
Neural, Parallel, and Scientific Computations 21 (2013) 43-50

STABILIZATION OF INVARIANT MANIFOLDS

FOR NONLINEAR STOCHASTIC SYSTEMS

IRINA BASHKIRTSEVA AND LEV RYASHKO

Institute of Mathematics and Computer Science, Ural Federal University,

Ekaterinburg, Russia

ABSTRACT. An exponential mean square (EMS) stabilization of manifolds of stochastically forced

nonlinear systems is considered. The necessary and sufficient stabilizability conditions based on

spectral criterion of the EMS-stability of invariant manifolds are presented. We suggest methods for

the design of the feedback stabilizing regulator for SDEs. A parametrical criterion of the stochastic

stabilizability for limit cycles is given. This theoretical technique is applied to numerical simulations

of the solution of control problem for the stochastically forced Hopf system.
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1. INTRODUCTION

Many nonlinear dynamical phenomena observed under transition from order to

chaos are frequently connected with a chain of bifurcations: a stationary regime (equi-

librium point) - periodic regime (limit cycle) - quasiperiodic regime (torus) - chaotic

regime (strange attractor). So, complicated oscillatory regimes are usually observed

for such type bifurcations. Invariant manifold is a convenient general mathematical

model for the stability analysis of these various nonlinear oscillations.

The stability investigation and control of stochastic systems are attractive from

theoretical and engineering points of view. Indeed, even weak noise can result in qual-

itative changes in the system’s dynamics. We consider the exponential mean square

stability and stabilization problem for invariant manifolds of stochastic differential

equations (SDEs).

One of the most important methods of the stability analysis is Lyapunov function

technique (LFT) [1], [2]. LFT in the research of the stochastic stability of equilibria

has been widely studied by many authors (see [3], [4]). A problem of the synthesis of

stochastic attractors and controlling chaos was investigated in [5], [6].

The orbital Lyapunov functions were used in the stability and sensitivity analysis

of stochastically forced limit cycles [7], [8], [9]. LFT for the stability analysis of

the general invariant manifolds is considered for deterministic [10] and stochastic
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[11] systems. On the base of LFT, a general spectral criterion of EMS stability of

manifolds has been proved [12].

The aim of this work is to apply this criterion to the solution of the control

problem and show how it works by numerical simulations.

2. STOCHASTIC STABILITY OF INVARIANT MANIFOLDS

Consider a deterministic nonlinear system

(2.1) dx = f(x) dt,

where x is n-vector, f(x) is sufficiently smooth vector-function of the appropriate

dimension. It is assumed that the system (2.1) has a smooth compact invariant

manifold M [13], [14], [15].

Consider a function γ(x) in a neighbourhood U of the manifold M . Here γ(x)

is a point of the manifold M that is nearest to x, ∆(x) = x − γ(x) is a vector of the

deviation of the point x from the manifold M . It is assumed that the neighbourhood

U is invariant for the system (2.1). For any x ∈ M , denote by Tx the tangent subspace

to M at x. Denote by Nx the orthogonal complement to Tx and by Px the operator

of the orthogonal projection onto the subspace Nx.

In this paper, we consider a randomly forced deterministic system (2.1) as follows:

(2.2) dx = f(x)dt +
m
∑

r=1

σr(x)dwr(t),

where wr(t) (r = 1, . . . , m) are independent standard Wiener processes, σr(x) are

sufficiently smooth vector-functions of the appopriate dimension. To ensure M is an

invariant of the stochastic system (2.2) we assume that

(2.3) σr|M = 0.

Definition 1. The manifold M is called exponentially stable in the mean square

sense (EMS-stable) for the system (2.2) in U if there exist K > 0, l > 0 such that

E‖∆(x(t))‖2 ≤ Ke−ltE‖∆(x0)‖2,

where x(t) is a solution of the system (2.2) with the initial condition x(0) = x0 ∈ U .

Consider a space Σ of symmetrical n×n matrix functions defined and sufficiently

smooth on M and satisfying the following singularity condition

∀x ∈ M ∀z ∈ Tx V (x)z = 0.

Definition 2. A matrix function V (x) ∈ Σ is called P -positive definite if

∀x ∈ M ∀z Pxz 6= 0 ⇒ (z, V (x)z) > 0.
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On the space Σ, we shall consider operators:

A[V ] =

(

f,
∂V

∂x

)

+ F⊤V + V F, S[V ] =

m
∑

r=1

S⊤

r
V Sr, P = −A−1S,

where

F (x) =
∂f

∂x
(x), Sr(x) =

∂σr

∂x
(x).

Let ρ(P) be a spectral radius of the operator P.

Theorem 1. The manifold M of the stochastic system (2.2) is EMS-stable

if and only if

(a) The manifold M of the deterministic system (2.1) is exponentially stable,

(b) The inequality ρ(P) < 1 holds.

This theorem has been proved in [12] on the base of the spectral theory of the

positive operators [16]. An analogous approach was used earlier in [17] for the stability

analysis and stabilization of linear SDEs with periodic coefficients.

Example 1. Stability of the limit cycle for 2D-system. We assume that

an invariant manifold M is a limit cycle corresponding to T -periodic solution ξ(t).

The function ξ(t) gives us a natural parametrization of the cycle orbit and defines

the one-to-one correspondence between cycle points and the time interval [0, T ).

Using this parametrization, we introduce functions

F (t) =
∂f

∂x
(ξ(t)), Sr(t) =

∂σr

∂x
(ξ(t))

defined on [0, T ].

In the case n = 2 for the spectral radius of the operator P, one can find the

following explicit formula:

ρ(P) = −〈β〉
〈α〉 .

Here

α(t) = p(t)⊤[F⊤(t) + F (t)]p(t), β(t) = tr

(

m
∑

r=1

Sr(t)S
⊤

r
(t)

)

,

p(t) is a vector orthonormal to the limit cycle M at the point ξ(t), brackets 〈·〉 mean

an integral with the time averaging:

〈α〉 =
1

T

T
∫

0

α(t)dt.

The inequality (famous Poincare criterion)

〈α〉 < 0
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is a necessary and sufficient condition of the exponential stability of the limit cycle

M for the deterministic system (2.1). Thus, the inequality ρ(P) < 1 written as

〈α + β〉 =

〈

tr

[

2F (t) +

m
∑

r=1

Sr(t)S
⊤

r
(t)

]〉

< 0

is a necessary and sufficient condition of EMS-stability of the cycle M for the sto-

chastic system (2.2) in 2D-case.

3. STABILIZATION

Consider a stochastic system with a control in the form

(3.1) dx = f(x, u)dt +

m
∑

r=1

σr(x, u)dwr(t),

where x is n-dimensional state variable, u is l-dimensional vector of control in-

puts, f(x, u), σ(x, u) are vector-functions of the appropriate dimension, wr(t) (r =

1, . . . , m) are independent standard Wiener processes. It is supposed that for u = 0

the system (3.1) has an invariant manifold M .

We shall select the stabilizing regulator from the class of admissible feedbacks

u = u(x) satisfying conditions:

(a) u(x) is sufficiently smooth and u|M = 0;

(b) for the deterministic system

(3.2) dx = f(x, u(x))dt

the manifold M is exponentially stable in the neighbourhood U of M .

Without loss of generality, we can restrict our consideration by the regulator in

the following form

(3.3) u(x) = K(γ(x))∆(x).

Here K(x) is a feedback matrix coefficient.

Consider a set K of l × n-matrices K(x) satisfying the following condition: the

manifold M is exponentially stable for the closed-loop deterministic system (3.2),

(3.3).

For the stabilization of the closed-loop stochastic system (3.1), (3.3) we will use

a spectral criterion from Theorem 1.

Consider corresponding operators

AK [V ] =

(

f0,
∂V

∂x

)

+ (F + BK)⊤V + V (F + BK),

SK [V ] =
m
∑

r=1

(Cr + HrK)⊤V (Cr + HrK), PK = −A−1
K
SK ,
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where

f0 = f(x, 0), F (x) =
∂f

∂x
(x, 0), B(x) =

∂f

∂u
(x, 0),

Cr(x) =
∂σr

∂x
(x, 0), Hr(x) =

∂σr

∂u
(x, 0).

The Theorem 1 implies the following.

Theorem 2. The manifold M is EMS-stabilizable for the stochastic system (3.1)

with the feedback (3.3) if and only if

(a) K 6= ∅,
(b) The inequality infK∈K ρ(PK) < 1 holds.

The feedback (3.3) stabilizes the stochastic system (3.1) for any K ∈ K satisfying

the inequality ρ(PK) < 1.

This Theorem reduces a stabilization problem to the minimization of the spectral

radius of the operator PK .

Example 2. Stabilization of the cycle for 2D-system. For the case of the

cycle on a plane (n = 2), one can find for the spectral radius of the operator PK the

following explicit formula

ρ(PK) = −〈βK〉
〈αK〉 .

Here

(3.4)
αK = p⊤

[

(F + BK)⊤ + F + BK
]

p,

βK = tr
(
∑

m

r=1(Cr + HrK)(Cr + HrK)⊤
)

,

F (t) =
∂f

∂x
(ξ(t), 0), B(t) =

∂f

∂u
(ξ(t), 0),

Cr(t) =
∂σr

∂x
(ξ(t), 0), Hr(t) =

∂σr

∂u
(ξ(t), 0),

p(t) is a vector orthonormal to the limit cycle at the point ξ(t).

The condition of the stabilizability infK∈K ρ(PK) < 1 is equivalent to the inequal-

ity

inf
K∈K

I(K) < 0, I(K) = 〈αK + βK〉.
So, a solution of the stabilization problem is reduced to the minimizing of the qua-

dratic functional I(K).

4. NUMERICAL SIMULATIONS. STABILIZATION OF CYCLES FOR

THE STOCHASTIC HOPF SYSTEM

Consider stochastically forced Hopf system with control

(4.1)
ẋ = µx − y − (x2 + y2)x + u + σ1(x

2 + y2 − µ)ẇ1(t) + σ2uẇ2(t)

ẏ = x + µy − (x2 + y2)y.
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Here w1, w2 are standard Wiener processes, σ1 is an intensity of state-dependent

noise, and σ2 is an intensity of control-dependent noise, u is a scalar control input.

For u = 0, µ > 0, σ1 = 0, this system has a limit cycle x2 + y2 = µ. For this cycle,

we use the parametrization x =
√

µ cos t, y =
√

µ sin t. The aim of the control is to

stabilize this cycle in the mean square sense.

Feedback matrix in the regulator (3.3) for Hopf system (4.1) is K(t) = k(t)p(t),

where p(t) = (cos t, sin t)⊤ and k(t) is a scalar function. Functions αk, βk in (3.4)

have an explicit representation

αk = −4µ + 2k cos t, βk = 4σ2
1µ + k2σ2

2.

So, the quadratic functional I(k) = 〈αk + βk〉 is as follows

(4.2) I(k) = 4µ(σ2
1 − 1) +

1

2π

2π
∫

0

(

2k(t) cos t + k2(t)σ2
2

)

dt.

For u = 0, a necessary and sufficient condition of the stochastic stability of the cycle

is σ2
1 < 1.

For numerical simulations, fix µ = 1, σ1 = 2. Theoretically, for these parameters,

the cycle x2+y2 = 1 of the uncontrolled (u = 0) system (4.1) is stochastically unstable

in the mean square sense.

In Fig. 1, by dashed line, we plot a function M(t) = E
(

√

x2(t) + y2(t) − 1
)2

,

where x(t), y(t) is a solution of the Hopf system with u = 0 for initial conditions

x(0) = 1.01, y(0) = 0. For numerical simulations, we use Euler-Maruyama scheme

with time step ∆t = 10−5 and averaging of 5000 random trajectories. Here, an

exponential growth of the quadratic deviation of solutions from the cycle is observed.

0 0.02 0.04

1

2

x 10
−4

t

M

Fig. 1. Mean square deviation M(t) for uncontrolled (dashed line) and controlled

(solid line) stochastic Hopf system.
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t Muncontrolled Mcontrolled

0.000 1.000000 · 10−4 1.000000 · 10−4

0.005 1.064833 · 10−4 6.468021 · 10−5

0.010 1.133401 · 10−4 4.113804 · 10−5

0.015 1.205908 · 10−4 2.815260 · 10−5

0.020 1.273460 · 10−4 1.771679 · 10−5

0.025 1.346127 · 10−4 7.500728 · 10−6

0.030 1.431145 · 10−4 5.176267 · 10−6

0.035 1.522734 · 10−4 2.452727 · 10−6

0.040 1.611460 · 10−4 1.974542 · 10−6

0.045 1.701024 · 10−4 1.581786 · 10−6

0.050 1.855306 · 10−4 5.316145 · 10−7

0.055 2.040819 · 10−4 2.395845 · 10−7

0.060 2.200374 · 10−4 5.251944 · 10−8

Table 1. Mean square deviation for uncontrolled and controlled sto-

chastic Hopf system.

Consider now abilities of the stabilization. The function ko(t) = − cos(t)

σ2

2

minimizes

the functional (4.2). The minimal value of this functional is

I(ko) = 4µ(σ2
1 − 1) − 1

2σ2
2

.

For σ2
1 > 1, a necessary and sufficient condition of the stabilizability can be written

in a parametrical form:

σ2
2 <

1

8µ(σ2
1 − 1)

.

For the considered set of parameters µ = 1, σ1 = 2, the stabilizability condition is

σ2
2 < 1/24. In this case, the feedback regulator is the following:

u = − x

σ2
2

√

x2 + y2

(

√

x2 + y2 − 1
)

.

In Fig. 1, by solid line, we plot a function M(t) for the system (4.1) with this regulator

and σ2 = 0.1. Corresponding numerical data are presented in the Table 1. An expo-

nential decrease of the quadratic deviation of solutions from the cycle demonstrates

a stabilization.

5. CONCLUSION

A problem of the mean square stabilization of the general invariant manifolds for

nonlinear stochastic systems was reduced to the minimization of the spectral radius of
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the corresponding operator. Constructive abilities of this theory were demonstrated

for the important problem of the stabilization of the stochastically forced limit cy-

cle. The problem of the stabilization of the limit cycle was turned to the classical

mathematical problem of the quadratic functional minimization. This theory was

successfully applied to the stabilization of the cycles of Hopf system via numerical

simulations.
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