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Abstract. Mat-Core is a matrix processor aiming at exploiting the increasingly number of 

transistors per IC to improve the performance of a wide range of applications. It extends a 

general-purpose scalar processor with a matrix unit for processing vector/matrix data. To hide 

memory latency, the extended matrix unit is decoupled into two components: address generation 

and data computation, which communicate through data queues. In this paper, four cycle accurate 

models are implemented using SystemC (system level modeling language) to investigate the 

scalability of Mat-Core. They include Mat-Core having (1) 1-lane with 81 vector registers, (2) 

4-lane with 44 matrix registers, (3) 4-lane with 84 matrix registers, and (4) 8-lane with 88 

matrix registers. The first model exploits scalar/vector ISAs, however, the remaining three 

models exploit scalar/vector/matrix ISAs. Moreover, this paper describes in detail the 

implementation of some kernels on the Mat-Core processor and discusses its scalability. Our 

results show that increasing the number of parallel lanes from one to four and from one to eight 

speedup the execution of kernels by factors of 3.6x-4.8x and 7.94x-10.6x, respectively, which 

indicates the scalability of Mat-Core architecture. In addition, the maximum performance of the 

Mat-Core processor on math intensive kernels represents 90% of the ideal value.  

 

Keywords - scalable architecture, high performance computing, performance evaluation, 

vector/matrix processing. 

  

1. INTRODUCTION 

 

Scalability problem is considered as a major challenge for processor designers. 

Architecture scalability simply means that a very large computer can be built from a large 

number of basic components (computers, processors or processing elements, memories, 

and switches) with no single bottleneck component. Thus, the computer can be 

increasingly expanded over its designed scaling range, delivering linear incremental 

performance for a well-defined set of applications. This paper investigates the scalability 

of Mat-Core architecture with different number of parallel lanes (one, four, and eight) on 

some kernels of linear algebra (scalar-vector multiplication, SAXPY: single-precision 

scalar A times vector X plus vector Y, Givens rotation, rank-1 update, vector-matrix 

multiplication, and matrix-matrix multiplication), DCT/IDCT, and image registration.  

_____________ 
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Mat-Core is a matrix processor aiming at exploiting the increasingly number of 

transistors per IC to improve the performance of a wide range of applications [1]-[3]. As 

Figure 1 shows, Mat-Core extends a general-purpose scalar processor with a matrix unit 

for processing vector/matrix data. The extended matrix unit is decoupled into two 

components to hide memory latency: data computation and address generation, which 

communicate through data queues. The matrix unit consists of five units: instruction 

flow, load/store (address generation), matrix control, matrix register file (RF), and 

functional units. As in conventional processors, instructions and data are loaded from L2 

cache into instruction and L1 data caches, respectively. Each instruction 

(scalar/vector/matrix) is fetched from instruction cache and sent in-order to the decode 

stage. If the fetched instruction is scalar, it completes remaining cycle of execution on the 

scalar pipeline stages (read operand(s), execute, memory access, and write-back). 

However, vector/matrix instructions are fetched in-order from instruction cache and sent 

to the matrix unit for execution on parallel lanes. When the result of executing a 

vector/matrix instruction is a scalar value, the matrix unit sends it back to the scalar unit 

for storing in the scalar register file. Otherwise, vector/matrix results are stored in the 

matrix register file inside the matrix unit. 

As in vector processors [4]-[9], the data computation unit is organized in parallel 

lanes; each lane contains a pipeline of each functional unit and a slice of the matrix 

register file. However, on these parallel lanes not only vectors but also matrix data can be 

processed. Hence, Mat-Core processor inherits from a vector processor design the 

relatively straightforward means to scale performance. By increasing the number of 

parallel lanes, designer can easily increase the amount of data-level parallelism exploited. 

This also allows designers to easily scale the processor design to exploit the increased 

number of transistors that continue to grow according to Moore’s law [10]. 

In this paper, four versions of Mat-Core processor are implemented by SystemC 

(system level modeling language) and evaluated to show its scalability. These versions 

are different in the number of parallel lanes and the size of registers in the matrix unit of 

Figure 1: The block diagram of Mat-Core processor. 
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Mat-Core architecture. The first version contains one lane with vector register  length of 

eight elements (Mat-Core-81). It exploits only scalar and vector instruction set 

architectures (ISAs). However, the remaining versions can exploit the three levels 

(scalar/vector/matrix) of Mat-Core ISA [11]. The second and third versions contain four 

lanes but they are different in the size of matrix registers (44 for Mat-Core-44 and 84 

for Mat-Core-84). These versions show that scaling the matrix register size results in 

improving the performance of Mat-Core with the same number of parallel lanes. This is 

because larger matrix register size amortizes the pipeline latency of functional units. The 

last version has eight lanes with matrix registers of size 88 (Mat-Core-88). 

This paper is organized as follows. The hardware scalability of Mat-Core is discussed 

in detail in Section 2. Section 3 describes the implementation of DCT/IDCT using Mat-

Core instructions. The implementations of 3D affine transformation and SAD (sum of 

absolute differences) are described in Section 4. Section 5 evaluates the performance of 

some kernels including linear algebra, DCT/IDCT, and image registration to investigate 

the scalability of Mat-Core architecture with variable number of lanes. Finally, Section 6 

concludes this paper. 

 

 

2. HARDWARE SCALABILITY OF MAT-CORE PROCESSOR  

 

To reduce the execution time, most vector processors use parallel pipelines per 

functional unit [12]. Thus, a vector unit can be structured as parallel lanes, where each 

lane contains a portion of the vector register file and one pipeline for each vector 

functional unit. The concept of parallel lanes is fundamental for the vector 

microarchitecture, as it leads to advantages in performance, design complexity, and 

scalability. 

There are several benefits to the modular, lane-based implementation [13]. A single 

lane must be designed and verified regardless of the number of lanes allocated in the 

processor. Scaling the processor for processing longer vectors or larger matrices by 

allocating the proper number of lanes leads to balanced addition of both register file and 

execution resources, without requiring redesign of functional units or their control. A 

four-lane processor, for example, can store vectors twice as long and execute twice as 

many element operations per cycle as a two-lane processor. Finally, the locality of 

communication in the lane-based processors allows hardware scaling without 

implications due to the high latency of long, cross-chip wires [14],[15]. On parallel lanes, 

Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in 

addition to vector-scalar and vector-vector instructions. 

 

 

 

 

 

 



Figure 2: Mat-Core processor with one lane architecture. 
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The block diagram of Mat-Core version with a single lane (Mat-Core-8×1) is shown 

in Figure 2. The lane contains eight vector registers; each one has eight 32-bit elements. 

The lane also contains five arithmetic pipelines for executing vector instructions: ALU, 

FP adder, FP multiplier, FP MAC (multiply-accumulate), and FP divider. The 

multiplexers select the two input vector registers to the specified arithmetic pipeline. 

Moreover, demultiplexer selects the output of a specified arithmetic pipeline to be written 

in the destination vector register. This version of Mat-Core processor can exploit only 

scalar and vector ISAs. 

To investigate the scalability of Mat-Core processor, a scalar core is extended with n 

lanes matrix unit (see Figure 3). Like the first version, there are five functional units for 

executing vector/matrix instructions. However, each functional unit has n parallel 

pipelines (one pipeline per lane), where two 32-bit data are needed per pipeline for 

processing and 32-bit is produced as a result. These functional units operate under the 

control of the matrix control unit. Each lane contains eight banks (one bank for each 

matrix register). n banks distributed among n lanes construct a matrix register. Each bank 

has two read ports and one write port. To show the scalability of Mat-Core, the number of 

lanes n is varied from one to four (Mat-Core-4×4 and Mat-Core-8×4) and from one to 

eight (Mat-Core-8×8). 

 

 



Figure 3: Mat-Core processor with n lane architecture. 
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No interconnections between parallel lanes are needed for element-wise vector/matrix 

instructions. However, not only element-wise instructions are needed for vector/matrix 

processing, but reduction and expansion instructions are also needed. Dot-product, 

vector-matrix, and matrix-matrix multiplications are based on reduction operations; 

however, outer-product is based on expansion operations. Executing reduction and 

expansion instructions needs interconnections between lanes. These interconnections can 

be local, global, bus, etc. It is known that all these types of interconnections are not 

scalable, except the local, because longer wires are needed to connect more lanes. 

However, for a small number of parallel lanes, the use of full crossbars is more efficient 

technique than the others. Crossbars provide complete flexibility in connecting any 

register bank of the partition register file with any functional unit. Pass, rotate, and 

broadcast are the main shuffle operations that can be done on Mat-Core crossbars. See [2] 

for more detail about using crossbars in the execution of matrix/vector instructions. The 

use of crossbar in connecting Mat-Core lanes will limit its hardware scalability coming 

from increasing number of parallel lanes. Thus, in this paper the scalability of Mat-Core 

will be investigated when the number of parallel lanes varies from one to eight, which 

represent a small number of lanes. Extending the hardware scalability of Mat-Core can be 

achieved by providing more processor cores in a physical package as a multi-core 

processor (Multi-Mat-Core). On the Multi-Mat-Core, the performance could be scaled by 

parallel processing threads of codes using multi-threading techniques. 
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3. DCT IMPLEMENTATION ON MAT-CORE 

 

The discrete cosine transform (DCT) is a member of the sinusoidal family of unitary 

transforms. It has found applications in digital signal and image processing and 

particularly in transform coding systems for data compression/decompression. Besides 

being real, orthogonal, and separable, its properties are relevant to data compression and 

fast algorithms for its computation have proved to be of practical value. Recently, DCT 

has been employed as the main processing tool for data compression/decompression in 

international image and video coding standards—JPEG (Joint Photographic Experts 

Group) and MPEG (Moving Picture Experts Group) [16],[17].  

The DCT gets its name from the fact that the rows of the NN transform matrix M are 

obtained as a function of cosines. The conventional DCT in floating-point domain is 

implemented on NN block of the image using the following equation: B = MAM
T
, 

where B is the transformed matrix, A is the input matrix, and M is the transformation 

matrix. The (i, j)
th

 element of the transformation matrix M is given by   
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where i, j = 0, 1, 2, …, N. Since M is orthogonal matrix, the IDCT (inverse DCT) could 

be computed as A = M
T
BM [18].  

The DCT and IDCT implementations require three types of matrix-matrix 

multiplications: AM,
 AM

T,
 and M

T
A. In this section the implementation of AM

T
 and 

M
T
A are discussed in details. However, the implementation of matrix-matrix 

multiplication (AM) on Mat-Core processor was described in [2]. 

The matrix register file (MRF) in Mat-Core allows accessing multiple data (one data 

item per lane), concurrently, to be processed on parallel lanes. These multiple data could 

be accessed from the same row of a matrix block loaded into a matrix register or from 

different rows, but no more than one element can be accessed from the same column 

(lane). By exploiting this ability of parallel accessing MRF and the shuffle operations 

(pass, rotate, and broadcast), the matrix transposition can be avoided in AM
T
 and M

T
A. 

It is well known that transposing a matrix is a very expensive operation since it takes 

O(n
2
) operations on nn matrix. Thus, avoiding matrix transposition represents one of the 

main advantages of Mat-Core architecture. To carry out the matrix operation AM
T
, the 

input matrix M should be loaded from memory to MRF in skewed form as shown in 

Figure 4. However, Mat-Core processes the input blocks of matrices without the need for 

skewing. The access abilities to MRF and the shuffle operations of crossbars substitute 

the skewing process.  

Figure 5 shows the processing of AM
T
 for two 44 matrix blocks stored in 44 

matrix registers. The two matrix blocks are loaded from memory to MRF row by row 

without the need for skewing. The first row of the result matrix is produced after four 

steps (step1-step4). In each step, the first row (four elements) of the matrix A and the 

skewed row of matrix M (see Figure 4-b) are fed to four MAC (multiply-accumulate) 

pipelines. Feeding matrix M to the four MAC pipelines in the skewed form is achieved 

via accessing different rows of MRF at the same cycle and rotating them by crossbars. 

The shuffle operations for crossbars are pass, rotate-1, rotate-2, and rotate-3 for step1, 



Figure 4: Skewing the input matrix M for AM
T
. 

 

m00 m01 m02 m03 
    m00 m11 m22 m33 

m10 m11 m12 m13 
    m01 m12 m23 m30 

m20 m21 m22 m23 
    m02 m13 m20 m31 

m30 m31 m32 m33 
    m03 m10 m21 m32 

(a) Before skewing 
    

(b) After skewing 
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 step2, step3 and step4, respectively. The same shuffle operations applied to matrix M are 

also applied to matrix A. In the same manner, the second row of the result matrix is 

produced after four steps (step5-step8) and so on. Thus, the multiplication of two 44 

matrix blocks requires 16 clock cycles in addition to the MAC pipelines latency. 

Figure 6 shows the processing of M
T
A on two 44 matrix blocks stored in matrix 

registers. The two matrix blocks are loaded into MRF row by row without the need for 

transposition. The multiplication of two blocks is based on vector-matrix multiplication 

and its inner loop is based on SAXPY. However, the exception here is that the columns 

(instead of rows) of the first block M are taken as vectors to be multiplied by the rows of 

matrix A. 

To improve the performance of Mat-Core without drastically increasing the 

complexity, 84 registers are used instead of 44. On Mat-Core with matrix register size 

of 84, the implementation of AM
T
 and M

T
A is somehow different. This version of 

Mat-Core has two types of load instructions. One for loading matrix blocks with size 48 

and the other for loading matrix blocks with size 84. Figure 7 shows the arrangement of 

84 and 48 matrix blocks in matrix registers after executing LMB (Load Matrix Block) 

and LMBH (Load Matrix Block Horizontally), respectively.  

To process AM
T
 on this version of Mat-Core, it is required to load a block of 48 

from matrix A and a block of 48 (instead of 84 because of the transposition) from 

matrix M. Then, the block 48 from matrix A is multiplied by the transpose of the block 

48 from matrix M. Using the access abilities to MRF and the shuffle operations of 

crossbars substitute transposing the block 48 from matrix M. As shown in Figure 8-a, 

the production of each row of the result matrix block needs eight steps. For example, 

producing the first row of the result matrix block takes four steps for multiplying the first 

half of the first row R11 by the first block B11 and another four steps for multiplying the 

second half of the first row R12 by the second block B12. Multiplying R11 by B11 or R12 by 

B12 is done in the same way shown in Figure 5 (step1-step4). The results are accumulated 

in the MAC pipelines through the eight steps to produce the first row of the result matrix 

block. Also, the second row of the result matrix block is produced by multiplying R21 by 

B11 and R22 by B12 and so on. Thus, processing AM
T
 on two 48 matrix blocks requires 

32 cycles in addition to the MAC pipelines latency. 



Figure 5: Processing AM
T
 on Mat-Core processor for two 44 matrix blocks. 
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To process M
T
A on Mat-Core, it is required to load a block of 84 from matrix M 

(instead of 48 because of the transposition of M) and a block of 84 form matrix A. The 

two blocks are multiplied based on vector-matrix multiplication and the inner loop is 

based on SAXPY in the same manner as mentioned before in Figure 6. The two blocks 

are loaded to matrix registers as shown in Figure 8-b. The first row of the result matrix 

block is produced after eight steps. In the first step, m00 from the first column of M is 

broadcast to the four MAC pipelines with the first row of A. Then, the second element, 

m10, from the first column of M is broadcast to the four MAC pipelines with the second 

row of A. After that, the process continues in the same way, broadcasting one element 

from the first column of M with the corresponding row of A. The second row of the result 

matrix block produces from the second column of M and the rows of A in the same 
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Figure 6: Processing M
TA on Mat-Core processor for two 44 matrix blocks. 
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manner mentioned above for the first row and also takes eight steps. Thus, processing 

M
T
A on two 84 matrix blocks requires 32 steps. 

In Mat-Core version with one lane, processing the operations AM, AM
T
, and M

T
A 

is based on vector operations (scalar-vector multiplication and dot product). In addition, 

the implementation of DCT/IDCT on Mat-Core version with eight lanes is similar to 

what is discussed above for four lanes and matrix register size 44. However, multiplying 

two 88 blocks (AM, AM
T
, and M

T
A) on eight lanes requires 64 steps instead of 16 

step in case of multiplying two 44 blocks. 

 



96             M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID 
 

 

4.  3D AFFINE TRANSFORMATION & SAD IMPLEMENTATION ON 

MAT-CORE 

  

Registration is an important problem and a fundamental task in image processing and 

computer vision [19]-[22]. Image registration is the process of overlaying two or more 

images of the same scene taken at different times, from different viewpoints, and/or by 

different sensors. Registration of medical images is becoming an important tool for 
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m00 m01 m02 m03 Address 0 m00 m01 m02 m03 

(a) Block of 84  (b) Block of 48 

 

Figure 7: The arrangement of 84 and 48 matrix blocks in matrix registers.  

 

Figure 8: Processing AM
T
 and M

TA on Mat-Core processor with matrix registers of 84. 

Lane0 Lane1 Lane2 Lane3  Lane0 Lane1 Lane2 Lane3 

m70 m71 m72 m73 Address 7 a70 a71 a72 a73 

m60 m61 m62 m63  a60 a61 a62 a63 

m50 m51 m52 m53  a50 a51 a52 a53 

m40 m41 m42 m43  a40 a41 a42 a43 

m30 m31 m32 m33  a30 a31 a32 a33 

m20 m21 m22 m23  a20 a21 a22 a23 

m10 m11 m12 m13  a10 a11 a12 a13 

m00 m01 m02 m03 Address 0 a00 a01 a02 a03 

(b) Processing M
TA on Mat-Core processor for two 84 matrix blocks. 
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 medical treatment and medical analysis. By finding spatial relations between two or more 

images, it combines their information, which is useful for observing changes in anatomy 

and/or function during time, for comparing subjects, and for merging information of 

multiple images. Several techniques are proposed to find a geometrical transformation 

that relates the points of an image to their corresponding points of another image 

[19],[21].  

A typical image registration algorithm consists of three coupled components:  

 An alignment measure (also known as similarity measure, registration objective 

function, etc.) that quantifies the quality of alignment. There are many similarity 

measures used in image registration, such as sum of absolute differences (SAD), 

sum of squared intensity differences (SSD), correlation coefficient (CC), and 

mutual information (MI) [19]-[21]; 

 A class of admissible geometric transformations that can be applied to the 

image(s). For 2D/2D or 3D/3D registration problems, the spatial transformation 

can be rigid, affine or deformable. In a rigid transformation, only rotations and 

translations are allowed. Affine transformations allow skewing and scaling in 

addition to rotation and translation. Deformable transformations define free-form 

mappings and are typically used with a regularization constraint to limit the 

allowable solution space; and 

 An optimizer that seeks the transformation that maximizes the similarity as 

quantified by the alignment measure [20],[22],[23]. 

The focus of this section is on the implementation of the first two components of 

image registration: the similarity measure and geometric transformation. That is because 

these two components are computationally intensive kernels. SAD similarity measure is 

selected due to its popularity, simplicity and suitability to hardware implementation. 3D 

affine transformation is selected as a moderate complexity between rigid and deformable 

transformations. Also, affine transformation is an important computationally intensive 

kernel in computer graphics [24]-[26]. 

3D affine transformations are the transformations that involve rotation, scaling, shear 

and translation. A matrix can represent an affine transformation and a set of affine 

transformations can be combined into a single overall affine transformation. Technically, 

it can be said that an affine transformation is made up of any combination of linear 

transformations (rotation, scaling and shear) followed by translation (technically, 

translation is not a linear transformation) [27]. In homogeneous co-ordinates it is possible 

to describe any transformation in a matrix notation: 
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where the vertex (x y z 1)
T
 is transformed to (x

* 
y

* 
z

* 
1)

T
 and the 44 square matrix is the 

transformation matrix T. This universal matrix for transformations can be divided into 

four functional blocks: 
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Consider an object represented with N vertices. The new position (NP) of the object 

when applying a transformation can be calculated as follows: 

)3(,*OPTNP   

where T is the matrix transform, OP is a 4N matrix contains the old vertices position 

and NP is a 4N matrix containing the new vertices position. Equation (3) could be 

written as: 
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To execute the affine transformation (Equation 4) on Mat-Core version with 44 

matrix registers, the 44 constant block (matrix T) is loaded into matrix register M1 and 

four vertices (44 block) of the OP matrix are loaded into another matrix register M2. 

Then a matrix-matrix multiplication instruction is executed on the two blocks stored in 

matrix registers. After that, the next four vertices (44 block) of the OP matrix are loaded 

into M2 and a matrix-matrix multiplication between the two matrix registers is performed 

and so on until finishing vertices. In each block multiplication, four vertices (44 block) 

of the NP matrix are produced and stored in memory. 

On the Mat-Core version with 84 matrix registers, two copies of 44 matrix T are 

loaded into matrix register M1 using instruction LMBH (Load Matrix Block 

Horizontally) as 48 block (see the previous section) and eight vertices of the OP matrix 

are loaded into another 84 matrix register M2 in the same manner (see Figure 9). A 

block matrix-matrix multiplication is done on the two matrix registers M1 and M2 using 

instruction BMUL. The BMUL instruction performs block-wise multiplication between 

44 blocks. As shown in Figure 9-a, BMUL instruction multiplies block A11 by B11 (as 

matrix-matrix multiplication) and A12 by B12. This instruction consumes 16 clock cycles 

for each two-block multiplication, so the total number of clock cycles that BMUL 

consumes is 32 plus the arithmetic pipelines latency. Figure 9-b shows the distribution of 

the blocks A11, B11, A12 and B12 in the matrix registers M1 and M2 after execution of 

LMBH instruction. Block A11 is in even rows (0, 2, 4, and 6) of M1 (dark rows) and block 

A12 is in odd rows (1, 3, 5, and 7) of M1 (white rows) and the blocks B11 and B12 are 

stored in the same manner in M2.  


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 On the Mat-Core version with 88 matrix registers, four copies of 44 matrix T are 

loaded into matrix register M1 using instruction LMB (Load Matrix Block) as 88 block 

and 16 vertices of the OP matrix are loaded into another matrix register M2 using 

instruction LMBH, as shown in Figure 10. The four copies of 44 matrix T are distributed 

in M1 as follows. The first and second copies are in even rows (0, 2, 4, and 6) in lanes 

L0-L3 and lanes L4-L7, respectively (dark rows). The third and fourth copies are in odd 

rows (1, 3, 5, and 7) in lanes L0-L3 and lanes L4-L7, respectively (white rows). In the 

same manner, the four groups of vertices (each group consists of four vertices) are 

distributed in M2 (see Figure 10). Note that the eight lanes are communicated with each 

other via two levels of crossbars. The first level (4-input/4-output crossbars) connects 

each four lanes as a group and the second level (8-input/8-output crossbars) connects the 

two groups as shown in Figure 10. This two-level crossbar gives us two selections; the 

first one is to use the eight lanes as two separate 4-lane groups, which is useful for block-

wise multiplication as an example. The second selection is to use the lanes as one 8-lane 

group, which is useful in matrix-matrix multiplication of 88 blocks as an example. The 

first selection can be performed by controlling the first crossbars level and applying pass 

signal on the second crossbars level. The opposite thing is done for the second selection 

by applying pass signal on the first crossbars level and controlling the second crossbars 

level. 

On the Mat-Core version with 88 matrix registers, the BMUL instruction performs 

 M1    M2  

Lane0 Lane1 Lane2 Lane3  Lane0 Lane1 Lane2 Lane3 

0 0 0 1 Address 7 1 1 1 1 

0 0 0 1  1 1 1 1 

c f i l  z4 z5 z6 z7 

c f i l  z0 z1 z2 z3 

b e h k  y4 y5 y6 y7 

b e h k  y0 y1 y2 y3 

a d g j  x4 x5 x6 x7 

a d g j Address 0 x0 x1 x2 x3 

 

        

Figure 9: Processing 3D affine transformation on Mat-Core processor with 84 matrix registers. 

(b) Distribution of 44 blocks on matrix registers. 

B11 B12 A11 A12 

(a) Block-wise multiplication of 44 blocks. 
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z0 z1 z2 z3 z4 z5 z6 z7 

0 0 0 1 0 0 0 1 
  

1 1 1 1 1 1 1 1 
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four block matrix-matrix multiplication; each of them is element-wise multiplication 

between 44 blocks. BMUL instruction execution takes 32 clock cycles plus the 

arithmetic pipelines latency. In the first half of BMUL execution, a block-wise 

multiplication is performed between the first and second copies of matrix T in M1 and the 

first and second groups of vertices in M2, respectively. These two matrix-matrix 

multiplications between the 44 blocks are performed simultaneously; each one of them 

is on 4-lane group. In the second half of BMUL execution, a block-wise multiplication is 

performed between the third and fourth copies of matrix T in M1 and the third and fourth 

groups of vertices in M2, respectively. Also, they are performed simultaneously, each one 

of them on 4-lane group. 

Sum of Absolute Differences (SAD) criteria is a popular intra-modality alignment 

measure [28],[29]: 

)5(,))x(()x(

1






n

i

ii TIRSAD  

where R(xi), I(T(xi)) are the intensity values at the corresponding voxel xi in the reference 

image R and the target image I, respectively. n is the total points of the image or the 

number of vertices. T is the transformation model. 

To execute SAD (Equation 5) on Mat-Core version with 44 matrix registers, two 

44 blocks from the reference image R and the target image I are loaded into matrix 

registers M1 and M2, respectively. Then the instruction ABD.MM (stands for Absolute 

Difference Matrix-Matrix) is used to calculate the absolute difference between the two 

blocks of data stored in matrix registers M1 and M2. The result of ABD.MM instruction is 

accumulated in matrix register M3 using the instruction Add.MM (stands for Add Matrix-

Matrix). The process continues until reaching the end of the two images. At that point, 

   M1        M2    
L0 L1 L2 L3 L4 L5 L6 L7  L0 L1 L2 L3 L4 L5 L6 L7 

0 0 0 1 0 0 0 1 7 1 1 1 1 1 1 1 1 

0 0 0 1 0 0 0 1  1 1 1 1 1 1 1 1 

c f i l c f i l  z8 z9 z10 z11 z12 z13 z14 z15 

c f i l c f i l  z0 z1 z2 z3 z4 z5 z6 z7 

b e h k b e h k  y8 y9 y10 y11 y12 y13 y14 y15 

b e h k b e h k  y0 y1 y2 y3 y4 y5 y6 y7 

a d g j a d g j  x8 x9 x10 x11 x12 x13 x14 x15 

a d g j a d g j 0 x0 x1 x2 x3 x4 x5 x6 x7 

        
        4-input/4-output 

crossbars 

4-input/4-output 

crossbars 

8-input/8-output crossbars 

Functional units 

4-input/4-output 

crossbars 

4-input/4-output 

crossbars 

8-input/8-output crossbars 

Functional units 

Figure 10: Processing 3D affine transformation on Mat-Core processor with 88 matrix registers. 
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 the result is 44 block in M3. Accumulating the elements of M3 gives the final scalar 

result which can be done by using two instructions MAC.MM (multiply-accumulate) and 

PACC (partial-accumulate). The first instruction MAC.MM does a vertical reduction by 

element-wise multiplication of the rows of M3 by the corresponding rows of M4 and 

accumulating the result in the MAC pipelines. Note that M4 is loaded by ones. The 

second instruction PACC performs a horizontal reduction of the vertical accumulated 

results in the MAC pipelines. 

The execution of SAD on Mat-Core84 and Mat-Core88 is similar to what is 

mentioned above on Mat-Core44. The difference is that larger blocks are processed in 

each iteration (84 and 88 blocks for Mat-Core84 and Mat-Core88, respectively). 

 

 

5.  SCALING PERFORMANCE ON MAT-CORE PROCESSOR 

 

This section studies the performance scalability of Mat-Core processor on linear 

algebra kernels, DCT/IDCT, and image registration. Four versions of Mat-Core processor 

are used for performance evaluation of these kernels to show the scalability of Mat-Core 

processor. The number of lanes is varied from one to four and from one to eight. The 

number of registers is constant (eight registers), however, the size of registers is varied 

from 81 to 44 to 84 to 88.  

 

 

5.1 Performance of Linear Algebra Kernels on Mat-Core Processor  

 

Table 1 shows the floating-point operations (FLOPs) and memory references 

(load/store operations) for some linear algebra kernels used for performance evaluation of 

Mat-Core. It is clear that the ratio of FLOPs to memory references is different. For 

example, Givens rotation is more computationally intensive than vector-scalar 

multiplication, since the ratio of FLOPs to memory references in the former is higher 

than the later. In general, the performance of Mat-Core processor is higher on 

computationally intensive kernels than on memory intensive kernels, as will be shown in 

this section. 

Figure 11(a-c) shows the performance of vector kernels on Mat-Core processor with 

different number of lanes. Scaling the matrix unit from one lane to four lanes with 44 

matrix registers improves the performance of scalar-vector multiplication, SAXPY, and 

Givens by factors of 3.1, 3.2, and 2.75, respectively. In addition, scaling the matrix 

registers from 44 to 84 without changing the number of parallel lanes (four) results in 

scaling the performance by factors of 1.2, 1.3, and 1.4, respectively. Moreover, scaling 

the matrix unit from four lanes with 44 matrix registers to eight lanes with 88 matrix 

registers improves the performance of vector kernels by factors of 2.6, 2.5, and 2.9, 

respectively. The speedup due to scaling one lane to eight lanes is around eight, which 

indicates the scalability of the Mat-Core architecture.  
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Figure 11(d, e) shows the performance of matrix-vector kernels on Mat-Core 

processor with one, four, and eight lanes. Increasing the number of lanes from one lane to 

four lanes with 44 matrix registers improves the performance of rank-one update and 

vector-matrix multiplication by factors of 3.5 and 2.75, respectively. Moreover, scaling 

the matrix registers from 44 to 84 in Mat-Core with four parallel lanes results in 

improving the performance by factors of 1.4 and 1.6, respectively. In addition, scaling the 

matrix unit from four lanes with 44 matrix registers to eight lanes with 88 matrix 

registers improves the performance of matrix-vector kernels by factors of 2.7 and 3.2, 

respectively. The speedups due to scaling one lane to eight lanes are 9.6 and 8.8, 

respectively. Reusing the loaded data in matrix register by using matrix ISA is greater 

than reusing the loaded data in vector registers using vector ISA, which results in super-

linear scaling. 

Matrix-matrix multiplication is one of the most fundamental operations in numerical 

linear algebra [30]. Although this problem is simple mathematically, it is very rich from 

the computational point of view. Accumulating Cmn matrix with the multiplication of 

Amw matrix by Bwn matrix (Cmn=Cmn+AmwBwn) needs 2mwn FLOPs while at 

least (2mn+mw+wn) memory operations being needed. The worst case (zero-reusing 

data) leads to needing (2mn+2mwn) memory operations because the matrix Bwn should 

be loaded m times or the matrix Amw should be loaded n times. Thismeans (2mn + mw 

+ wn)(memory operations for matrix-matrix multiplication)  (2mn+2mwn). On P 

Mat-Core lanes, the required number of memory operations is (2mn+2mwn/P) because 

the matrix Bwn should be loaded m/P times or the matrix Amw should be loaded n/P 

times. This results in (1/w+1/P) memory operations per FLOP, where the optimum 

value is (1/w+1/2m+1/2n) memory operations per FLOP. Increasing the number of 

parallel lanes P leads the required number of memory operations to be closer to the 

optimal value. In other words, when m=n=w=P, the Mat-Core processor performs 

ideally since the matrices can be loaded into matrix registers and the highest reuse of data 

occurs. 

Figure 11-f shows the performance of matrix-matrix multiplication on Mat-Core 

processor with one, four, and eight lanes. Increasing the number of lanes from one lane to 

 

Table 1: Kernels for scaling performance on Mat-Core processor. 

Kernel Semantic FLOPs/Memory References 
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 four lanes with 44 matrix registers and to eight lanes with 88 matrix registers improves 

the performance by factors of 4.1 and 10.6, respectively. Moreover, scaling the matrix 

registers from 44 to 84 of Mat-Core with four parallel lanes results in improving the 

performance by a factor of 1.2.  

Figure 12 summaries the scalability of Mat-Core architecture on some linear algebra 

kernels. Moreover, Figure 13 shows the speedup of multiple lanes Mat-Core over one 

lane. The speedup due to scaling Mat-Core from one lane with 8-element vector registers 

to four lanes with 44 matrix registers is 2.75-4.1. Increasing the number of parallel lanes 

from one lane with 8-element vector registers to eight lanes with 8 x 8 matrix registers 

speeds up the execution of the six kernels by a factor of 7.94-10.6. Scaling the matrix 

registers from 44 to 84 improves the speedup by a factor of 1.2-1.6. Moreover, a 

speedup of 3.6-4.8 is achieved in four lanes with 8 x 4 matrix registers over one lane.   

 

Figure 11: Performance scalability of linear algebra kernels on Mat-Core. 
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5.2 Performance of DCT/IDCT on Mat-Core Processor  

 

The performances in FLOPs per clock cycle of both DCT and IDCT on Mat-Core 

processor are similar. This is due to the similarity in the computation of the two 

algorithms of DCT and IDCT. In addition, processing the main operations AM, AM
T
, 

and M
T
A on Mat-Core takes the same number of clock cycles. The number of FLOPs 

can be easily calculated from the algorithm as 4*8
3
*(n/8)

2
 or 32n

2
 on nn matrix and 88 

DCT block. Moreover, the number of clock cycles on Mat-Core is calculated by our cycle 

accurate model, which is constructed using SystemC [3].  

The ideal performances for DCT/IDCT are 2, 8, 8 and 16 FLOPs per clock cycle on 

Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, respectively. This is 

because each lane has one MAC pipeline, which represents two FLOPs (multiply and 

add). Figure 14-a shows the performance evaluation of the Mat-Core (four versions 

discussed in Section 2) on images with sizes 2525, 5050, 100100, …, and 400400. 

The maximum performances achieved are 1.5, 5, 6.4 and 14.4 FLOPs/cycle for Mat-

Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, which represents 75%, 

62.5%, 80%, and 90% of the ideal values, respectively. The saw tooth behavior in the 
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     Figure 12: Scalability of Mat-Core architecture on linear algebra kernels. 
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Figure 13: Speedup Multiple-lane Mat-Core over one-lane on linear algebra kernels. 
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 performance (see Figure 14-a) results from padding the image sizes to be multiple of 

eight. The effect of padding is large on small image sizes (2525). As the image size 

increases, the effect of padding decreases until decaying.  

Figure 14-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88 

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to 

eight results in speeding up the execution of DCT and IDCT by factors of 4.2, and 9.5, 

respectively. This indicates the scalability of Mat-Core architecture. Moreover, the 

enhancement in performance of DCT and IDCT on Mat-Core-84 and Mat-Core-88 

over Mat-Core-44 (see Figure 14-c) is because the larger matrix blocks (84 or 88) 

amortize the pipelines latencies better than small blocks (44). In addition, increasing the 

number of parallel lanes from four to eight (see Figure 14-d) speeds up the execution of 

DCT and IDCT more than twice. Increasing the number of parallel lanes and enlarging 

the matrix registers results in reducing the dependency and gives more chance to reuse 

the data, which leads to improved performance. 

 

 

5.3 Performance of Image Registration Kernels on Mat-Core Processor  

 

The number of FLOPs in affine transformation can be easily calculated from 

Equation 4 as 2*(4*4*n) or 32n, where n is the number of vertices. The ideal 

performances for affine transformation are 2, 8, 8 and 16 FLOPs per clock cycle on Mat-

Figure 14: Performance evaluation of DCT and IDCT on scalable Mat-Core processor.  
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Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, respectively, because each 

lane has a MAC pipeline, which represents two FLOPs (multiply and add). 

Figure 15-a shows the performance scalability of affine transformation on the Mat-

Core versions on volume vertices 2k, 4k, 8k, . . . , and 64k, where k = 1024, versus 

FLOPs per clock cycle. The maximum performances achieved are 1.2, 4.9, 5.6 and 11.2 

FLOPs/cycle for Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, 

respectively. The percentage of the maximum performance in the version with 8 lanes 

and matrix register size 88 (Mat-Core88) is 70% of the ideal value. This percentage is 

smaller than what achieved in DCT (90%) because affine transformation is less 

computationally intensive (32n FLOPs) than DCT (32n
3
 FLOPs). Mat-Core performance 

is higher in computationally intensive kernels rather than memory intensive kernels. 

Figure 15-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88 

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to 

eight results in speeding up the execution of affine transformation by factors of 4.6, and 

9.2, respectively. This indicates the scalability of Mat-Core architecture. Moreover, the 

enhancement in performance of affine transformation on Mat-Core-84 and Mat-Core-

88 over Mat-Core-44 (see Figure 15-c) is because the larger matrix blocks (84 or 

88) amortize the pipelines latencies better than small blocks (44). In addition, 

increasing the number of parallel lanes from four to eight (see Figure 15-d) speeds up the 

execution of affine transformation exactly twice. 

Figure 15. Performance evaluation of 3D affine transformation on scalable Mat-Core processor  

(a) Performance evaluation (b) Speedup over 1 lane with  

8-element registers 

(c) Speedup over 4 lanes with  

44 matrix registers 

(d) Speedup over 4 lanes with 

84 matrix registers 
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 The number of FLOPs in SAD can be easily calculated from Equation 5 as 2*n-1, 

where n is the number of vertices. The ideal performances for SAD are 1, 4, 4 and 8 

FLOPs per clock cycle on Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-

88, respectively. This is because each lane has one adder pipeline, which is used by 

SAD kernel. The MAC pipeline is used only one time at the end of calculation. Since the 

number of vertices n is large, the MAC pipeline is ignored in calculation. 

Figure 16-a shows the performance scalability of the SAD on the Mat-Core versions 

on volume vertices 2k, 4k, 8k, . . ., and 64k, where k = 1024, in FLOPs per clock cycle. 

The maximum performances achieved are 0.76, 2.46, 3 and 6.1 FLOPs/cycle for Mat-

Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, which represents 76%, 61. 

5%, 75%, and 76.25% of the ideal values, respectively.  

Figure 16-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88 

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to 

eight results in speeding up the execution of SAD by factors of 4 and 8, respectively. This 

indicates the scalability of Mat-Core architecture. Moreover, the enhancement in 

performance of SAD on Mat-Core-84 and Mat-Core-88 over Mat-Core-44 (see 

Figure 16-c) is because the larger matrix blocks (84 or 88) amortize the pipelines 

latencies better than small blocks (44). In addition, increasing the number of parallel 

lanes from four to eight (see Figure 16-d) speeds up the execution of SAD twice on large 

number of vertices. 

Figure 16. Performance evaluation of SAD on scalable Mat-Core processor  

(a) Performance evaluation (b) Speedup over 1 lane with 

8-element registers 

(c) Speedup over 4 lanes with 

44 matrix registers 
(d) Speedup over 4 lanes with 

84 matrix registers 
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6.  CONCLUSION 

 

This paper has described the implementation of DCT/IDCT and image registration on 

Mat-Core processor. Moreover, it investigated the scalability of Mat-Core architecture 

with different number of parallel lanes (one, four, and eight) and variable matrix register 

size (44 and 84). Thus, four versions of Mat-Core processor (Mat-Core-81, Mat-

Core-44, Mat-Core-84, and Mat-Core-88) have been implemented using SystemC as 

a cycle accurate models.   

Our results show that scaling the Mat-Core processor from one lane with 81 vector 

registers to four lanes with 44 matrix registers improves the performance by factors of 

3.1, 3.2, 2.75, 3.5, 2.75, 4.1, 3.3, 4.1, and 3.2 on scalar-vector multiplication, SAXPY, 

Givens, rank-1 update, vector-matrix multiplication, matrix-matrix multiplication, DCT, 

3D affine transformation, and SAD, respectively. Moreover, increasing the number of lanes 

from one to eight with 88 matrix registers on the same kernels improves the 

performance by factors of 7.94, 7.95, 7.95, 9.6, 8.82, 10.6, 9.5, 9.2, and 8, respectively. In 

addition, scaling matrix registers from 44 to 84 improves the performance on the same 

kernels by factors of 1.2, 1.3, 1.4, 1.4, 1.6, 1.2, 1.3, 1.1, and 1.25, respectively. That is 

because the larger matrix blocks (84) amortize the pipelines latencies better than small 

blocks (44). The percentage of the maximum performance in the version with 8 lanes 

and matrix register size 88 (Mat-Core-88) is 90% of the ideal value for DCT and 

matrix-matrix multiplication. The speedups of the execution of the kernels from different 

application fields on Mat-Core-84, and Mat-Core-88 over Mat-Core-81 are 3.6x-4.8x 

and 7.94x-10.6x, respectively.  
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