(x2, z1, z2) ∈ K with |x1 − x2| < δ, |y1 − z1| < δ, |y2 − z2| < δ, it follows that

|f(x1, y1, y2)− f(x2, z1, z2)| < ǫ. Let y, z ∈ K with ‖ y − z ‖< δ, then |y − z| < δ and

|y∆ − z∆| < δ, it follows that

|Ty(x) − Tz(x)| < ǫK1

and

|Ty∆(x) − Tz∆(x)| < ǫK2.

Therefore,

‖ Ty(x) − Tz(x) ‖< ǫ[K1 + K2],

whenever ‖ y − z ‖< δ. Hence T is continuous on K.

Theorem 3.4. Assume that the condition (A1) holds. Let Q > 0 satisfies Q ≥

max
{

|f(x, y, y∆)| : x ∈ [a, σ(b)], |y(x)| ≤ 2M, |y∆(x)| ≤ 2N
}

, and if M = max
{

A
α
, B

γ

}

,

K1 < M
Q

,
|Bα−Aγ|

p
≤ N and K2 < N

Q
, then the BVP (1.1)–(1.3) has a solution.
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Proof. From Theorem 3.2, K is a closed, bounded and convex subset of C1. The

operator T , as defined in equation (3.5), is continuous. Let y ∈ K and consider

|Ty(x)| = |l(x) +

∫ σ(b)

a

G(x, ξ)f(ξ, y(ξ), y∆(ξ))∆ξ|

≤ |l(x)| +

∫ σ(b)

a

|G(x, ξ)||f(ξ, y(ξ), y∆(ξ))|∆ξ

≤ M + Q

∫ σ(b)

a

|G(x, ξ)|∆ξ

≤ M + QK1

≤ 2M

and

|Ty∆(x)| = |l∆(x) +

∫ σ(b)

a

G∆(x, ξ)f(ξ, y(ξ), y∆(ξ))∆ξ|

≤ |l∆(x)| +

∫ σ(b)

a

|G∆(x, ξ)||f(ξ, y(ξ), y∆(ξ))|∆ξ

≤ N + Q

∫ σ(b)

a

|G∆(x, ξ)|∆ξ

≤ N + QK2

≤ 2N,

for all x ∈ [a, σ2(b)], which implies, |Ty(x)| ≤ 2M , and |Ty∆(x)| ≤ 2N . Hence

T : K → K. Using the Arzela-Ascoli theorem [8] it can be shown that T : K → K

is compact operator. Hence T has a fixed point y in K by the Schauder-Tychonov

fixed point theorem [10].

4. Existence Via Upper and Lower Solutions

In this section, we establish the existence of solutions for the BVP (1.1)–(1.3) via

upper and lower solutions .

Theorem 4.1. Assume that the conditions (A1) and (A2) are satisfied. Let u(x) and

v(x) be a lower and an upper solutions for the BVP (1.1)–(1.3) respectively, such that

u(x) ≤ v(x) for all x ∈ [a, σ2(b)]. Then the BVP (1.1)–(1.3) has a solution y(x) with

u(x) ≤ y(x) ≤ v(x) for all x ∈ [a, σ2(b)].

Proof. Define

F (x, y(x), y∆(x)) =











f(x, v(x), y∆(x)) − y(x)−v(x)
1+|y(x)−v(x)|

, y(x) ≥ v(x),

f(x, y(x), y∆(x)), u(x) ≤ y(x) ≤ v(x),

f(x, u(x), y∆(x)) + y(x)−u(x)
1+|y(x)−u(x)|

, y(x) ≤ u(x).
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Clearly, the function F is continuous and bounded on [a, σ2(b)] × R
2. Thus, by

Theorem 3.4, there exists a solution y(x) of the BVP

y∆2

(x) + F (x, y(x), y∆(x)) = 0

subject to the boundary conditions (1.2)–(1.3). We claim that u(x) ≤ y(x) ≤ v(x)

on [a, σ2(b)]. We establish the second inequality, y(x) ≤ v(x) on [a, σ2(b)]. To the

contrary assume that y(x) > v(x) at some point in [a, σ2(b)]. From the boundary

conditions we know that y(x) − v(x) has a positive maximum at some point, say

c ∈ (a, σ2(b)), y(c)−v(c) > 0 and y(x)−v(x) < y(c)−v(c) on [a, σ2(b)]. Consequently,

we have (y∆ − v∆)(c) ≤ 0 and (y∆2

− v∆2

)(c) ≤ 0. But

−y∆2

(c) = F (c, y(c), y∆(c))

= f(c, v(c), y∆(c)) −
y(c) − v(c)

1 + |y(c)− v(c)|
.

From (A2), f(c, v(c), y∆(c)) ≤ f(c, v(c), v∆(c)) and

f(c, v(c), y∆(c)) −
y(c) − v(c)

1 + |y(c) − v(c)|
≤ f(c, v(c), v∆(c)) −

y(c) − v(c)

1 + |y(c)− v(c)|

< f(c, v(c), v∆(c))

< −v∆2

(c).

Hence, we have

(y∆2

− v∆2

)(c) > 0,

which is a contradiction. It follows that y(x) ≤ v(x) on [a, σ2(b)]. Similarly, we can

prove, u(x) ≤ y(x) on [a, σ2(b)]. Thus y(x) is a solution of the BVP (1.1)–(1.3) and

lies between u(x) and v(x).

Example 1. Now, we give an example to illustrate the result. Consider the BVP,

y∆2

+ cos y = 0, x ∈ [0, π],

y(0) = 0 = y(σ2(π)).

We observe that, u ≡ 0 is the lower solution on [0, σ2(π)], since

u∆2

(x) = 0 > − cos 0 = −1

and

u(0) = 0, u(σ2(π)).

Next, let v(x) =
∫ x

0
(c − s)∆s, where c = (1/σ2(π))

∫ σ2(π)

0
s∆s. Then

v∆2

(x) = −1 ≤ − cos v

and

v(0) = 0, v(σ2(π)).
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So v is an upper solution on [0, σ2(π)]. Since v is a solution of the BVP

v∆2

(x) + 1 = 0

and

v(0) = 0, v(σ2(π)).

It follows that v(x) ≥ 0 on [0, σ2(π)]. Therefore, by Theorem 4.1, we conclude that

there is a solution y with

0 ≤ y(x) ≤

∫ x

0

(c − s)∆s,

for all x ∈ [0, σ2(π)].

Now, we will give graphical representation of the solution (taking π = 3.141) :

Case (i): For T = R,

Lower solution u(x) = 0.

Upper solution v(x) = x
2
(π − x).

Numerical solution of above problem is in Figure 1.

upper solution, v(x)

solution of given BVP, y(x)

lower solution, u(x)

xxx

Figure 1.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1. There exists a solution y(x) to the above BVP such that u(x) ≤ y(x) ≤ v(x)

for x ∈ [0, π].

Case (ii): For T = Z = {0, 1, 2, 3, π, π + 1, π + 2},

Lower solution u(x) = 0.

Upper solution v(x) = 3(π+3)
π+2

x −
∑x

i=0 i.

x-values 0 1 2 3 π π + 1 π + 2

Lower solution u(x) 0 0 0 0 0 0 0

Upper solution v(x) 0 2π+7
π+2

3(π+4)
π+2

3(π+5)
π+2

2π2+π−12
π+2

π2+π−3
π+2

0

Numerical solution of above problem is in Figure 2.

Case (iii): For T = {0} ∪ { π+2
2n−1 : n ∈ N}

Lower solution u(x) = 0.
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

u/
y/

v

Figure 2.

u(x)
y(x)
v(x)

Fig. 2. There exists a solution y(x) to the above BVP such that u(x) ≤ y(x) ≤ v(x)

for x ∈ [0, π + 2].

Upper solution v(x) = 2x −
∑x

i=0 i.

x-values 0 π + 2 π+2
2

π+2
4

π+2
8

π+2
16

π+2
32

π+2
64

π+2
128

Lower solution u(x) 0 0 0 0 0 0 0 0 0

Upper solution v(x) 0 0 π + 1 π+1
2

π+1
4

π+1
8

π+1
16

π+1
32

π+1
64

Numerical solution of above problem is in Figure 3.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Figure 3.

x

u
/y

/v

u(x)
y(x)
v(x)

Fig. 3. There exists a solution y(x) to the above BVP such that u(x) ≤ y(x) ≤ v(x)

for x ∈ [0, π + 2].

Case (iv): For T = {0} ∪ { π
2n

: n ∈ N} ∪ [π
2
, π],

Lower solution u(x) = 0.

Upper solution v(x) = (3π+8)
8

x −
∫ x

0
s∆s.



40 K. P. PRASAD, P. MURALI, AND N. V. V. S. SURYANARAYANA

x : 0 π π
2

π
4

π
8

π
16

π
32

π
64

π
128

u(x) : 0 0 0 0 0 0 0 0 0

v(x) : 0 0 π(3π−8)
16

π(3π−8)
32

π(3π−8)
64

π(3π−8)
128

π(3π−8)
256

π(3π−8)
512

π(3π−8)
1024

Numerical solution of above problem is in Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Figure 4. 

x

u
/y

/v

u(x) on [0,π/2]
y(x) on [0,π/2]
v(x) on [0,π/2]
u(x) on [π/2,π]
y(x) on  [π/2,π]
v(x) on  [π/2,π]

Fig. 4. There exists a solution y(x) to the above BVP such that u(x) ≤ y(x) ≤ v(x)

for x ∈ [0, π].

Example 2. Now, we give another example to illustrate the result. Consider the

following dynamical equation,

y∆2

+ cos(y(1 + y∆)) = 0, x ∈ [0, b], b > 1

satisfying the two-point boundary conditions,

y(0) = 0, y(σ2(b)) + y∆(σ(b)) = (3/2)b2.

u ≡ 0 is the lower solution on [0, σ2(b)], since

−u∆2

(x) = 0 < 1

and

u(0) = 0, u(σ2(b)) + u∆(σ(b)) = 0 < (3/2)b2.

Next, let v(x) =
∫ x

0
(c − s)∆s, where c = (4/σ2(b))

∫ σ2(b)

0
s∆s. Then

−v∆2

(x) = +1 ≥ cos(v(1 + v∆))

and

v(0) = 0, v(σ2(b)) + v∆(σ(b)) = (3/2)σ(b)σ2(b) + σ(b) ≥ (3/2)b2.

So v is an upper solution on [0, σ2(b)]. Since v is a solution of the BVP

v∆2

(x) + 1 = 0

and

v(0) = 0, v(σ2(b)) + v∆(σ(b)) = (3/2)σ(b)σ2(b) + σ(b).
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It follows that v(x) ≥ 0 on [0, σ2(b)]. Therefore, by Theorem 4.1, we conclude that

there is a solution y with

0 ≤ y(x) ≤

∫ x

0

(c − s)∆s,

for all x ∈ [0, σ2(b)].
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