
Neural, Parallel, and Scientific Computations 21 (2013) 87-110

CYCLE ACCURATE MODELS FOR INVESTIGATING THE SCALABILITY OF

MAT-CORE PROCESSOR

MOSTAFA I. SOLIMAN
1
, MOUMEN T. EL-MELEGY

2
, AND

ABDULMAJID F. AL-JUNAID
3

1
Computers & Systems Section, Electrical Engineering Department,
Faculty of Engineering, Aswan University, Aswan 81542, Egypt,

2
Computers & Systems Section, Electrical Engineering Department,

Faculty of Engineering, Assiut University, Assiut, Egypt

3
Electronic & Communication Engineering Department,

Faculty of Engineering and Architecture, Ibb University, Ibb, Yemen

Abstract. Mat-Core is a matrix processor aiming at exploiting the increasingly number of

transistors per IC to improve the performance of a wide range of applications. It extends a

general-purpose scalar processor with a matrix unit for processing vector/matrix data. To hide

memory latency, the extended matrix unit is decoupled into two components: address generation

and data computation, which communicate through data queues. In this paper, four cycle accurate

models are implemented using SystemC (system level modeling language) to investigate the

scalability of Mat-Core. They include Mat-Core having (1) 1-lane with 81 vector registers, (2)

4-lane with 44 matrix registers, (3) 4-lane with 84 matrix registers, and (4) 8-lane with 88

matrix registers. The first model exploits scalar/vector ISAs, however, the remaining three

models exploit scalar/vector/matrix ISAs. Moreover, this paper describes in detail the

implementation of some kernels on the Mat-Core processor and discusses its scalability. Our

results show that increasing the number of parallel lanes from one to four and from one to eight

speedup the execution of kernels by factors of 3.6x-4.8x and 7.94x-10.6x, respectively, which

indicates the scalability of Mat-Core architecture. In addition, the maximum performance of the

Mat-Core processor on math intensive kernels represents 90% of the ideal value.

Keywords - scalable architecture, high performance computing, performance evaluation,

vector/matrix processing.

1. INTRODUCTION

Scalability problem is considered as a major challenge for processor designers.

Architecture scalability simply means that a very large computer can be built from a large

number of basic components (computers, processors or processing elements, memories,

and switches) with no single bottleneck component. Thus, the computer can be

increasingly expanded over its designed scaling range, delivering linear incremental

performance for a well-defined set of applications. This paper investigates the scalability

of Mat-Core architecture with different number of parallel lanes (one, four, and eight) on

some kernels of linear algebra (scalar-vector multiplication, SAXPY: single-precision

scalar A times vector X plus vector Y, Givens rotation, rank-1 update, vector-matrix

multiplication, and matrix-matrix multiplication), DCT/IDCT, and image registration.

Received February 5, 2012 1061-5369 $15.00 © Dynamic Publishers, Inc

88 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

Mat-Core is a matrix processor aiming at exploiting the increasingly number of

transistors per IC to improve the performance of a wide range of applications [1]-[3]. As

Figure 1 shows, Mat-Core extends a general-purpose scalar processor with a matrix unit

for processing vector/matrix data. The extended matrix unit is decoupled into two

components to hide memory latency: data computation and address generation, which

communicate through data queues. The matrix unit consists of five units: instruction

flow, load/store (address generation), matrix control, matrix register file (RF), and

functional units. As in conventional processors, instructions and data are loaded from L2

cache into instruction and L1 data caches, respectively. Each instruction

(scalar/vector/matrix) is fetched from instruction cache and sent in-order to the decode

stage. If the fetched instruction is scalar, it completes remaining cycle of execution on the

scalar pipeline stages (read operand(s), execute, memory access, and write-back).

However, vector/matrix instructions are fetched in-order from instruction cache and sent

to the matrix unit for execution on parallel lanes. When the result of executing a

vector/matrix instruction is a scalar value, the matrix unit sends it back to the scalar unit

for storing in the scalar register file. Otherwise, vector/matrix results are stored in the

matrix register file inside the matrix unit.

As in vector processors [4]-[9], the data computation unit is organized in parallel

lanes; each lane contains a pipeline of each functional unit and a slice of the matrix

register file. However, on these parallel lanes not only vectors but also matrix data can be

processed. Hence, Mat-Core processor inherits from a vector processor design the

relatively straightforward means to scale performance. By increasing the number of

parallel lanes, designer can easily increase the amount of data-level parallelism exploited.

This also allows designers to easily scale the processor design to exploit the increased

number of transistors that continue to grow according to Moore’s law [10].

In this paper, four versions of Mat-Core processor are implemented by SystemC

(system level modeling language) and evaluated to show its scalability. These versions

are different in the number of parallel lanes and the size of registers in the matrix unit of

Figure 1: The block diagram of Mat-Core processor.

THE SCALABILITY OF MAT-CORE PROCESSOR 89

Mat-Core architecture. The first version contains one lane with vector register length of

eight elements (Mat-Core-81). It exploits only scalar and vector instruction set

architectures (ISAs). However, the remaining versions can exploit the three levels

(scalar/vector/matrix) of Mat-Core ISA [11]. The second and third versions contain four

lanes but they are different in the size of matrix registers (44 for Mat-Core-44 and 84

for Mat-Core-84). These versions show that scaling the matrix register size results in

improving the performance of Mat-Core with the same number of parallel lanes. This is

because larger matrix register size amortizes the pipeline latency of functional units. The

last version has eight lanes with matrix registers of size 88 (Mat-Core-88).

This paper is organized as follows. The hardware scalability of Mat-Core is discussed

in detail in Section 2. Section 3 describes the implementation of DCT/IDCT using Mat-

Core instructions. The implementations of 3D affine transformation and SAD (sum of

absolute differences) are described in Section 4. Section 5 evaluates the performance of

some kernels including linear algebra, DCT/IDCT, and image registration to investigate

the scalability of Mat-Core architecture with variable number of lanes. Finally, Section 6

concludes this paper.

2. HARDWARE SCALABILITY OF MAT-CORE PROCESSOR

To reduce the execution time, most vector processors use parallel pipelines per

functional unit [12]. Thus, a vector unit can be structured as parallel lanes, where each

lane contains a portion of the vector register file and one pipeline for each vector

functional unit. The concept of parallel lanes is fundamental for the vector

microarchitecture, as it leads to advantages in performance, design complexity, and

scalability.

There are several benefits to the modular, lane-based implementation [13]. A single

lane must be designed and verified regardless of the number of lanes allocated in the

processor. Scaling the processor for processing longer vectors or larger matrices by

allocating the proper number of lanes leads to balanced addition of both register file and

execution resources, without requiring redesign of functional units or their control. A

four-lane processor, for example, can store vectors twice as long and execute twice as

many element operations per cycle as a two-lane processor. Finally, the locality of

communication in the lane-based processors allows hardware scaling without

implications due to the high latency of long, cross-chip wires [14],[15]. On parallel lanes,

Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in

addition to vector-scalar and vector-vector instructions.

Figure 2: Mat-Core processor with one lane architecture.

90 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

The block diagram of Mat-Core version with a single lane (Mat-Core-8×1) is shown

in Figure 2. The lane contains eight vector registers; each one has eight 32-bit elements.

The lane also contains five arithmetic pipelines for executing vector instructions: ALU,

FP adder, FP multiplier, FP MAC (multiply-accumulate), and FP divider. The

multiplexers select the two input vector registers to the specified arithmetic pipeline.

Moreover, demultiplexer selects the output of a specified arithmetic pipeline to be written

in the destination vector register. This version of Mat-Core processor can exploit only

scalar and vector ISAs.

To investigate the scalability of Mat-Core processor, a scalar core is extended with n

lanes matrix unit (see Figure 3). Like the first version, there are five functional units for

executing vector/matrix instructions. However, each functional unit has n parallel

pipelines (one pipeline per lane), where two 32-bit data are needed per pipeline for

processing and 32-bit is produced as a result. These functional units operate under the

control of the matrix control unit. Each lane contains eight banks (one bank for each

matrix register). n banks distributed among n lanes construct a matrix register. Each bank

has two read ports and one write port. To show the scalability of Mat-Core, the number of

lanes n is varied from one to four (Mat-Core-4×4 and Mat-Core-8×4) and from one to

eight (Mat-Core-8×8).

Figure 3: Mat-Core processor with n lane architecture.

THE SCALABILITY OF MAT-CORE PROCESSOR 91

No interconnections between parallel lanes are needed for element-wise vector/matrix

instructions. However, not only element-wise instructions are needed for vector/matrix

processing, but reduction and expansion instructions are also needed. Dot-product,

vector-matrix, and matrix-matrix multiplications are based on reduction operations;

however, outer-product is based on expansion operations. Executing reduction and

expansion instructions needs interconnections between lanes. These interconnections can

be local, global, bus, etc. It is known that all these types of interconnections are not

scalable, except the local, because longer wires are needed to connect more lanes.

However, for a small number of parallel lanes, the use of full crossbars is more efficient

technique than the others. Crossbars provide complete flexibility in connecting any

register bank of the partition register file with any functional unit. Pass, rotate, and

broadcast are the main shuffle operations that can be done on Mat-Core crossbars. See [2]

for more detail about using crossbars in the execution of matrix/vector instructions. The

use of crossbar in connecting Mat-Core lanes will limit its hardware scalability coming

from increasing number of parallel lanes. Thus, in this paper the scalability of Mat-Core

will be investigated when the number of parallel lanes varies from one to eight, which

represent a small number of lanes. Extending the hardware scalability of Mat-Core can be

achieved by providing more processor cores in a physical package as a multi-core

processor (Multi-Mat-Core). On the Multi-Mat-Core, the performance could be scaled by

parallel processing threads of codes using multi-threading techniques.

92 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

3. DCT IMPLEMENTATION ON MAT-CORE

The discrete cosine transform (DCT) is a member of the sinusoidal family of unitary

transforms. It has found applications in digital signal and image processing and

particularly in transform coding systems for data compression/decompression. Besides

being real, orthogonal, and separable, its properties are relevant to data compression and

fast algorithms for its computation have proved to be of practical value. Recently, DCT

has been employed as the main processing tool for data compression/decompression in

international image and video coding standards—JPEG (Joint Photographic Experts

Group) and MPEG (Moving Picture Experts Group) [16],[17].

The DCT gets its name from the fact that the rows of the NN transform matrix M are

obtained as a function of cosines. The conventional DCT in floating-point domain is

implemented on NN block of the image using the following equation: B = MAM
T
,

where B is the transformed matrix, A is the input matrix, and M is the transformation

matrix. The (i, j)
th

 element of the transformation matrix M is given by

)1(
0)2/)12cos((2

0/1










i>ifNiπj/N

iifN
M ij

where i, j = 0, 1, 2, …, N. Since M is orthogonal matrix, the IDCT (inverse DCT) could

be computed as A = M
T
BM [18].

The DCT and IDCT implementations require three types of matrix-matrix

multiplications: AM,
 AM

T,
 and M

T
A. In this section the implementation of AM

T
 and

M
T
A are discussed in details. However, the implementation of matrix-matrix

multiplication (AM) on Mat-Core processor was described in [2].

The matrix register file (MRF) in Mat-Core allows accessing multiple data (one data

item per lane), concurrently, to be processed on parallel lanes. These multiple data could

be accessed from the same row of a matrix block loaded into a matrix register or from

different rows, but no more than one element can be accessed from the same column

(lane). By exploiting this ability of parallel accessing MRF and the shuffle operations

(pass, rotate, and broadcast), the matrix transposition can be avoided in AM
T
 and M

T
A.

It is well known that transposing a matrix is a very expensive operation since it takes

O(n
2
) operations on nn matrix. Thus, avoiding matrix transposition represents one of the

main advantages of Mat-Core architecture. To carry out the matrix operation AM
T
, the

input matrix M should be loaded from memory to MRF in skewed form as shown in

Figure 4. However, Mat-Core processes the input blocks of matrices without the need for

skewing. The access abilities to MRF and the shuffle operations of crossbars substitute

the skewing process.

Figure 5 shows the processing of AM
T
 for two 44 matrix blocks stored in 44

matrix registers. The two matrix blocks are loaded from memory to MRF row by row

without the need for skewing. The first row of the result matrix is produced after four

steps (step1-step4). In each step, the first row (four elements) of the matrix A and the

skewed row of matrix M (see Figure 4-b) are fed to four MAC (multiply-accumulate)

pipelines. Feeding matrix M to the four MAC pipelines in the skewed form is achieved

via accessing different rows of MRF at the same cycle and rotating them by crossbars.

The shuffle operations for crossbars are pass, rotate-1, rotate-2, and rotate-3 for step1,

Figure 4: Skewing the input matrix M for AM
T
.

m00 m01 m02 m03
 m00 m11 m22 m33

m10 m11 m12 m13
 m01 m12 m23 m30

m20 m21 m22 m23
 m02 m13 m20 m31

m30 m31 m32 m33
 m03 m10 m21 m32

(a) Before skewing

(b) After skewing

THE SCALABILITY OF MAT-CORE PROCESSOR 93

 step2, step3 and step4, respectively. The same shuffle operations applied to matrix M are

also applied to matrix A. In the same manner, the second row of the result matrix is

produced after four steps (step5-step8) and so on. Thus, the multiplication of two 44

matrix blocks requires 16 clock cycles in addition to the MAC pipelines latency.

Figure 6 shows the processing of M
T
A on two 44 matrix blocks stored in matrix

registers. The two matrix blocks are loaded into MRF row by row without the need for

transposition. The multiplication of two blocks is based on vector-matrix multiplication

and its inner loop is based on SAXPY. However, the exception here is that the columns

(instead of rows) of the first block M are taken as vectors to be multiplied by the rows of

matrix A.

To improve the performance of Mat-Core without drastically increasing the

complexity, 84 registers are used instead of 44. On Mat-Core with matrix register size

of 84, the implementation of AM
T
 and M

T
A is somehow different. This version of

Mat-Core has two types of load instructions. One for loading matrix blocks with size 48

and the other for loading matrix blocks with size 84. Figure 7 shows the arrangement of

84 and 48 matrix blocks in matrix registers after executing LMB (Load Matrix Block)

and LMBH (Load Matrix Block Horizontally), respectively.

To process AM
T
 on this version of Mat-Core, it is required to load a block of 48

from matrix A and a block of 48 (instead of 84 because of the transposition) from

matrix M. Then, the block 48 from matrix A is multiplied by the transpose of the block

48 from matrix M. Using the access abilities to MRF and the shuffle operations of

crossbars substitute transposing the block 48 from matrix M. As shown in Figure 8-a,

the production of each row of the result matrix block needs eight steps. For example,

producing the first row of the result matrix block takes four steps for multiplying the first

half of the first row R11 by the first block B11 and another four steps for multiplying the

second half of the first row R12 by the second block B12. Multiplying R11 by B11 or R12 by

B12 is done in the same way shown in Figure 5 (step1-step4). The results are accumulated

in the MAC pipelines through the eight steps to produce the first row of the result matrix

block. Also, the second row of the result matrix block is produced by multiplying R21 by

B11 and R22 by B12 and so on. Thus, processing AM
T
 on two 48 matrix blocks requires

32 cycles in addition to the MAC pipelines latency.

Figure 5: Processing AM
T
 on Mat-Core processor for two 44 matrix blocks.

M1M1M1

Step 1

Lane 0 Lane 2

P
a

s
s

6
-s

ta
g

e
 M

A
C

 p
ip

e
li

n
e

Crossbar for source2 (M)

Crossbar for source1 (A)

P
a

s
s

M1

Lane 1 Lane 3

M2 M2 M2 M2

a03m33a02m22a01m11a00m00

a30
a20
a10
a00

m30
m20
m10
m00

a31
a21
a11
a01

m31
m21
m11
m01

a32
a22
a12
a02

m32
m22
m12
m02

a33
a23
a13
a03

m33
m23
m13
m03

. . .

M1M1M1

Step 4

Lane 0 Lane 2

R
o

ta
te

-3

6
-s

ta
g

e
 M

A
C

 p
ip

e
li

n
e

Crossbar for source2 (M)

Crossbar for source1 (A)

R
o

ta
te

-3

M1

Lane 1 Lane 3

M2 M2 M2 M2

a30
a20
a10
a00

m30
m20
m10
m00

a31
a21
a11
a01

m31
m21
m11
m01

a32
a22
a12
a02

m32
m22
m12
m02

a33
a23
a13
a03

m33
m23
m13
m03

a00m00 a01m11 a02m22 a03m33

a03m03 a00m10 a01m21 a02m32

a02m02 a03m13 a00m20 a01m31

a01m01 a02m12 a03m23 a00m30

M1M1M1

Step 5

Lane 0 Lane 2

P
a

s
s

6
-s

ta
g

e
 M

A
C

 p
ip

e
li

n
e

Crossbar for source2 (M)

Crossbar for source1 (A)

P
a

s
s

M1

Lane 1 Lane 3

M2 M2 M2 M2

a30
a20
a10
a00

m30
m20
m10
m00

a31
a21
a11
a01

m31
m21
m11
m01

a32
a22
a12
a02

m32
m22
m12
m02

a33
a23
a13
a03

m33
m23
m13
m03

. . .

M1M1M1

Step 16

Lane 0 Lane 2

R
o

ta
te

-3

6
-s

ta
g

e
 M

A
C

 p
ip

e
li

n
e

Crossbar for source2 (M)

Crossbar for source1 (A)

R
o

ta
te

-3

M1

Lane 1 Lane 3

M2 M2 M2 M2

a30
a20
a10
a00

m30
m20
m10
m00

a31
a21
a11
a01

m31
m21
m11
m01

a32
a22
a12
a02

m32
m22
m12
m02

a33
a23
a13
a03

m33
m23
m13
m03

a00m00 a01m11 a02m22 a03m33

a03m03 a00m10 a01m21 a02m32

a02m02 a03m13 a00m20 a01m31

a01m01 a02m12 a03m23 a00m30

a10m00 a11m11 a12m22 a13m33

a30m00 a31m11 a32m22 a33m33

a33m03 a30m10 a31m21 a32m32

a32m02 a33m13 a30m20 a31m31
a31m01 a32m12 a33m23 a30m30

a23m03 a20m10 a21m21 a22m32
a22m02 a23m13 a20m20 a21m31

94 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

To process M
T
A on Mat-Core, it is required to load a block of 84 from matrix M

(instead of 48 because of the transposition of M) and a block of 84 form matrix A. The

two blocks are multiplied based on vector-matrix multiplication and the inner loop is

based on SAXPY in the same manner as mentioned before in Figure 6. The two blocks

are loaded to matrix registers as shown in Figure 8-b. The first row of the result matrix

block is produced after eight steps. In the first step, m00 from the first column of M is

broadcast to the four MAC pipelines with the first row of A. Then, the second element,

m10, from the first column of M is broadcast to the four MAC pipelines with the second

row of A. After that, the process continues in the same way, broadcasting one element

from the first column of M with the corresponding row of A. The second row of the result

matrix block produces from the second column of M and the rows of A in the same

THE SCALABILITY OF MAT-CORE PROCESSOR 95

Figure 6: Processing M
TA on Mat-Core processor for two 44 matrix blocks.

M1M1M1

Lane 0 Lane 2

P
as

s

6-
st

ag
e

M
A

C
 p

ip
el

in
e

Crossbar for source2 (A)

Crossbar for source1 (M)

B
ro

ad
ca

st
-0

M1

Lane 1 Lane 3

M2 M2 M2 M2

m30
m20
m10
m00

a30
a20
a10
a00

m31
m21
m11
m01

a31
a21
a11
a01

m32
m22
m12
m02

a32
a22
a12
a02

m33
m23
m13
m03

a33
a23
a13
a03

. . .

Step 5 Step 16

m00a03m00a02m00a01m00a00

M1M1M1

Lane 0 Lane 2

P
as

s

6-
st

ag
e

M
A

C
 p

ip
el

in
e

Crossbar for source2 (A)

Crossbar for source1 (M)

B
ro

ad
ca

st
-0

M1

Lane 1 Lane 3

M2 M2 M2 M2

m30
m20
m10
m00

a30
a20
a10
a00

m31
m21
m11
m01

a31
a21
a11
a01

m32
m22
m12
m02

a32
a22
a12
a02

m33
m23
m13
m03

a33
a23
a13
a03

m30a33m30a32m30a31m30a30

m00a03m00a02m00a01m00a00

m10a13m10a12m10a11m10a10

m20a23m20a22m20a21m20a20

M1M1M1

Lane 0 Lane 2

P
as

s

6-
st

ag
e

M
A

C
 p

ip
el

in
e

Crossbar for source2 (A)

Crossbar for source1 (M)

B
ro

ad
ca

st
-1

M1

Lane 1 Lane 3

M2 M2 M2 M2

m30
m20
m10
m00

a30
a20
a10
a00

m31
m21
m11
m01

a31
a21
a11
a01

m32
m22
m12
m02

a32
a22
a12
a02

m33
m23
m13
m03

a33
a23
a13
a03

. . .

M1M1M1

Lane 0 Lane 2

P
as

s

6-
st

ag
e

M
A

C
 p

ip
el

in
e

Crossbar for source2 (A)

Crossbar for source1 (M)

B
ro

ad
ca

st
-3

M1

Lane 1 Lane 3

M2 M2 M2 M2

m30
m20
m10
m00

a30
a20
a10
a00

m31
m21
m11
m01

a31
a21
a11
a01

m32
m22
m12
m02

a32
a22
a12
a02

m33
m23
m13
m03

a33
a23
a13
a03

Step 1 Step 4

m30a33m30a32m30a31m30a30

m00a03m00a02m00a01m00a00

m10a13m10a12m10a11m10a10

m20a23m20a22m20a21m20a20

m01a03m01a02m01a01m01a00 m33a33m33a32m33a31m33a30

m03a03m03a02m03a01m03a00

m13a13m13a12m13a11m13a10

m23a23m23a22m23a21m23a20

m32a33m32a32m32a31m32a30
m22a23m22a22m22a21m22a20

manner mentioned above for the first row and also takes eight steps. Thus, processing

M
T
A on two 84 matrix blocks requires 32 steps.

In Mat-Core version with one lane, processing the operations AM, AM
T
, and M

T
A

is based on vector operations (scalar-vector multiplication and dot product). In addition,

the implementation of DCT/IDCT on Mat-Core version with eight lanes is similar to

what is discussed above for four lanes and matrix register size 44. However, multiplying

two 88 blocks (AM, AM
T
, and M

T
A) on eight lanes requires 64 steps instead of 16

step in case of multiplying two 44 blocks.

96 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

4. 3D AFFINE TRANSFORMATION & SAD IMPLEMENTATION ON

MAT-CORE

Registration is an important problem and a fundamental task in image processing and

computer vision [19]-[22]. Image registration is the process of overlaying two or more

images of the same scene taken at different times, from different viewpoints, and/or by

different sensors. Registration of medical images is becoming an important tool for

a00 a01 a02 a03 a04 a05 a06 a07

m00 m01 m02 m03 m04 m05 m06 m07

a10 a11 a12 a13 a14 a15 a16 a17

m10 m11 m12 m13 m14 m15 m16 m17

a20 a21 a22 a23 a24 a25 a26 a27

m20 m21 m22 m23 m24 m25 m26 m27

a30 a31 a32 a33 a34 a35 a36 a37

m30 m31 m32 m33 m34 m35 m36 m37

(a) Processing AM
T
 on Mat-Core processor for two 48 matrix blocks.

R11 R12 B11 B12 R22 R21

Lane0 Lane1 Lane2 Lane3 Lane0 Lane1 Lane2 Lane3
m70 m71 m72 m73 Address 7 m34 m35 m36 m37
m60 m61 m62 m63 m30 m31 m32 m33
m50 m51 m52 m53 m24 m25 m26 m27
m40 m41 m42 m43 m20 m21 m22 m23
m30 m31 m32 m33 m14 m15 m16 m17
m20 m21 m22 m23 m10 m11 m12 m13

m10 m11 m12 m13 m04 m05 m06 m07

m00 m01 m02 m03 Address 0 m00 m01 m02 m03

(a) Block of 84 (b) Block of 48

Figure 7: The arrangement of 84 and 48 matrix blocks in matrix registers.

Figure 8: Processing AM
T
 and M

TA on Mat-Core processor with matrix registers of 84.

Lane0 Lane1 Lane2 Lane3 Lane0 Lane1 Lane2 Lane3

m70 m71 m72 m73 Address 7 a70 a71 a72 a73

m60 m61 m62 m63 a60 a61 a62 a63

m50 m51 m52 m53 a50 a51 a52 a53

m40 m41 m42 m43 a40 a41 a42 a43

m30 m31 m32 m33 a30 a31 a32 a33

m20 m21 m22 m23 a20 a21 a22 a23

m10 m11 m12 m13 a10 a11 a12 a13

m00 m01 m02 m03 Address 0 a00 a01 a02 a03

(b) Processing M
TA on Mat-Core processor for two 84 matrix blocks.

THE SCALABILITY OF MAT-CORE PROCESSOR 97

 medical treatment and medical analysis. By finding spatial relations between two or more

images, it combines their information, which is useful for observing changes in anatomy

and/or function during time, for comparing subjects, and for merging information of

multiple images. Several techniques are proposed to find a geometrical transformation

that relates the points of an image to their corresponding points of another image

[19],[21].

A typical image registration algorithm consists of three coupled components:

 An alignment measure (also known as similarity measure, registration objective

function, etc.) that quantifies the quality of alignment. There are many similarity

measures used in image registration, such as sum of absolute differences (SAD),

sum of squared intensity differences (SSD), correlation coefficient (CC), and

mutual information (MI) [19]-[21];

 A class of admissible geometric transformations that can be applied to the

image(s). For 2D/2D or 3D/3D registration problems, the spatial transformation

can be rigid, affine or deformable. In a rigid transformation, only rotations and

translations are allowed. Affine transformations allow skewing and scaling in

addition to rotation and translation. Deformable transformations define free-form

mappings and are typically used with a regularization constraint to limit the

allowable solution space; and

 An optimizer that seeks the transformation that maximizes the similarity as

quantified by the alignment measure [20],[22],[23].

The focus of this section is on the implementation of the first two components of

image registration: the similarity measure and geometric transformation. That is because

these two components are computationally intensive kernels. SAD similarity measure is

selected due to its popularity, simplicity and suitability to hardware implementation. 3D

affine transformation is selected as a moderate complexity between rigid and deformable

transformations. Also, affine transformation is an important computationally intensive

kernel in computer graphics [24]-[26].

3D affine transformations are the transformations that involve rotation, scaling, shear

and translation. A matrix can represent an affine transformation and a set of affine

transformations can be combined into a single overall affine transformation. Technically,

it can be said that an affine transformation is made up of any combination of linear

transformations (rotation, scaling and shear) followed by translation (technically,

translation is not a linear transformation) [27]. In homogeneous co-ordinates it is possible

to describe any transformation in a matrix notation:

)2(

1

*

10001

*

*

*



























































z

y

x

lifc

kheb

jgda

z

y

x

where the vertex (x y z 1)
T
 is transformed to (x

*
y

*
z

*
1)

T
 and the 44 square matrix is the

transformation matrix T. This universal matrix for transformations can be divided into

four functional blocks:

98 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

Consider an object represented with N vertices. The new position (NP) of the object

when applying a transformation can be calculated as follows:

)3(,*OPTNP 

where T is the matrix transform, OP is a 4N matrix contains the old vertices position

and NP is a 4N matrix containing the new vertices position. Equation (3) could be

written as:

)4(

111

*

1000111

110

110

110

*

1

*

1

*

0

*

1

*

1

*

0

*

1

*

1

*

0























































































N

N

N

N

N

N

zzz

yyy

xxx

lifc

kheb

jgda

zzz

yyy

xxx

To execute the affine transformation (Equation 4) on Mat-Core version with 44

matrix registers, the 44 constant block (matrix T) is loaded into matrix register M1 and

four vertices (44 block) of the OP matrix are loaded into another matrix register M2.

Then a matrix-matrix multiplication instruction is executed on the two blocks stored in

matrix registers. After that, the next four vertices (44 block) of the OP matrix are loaded

into M2 and a matrix-matrix multiplication between the two matrix registers is performed

and so on until finishing vertices. In each block multiplication, four vertices (44 block)

of the NP matrix are produced and stored in memory.

On the Mat-Core version with 84 matrix registers, two copies of 44 matrix T are

loaded into matrix register M1 using instruction LMBH (Load Matrix Block

Horizontally) as 48 block (see the previous section) and eight vertices of the OP matrix

are loaded into another 84 matrix register M2 in the same manner (see Figure 9). A

block matrix-matrix multiplication is done on the two matrix registers M1 and M2 using

instruction BMUL. The BMUL instruction performs block-wise multiplication between

44 blocks. As shown in Figure 9-a, BMUL instruction multiplies block A11 by B11 (as

matrix-matrix multiplication) and A12 by B12. This instruction consumes 16 clock cycles

for each two-block multiplication, so the total number of clock cycles that BMUL

consumes is 32 plus the arithmetic pipelines latency. Figure 9-b shows the distribution of

the blocks A11, B11, A12 and B12 in the matrix registers M1 and M2 after execution of

LMBH instruction. Block A11 is in even rows (0, 2, 4, and 6) of M1 (dark rows) and block

A12 is in odd rows (1, 3, 5, and 7) of M1 (white rows) and the blocks B11 and B12 are

stored in the same manner in M2.










1

ntranslatio

tionrepresentashomogeneoutheofpart

rotationandscaling

THE SCALABILITY OF MAT-CORE PROCESSOR 99

 On the Mat-Core version with 88 matrix registers, four copies of 44 matrix T are

loaded into matrix register M1 using instruction LMB (Load Matrix Block) as 88 block

and 16 vertices of the OP matrix are loaded into another matrix register M2 using

instruction LMBH, as shown in Figure 10. The four copies of 44 matrix T are distributed

in M1 as follows. The first and second copies are in even rows (0, 2, 4, and 6) in lanes

L0-L3 and lanes L4-L7, respectively (dark rows). The third and fourth copies are in odd

rows (1, 3, 5, and 7) in lanes L0-L3 and lanes L4-L7, respectively (white rows). In the

same manner, the four groups of vertices (each group consists of four vertices) are

distributed in M2 (see Figure 10). Note that the eight lanes are communicated with each

other via two levels of crossbars. The first level (4-input/4-output crossbars) connects

each four lanes as a group and the second level (8-input/8-output crossbars) connects the

two groups as shown in Figure 10. This two-level crossbar gives us two selections; the

first one is to use the eight lanes as two separate 4-lane groups, which is useful for block-

wise multiplication as an example. The second selection is to use the lanes as one 8-lane

group, which is useful in matrix-matrix multiplication of 88 blocks as an example. The

first selection can be performed by controlling the first crossbars level and applying pass

signal on the second crossbars level. The opposite thing is done for the second selection

by applying pass signal on the first crossbars level and controlling the second crossbars

level.

On the Mat-Core version with 88 matrix registers, the BMUL instruction performs

 M1 M2

Lane0 Lane1 Lane2 Lane3 Lane0 Lane1 Lane2 Lane3

0 0 0 1 Address 7 1 1 1 1

0 0 0 1 1 1 1 1

c f i l z4 z5 z6 z7

c f i l z0 z1 z2 z3

b e h k y4 y5 y6 y7

b e h k y0 y1 y2 y3

a d g j x4 x5 x6 x7

a d g j Address 0 x0 x1 x2 x3

Figure 9: Processing 3D affine transformation on Mat-Core processor with 84 matrix registers.

(b) Distribution of 44 blocks on matrix registers.

B11 B12 A11 A12

(a) Block-wise multiplication of 44 blocks.

a d g j a d g j

x0 x1 x2 x3 x4 x5 x6 x7

b e h k b e h K

y0 y1 y2 y3 y4 y5 y6 y7

c f i l c f i L

z0 z1 z2 z3 z4 z5 z6 z7

0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1

100 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

four block matrix-matrix multiplication; each of them is element-wise multiplication

between 44 blocks. BMUL instruction execution takes 32 clock cycles plus the

arithmetic pipelines latency. In the first half of BMUL execution, a block-wise

multiplication is performed between the first and second copies of matrix T in M1 and the

first and second groups of vertices in M2, respectively. These two matrix-matrix

multiplications between the 44 blocks are performed simultaneously; each one of them

is on 4-lane group. In the second half of BMUL execution, a block-wise multiplication is

performed between the third and fourth copies of matrix T in M1 and the third and fourth

groups of vertices in M2, respectively. Also, they are performed simultaneously, each one

of them on 4-lane group.

Sum of Absolute Differences (SAD) criteria is a popular intra-modality alignment

measure [28],[29]:

)5(,))x(()x(

1






n

i

ii TIRSAD

where R(xi), I(T(xi)) are the intensity values at the corresponding voxel xi in the reference

image R and the target image I, respectively. n is the total points of the image or the

number of vertices. T is the transformation model.

To execute SAD (Equation 5) on Mat-Core version with 44 matrix registers, two

44 blocks from the reference image R and the target image I are loaded into matrix

registers M1 and M2, respectively. Then the instruction ABD.MM (stands for Absolute

Difference Matrix-Matrix) is used to calculate the absolute difference between the two

blocks of data stored in matrix registers M1 and M2. The result of ABD.MM instruction is

accumulated in matrix register M3 using the instruction Add.MM (stands for Add Matrix-

Matrix). The process continues until reaching the end of the two images. At that point,

 M1 M2
L0 L1 L2 L3 L4 L5 L6 L7 L0 L1 L2 L3 L4 L5 L6 L7

0 0 0 1 0 0 0 1 7 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1

c f i l c f i l z8 z9 z10 z11 z12 z13 z14 z15

c f i l c f i l z0 z1 z2 z3 z4 z5 z6 z7

b e h k b e h k y8 y9 y10 y11 y12 y13 y14 y15

b e h k b e h k y0 y1 y2 y3 y4 y5 y6 y7

a d g j a d g j x8 x9 x10 x11 x12 x13 x14 x15

a d g j a d g j 0 x0 x1 x2 x3 x4 x5 x6 x7

 4-input/4-output

crossbars

4-input/4-output

crossbars

8-input/8-output crossbars

Functional units

4-input/4-output

crossbars

4-input/4-output

crossbars

8-input/8-output crossbars

Functional units

Figure 10: Processing 3D affine transformation on Mat-Core processor with 88 matrix registers.

THE SCALABILITY OF MAT-CORE PROCESSOR 101

 the result is 44 block in M3. Accumulating the elements of M3 gives the final scalar

result which can be done by using two instructions MAC.MM (multiply-accumulate) and

PACC (partial-accumulate). The first instruction MAC.MM does a vertical reduction by

element-wise multiplication of the rows of M3 by the corresponding rows of M4 and

accumulating the result in the MAC pipelines. Note that M4 is loaded by ones. The

second instruction PACC performs a horizontal reduction of the vertical accumulated

results in the MAC pipelines.

The execution of SAD on Mat-Core84 and Mat-Core88 is similar to what is

mentioned above on Mat-Core44. The difference is that larger blocks are processed in

each iteration (84 and 88 blocks for Mat-Core84 and Mat-Core88, respectively).

5. SCALING PERFORMANCE ON MAT-CORE PROCESSOR

This section studies the performance scalability of Mat-Core processor on linear

algebra kernels, DCT/IDCT, and image registration. Four versions of Mat-Core processor

are used for performance evaluation of these kernels to show the scalability of Mat-Core

processor. The number of lanes is varied from one to four and from one to eight. The

number of registers is constant (eight registers), however, the size of registers is varied

from 81 to 44 to 84 to 88.

5.1 Performance of Linear Algebra Kernels on Mat-Core Processor

Table 1 shows the floating-point operations (FLOPs) and memory references

(load/store operations) for some linear algebra kernels used for performance evaluation of

Mat-Core. It is clear that the ratio of FLOPs to memory references is different. For

example, Givens rotation is more computationally intensive than vector-scalar

multiplication, since the ratio of FLOPs to memory references in the former is higher

than the later. In general, the performance of Mat-Core processor is higher on

computationally intensive kernels than on memory intensive kernels, as will be shown in

this section.

Figure 11(a-c) shows the performance of vector kernels on Mat-Core processor with

different number of lanes. Scaling the matrix unit from one lane to four lanes with 44

matrix registers improves the performance of scalar-vector multiplication, SAXPY, and

Givens by factors of 3.1, 3.2, and 2.75, respectively. In addition, scaling the matrix

registers from 44 to 84 without changing the number of parallel lanes (four) results in

scaling the performance by factors of 1.2, 1.3, and 1.4, respectively. Moreover, scaling

the matrix unit from four lanes with 44 matrix registers to eight lanes with 88 matrix

registers improves the performance of vector kernels by factors of 2.6, 2.5, and 2.9,

respectively. The speedup due to scaling one lane to eight lanes is around eight, which

indicates the scalability of the Mat-Core architecture.

102 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

Figure 11(d, e) shows the performance of matrix-vector kernels on Mat-Core

processor with one, four, and eight lanes. Increasing the number of lanes from one lane to

four lanes with 44 matrix registers improves the performance of rank-one update and

vector-matrix multiplication by factors of 3.5 and 2.75, respectively. Moreover, scaling

the matrix registers from 44 to 84 in Mat-Core with four parallel lanes results in

improving the performance by factors of 1.4 and 1.6, respectively. In addition, scaling the

matrix unit from four lanes with 44 matrix registers to eight lanes with 88 matrix

registers improves the performance of matrix-vector kernels by factors of 2.7 and 3.2,

respectively. The speedups due to scaling one lane to eight lanes are 9.6 and 8.8,

respectively. Reusing the loaded data in matrix register by using matrix ISA is greater

than reusing the loaded data in vector registers using vector ISA, which results in super-

linear scaling.

Matrix-matrix multiplication is one of the most fundamental operations in numerical

linear algebra [30]. Although this problem is simple mathematically, it is very rich from

the computational point of view. Accumulating Cmn matrix with the multiplication of

Amw matrix by Bwn matrix (Cmn=Cmn+AmwBwn) needs 2mwn FLOPs while at

least (2mn+mw+wn) memory operations being needed. The worst case (zero-reusing

data) leads to needing (2mn+2mwn) memory operations because the matrix Bwn should

be loaded m times or the matrix Amw should be loaded n times. Thismeans (2mn + mw

+ wn)(memory operations for matrix-matrix multiplication)  (2mn+2mwn). On P

Mat-Core lanes, the required number of memory operations is (2mn+2mwn/P) because

the matrix Bwn should be loaded m/P times or the matrix Amw should be loaded n/P

times. This results in (1/w+1/P) memory operations per FLOP, where the optimum

value is (1/w+1/2m+1/2n) memory operations per FLOP. Increasing the number of

parallel lanes P leads the required number of memory operations to be closer to the

optimal value. In other words, when m=n=w=P, the Mat-Core processor performs

ideally since the matrices can be loaded into matrix registers and the highest reuse of data

occurs.

Figure 11-f shows the performance of matrix-matrix multiplication on Mat-Core

processor with one, four, and eight lanes. Increasing the number of lanes from one lane to

Table 1: Kernels for scaling performance on Mat-Core processor.

Kernel Semantic FLOPs/Memory References

Scalar-Vector multiplication
xi = a*xi,

1  i  n
n / 2n

SAXPY
yi = a*xi + yi,

1  i  n
2n / 3n

Givens rotation 



























y

x

cs

sc

y

x
t

 6n / 4n

Rank-1 update (outer-product) jijiji yxAA ),(),(2n
2
 /

from 2n
2
+2n to 3n

2
+n

Vector-matrix multiplication 




n

i

jiijj Axyy

1

),(
 2n

2
 /

from n
2
+3n to 2n

2
+2n

Matrix-matrix multiplication Cnn += AnnBnn 2n
3
 / O(n

2
)

THE SCALABILITY OF MAT-CORE PROCESSOR 103

 four lanes with 44 matrix registers and to eight lanes with 88 matrix registers improves

the performance by factors of 4.1 and 10.6, respectively. Moreover, scaling the matrix

registers from 44 to 84 of Mat-Core with four parallel lanes results in improving the

performance by a factor of 1.2.

Figure 12 summaries the scalability of Mat-Core architecture on some linear algebra

kernels. Moreover, Figure 13 shows the speedup of multiple lanes Mat-Core over one

lane. The speedup due to scaling Mat-Core from one lane with 8-element vector registers

to four lanes with 44 matrix registers is 2.75-4.1. Increasing the number of parallel lanes

from one lane with 8-element vector registers to eight lanes with 8 x 8 matrix registers

speeds up the execution of the six kernels by a factor of 7.94-10.6. Scaling the matrix

registers from 44 to 84 improves the speedup by a factor of 1.2-1.6. Moreover, a

speedup of 3.6-4.8 is achieved in four lanes with 8 x 4 matrix registers over one lane.

Figure 11: Performance scalability of linear algebra kernels on Mat-Core.

0

0.5

1

1.5

2

2.5

3

3.5

32 64 128 256 512 1024 2048 4096

Vector Length

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

32 64 128 256 512 1024 2048 4096

 Vector Length

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

a) Scalar-vector multiplication

b) SAXPY

0

1

2

3

4

5

6

7

8

9

32 64 128 256 512 1024 2048 4096

 Vector Length

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

0

1

2

3

4

5

6

8 16 32 64 128 200 256 400

Matrix Size

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

c) Givens

d) Rank-one update

0

1

2

3

4

5

6

7

8

9

8 16 32 64 128 200 256 400

Matrix Size

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

0

2

4

6

8

10

12

14

16

8 16 32 64 128 200 256 400

Matrix Size

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

1-lane 8x1 regs 4-lane 4x4 regs

4-lane 8x4 regs 8-lane 8x8 regs

e) Vector-matrix multiplication f) Matrix-matrix multiplication

104 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

5.2 Performance of DCT/IDCT on Mat-Core Processor

The performances in FLOPs per clock cycle of both DCT and IDCT on Mat-Core

processor are similar. This is due to the similarity in the computation of the two

algorithms of DCT and IDCT. In addition, processing the main operations AM, AM
T
,

and M
T
A on Mat-Core takes the same number of clock cycles. The number of FLOPs

can be easily calculated from the algorithm as 4*8
3
*(n/8)

2
 or 32n

2
 on nn matrix and 88

DCT block. Moreover, the number of clock cycles on Mat-Core is calculated by our cycle

accurate model, which is constructed using SystemC [3].

The ideal performances for DCT/IDCT are 2, 8, 8 and 16 FLOPs per clock cycle on

Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, respectively. This is

because each lane has one MAC pipeline, which represents two FLOPs (multiply and

add). Figure 14-a shows the performance evaluation of the Mat-Core (four versions

discussed in Section 2) on images with sizes 2525, 5050, 100100, …, and 400400.

The maximum performances achieved are 1.5, 5, 6.4 and 14.4 FLOPs/cycle for Mat-

Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, which represents 75%,

62.5%, 80%, and 90% of the ideal values, respectively. The saw tooth behavior in the

0

2

4

6

8

10

12

14

16

SVMul SAXPY GIVENS Outer VMmul MMmul

F
L

O
P

s
p

er
 C

lo
ck

 C
yc

le

1-lane 8x1 regs

4-lane 4x4 regs

4-lane 8x4 regs

8-lane 8x8 regs

 Figure 12: Scalability of Mat-Core architecture on linear algebra kernels.

0

2

4

6

8

10

12

SVMul SAXPY GIVENS Outer VMmul MMmul

S
p

ee
d

u
p

 o
ve

r
O

n
e-

L
an

e 4-lane 4x4 regs

4-lane 8x4 regs

8-lane 8x8 regs

Figure 13: Speedup Multiple-lane Mat-Core over one-lane on linear algebra kernels.

THE SCALABILITY OF MAT-CORE PROCESSOR 105

 performance (see Figure 14-a) results from padding the image sizes to be multiple of

eight. The effect of padding is large on small image sizes (2525). As the image size

increases, the effect of padding decreases until decaying.

Figure 14-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to

eight results in speeding up the execution of DCT and IDCT by factors of 4.2, and 9.5,

respectively. This indicates the scalability of Mat-Core architecture. Moreover, the

enhancement in performance of DCT and IDCT on Mat-Core-84 and Mat-Core-88

over Mat-Core-44 (see Figure 14-c) is because the larger matrix blocks (84 or 88)

amortize the pipelines latencies better than small blocks (44). In addition, increasing the

number of parallel lanes from four to eight (see Figure 14-d) speeds up the execution of

DCT and IDCT more than twice. Increasing the number of parallel lanes and enlarging

the matrix registers results in reducing the dependency and gives more chance to reuse

the data, which leads to improved performance.

5.3 Performance of Image Registration Kernels on Mat-Core Processor

The number of FLOPs in affine transformation can be easily calculated from

Equation 4 as 2*(4*4*n) or 32n, where n is the number of vertices. The ideal

performances for affine transformation are 2, 8, 8 and 16 FLOPs per clock cycle on Mat-

Figure 14: Performance evaluation of DCT and IDCT on scalable Mat-Core processor.

0

2

4

6

8

10

12

14

25 50 100 150 200 250 300 350 400

Matrix Size

F
L

O
P

s
 p

e
r

C
lo

c
k
 C

y
c
le

s

8x1 4x4 8x4 8x8

0

2

4

6

8

10

25 50 100 150 200 250 300 350 400

Matrix SizeS
p

e
e

d
u

p
 o

v
e

r
o

n
e

 L
a

n
e

 (
8

x
1

)

8x1 4x4 8x4 8x8

(a) Performance evaluation (b) Speedup over 1 lane with

8-element registers

0

0.5

1

1.5

2

2.5

3

25 50 100 150 200 250 300 350 400

Matrix SizeS
p

e
e
d

u
p

 o
v
e
r

4
 L

a
n

e
s
 (

4
x
4
)

4x4 8x4 8x8

0

0.5

1

1.5

2

2.5

3

25 50 100 150 200 250 300 350 400

Matrix SizeS
p

e
e
d

u
p

 o
v
e
r

4
 L

a
n

e
s
 (

8
x
4
)

8x4 8x8

(c) Speedup over 4 lanes with

44 matrix registers

(d) Speedup over 4 lanes with

84 matrix registers

106 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, respectively, because each

lane has a MAC pipeline, which represents two FLOPs (multiply and add).

Figure 15-a shows the performance scalability of affine transformation on the Mat-

Core versions on volume vertices 2k, 4k, 8k, . . . , and 64k, where k = 1024, versus

FLOPs per clock cycle. The maximum performances achieved are 1.2, 4.9, 5.6 and 11.2

FLOPs/cycle for Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88,

respectively. The percentage of the maximum performance in the version with 8 lanes

and matrix register size 88 (Mat-Core88) is 70% of the ideal value. This percentage is

smaller than what achieved in DCT (90%) because affine transformation is less

computationally intensive (32n FLOPs) than DCT (32n
3
 FLOPs). Mat-Core performance

is higher in computationally intensive kernels rather than memory intensive kernels.

Figure 15-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to

eight results in speeding up the execution of affine transformation by factors of 4.6, and

9.2, respectively. This indicates the scalability of Mat-Core architecture. Moreover, the

enhancement in performance of affine transformation on Mat-Core-84 and Mat-Core-

88 over Mat-Core-44 (see Figure 15-c) is because the larger matrix blocks (84 or

88) amortize the pipelines latencies better than small blocks (44). In addition,

increasing the number of parallel lanes from four to eight (see Figure 15-d) speeds up the

execution of affine transformation exactly twice.

Figure 15. Performance evaluation of 3D affine transformation on scalable Mat-Core processor

(a) Performance evaluation (b) Speedup over 1 lane with

8-element registers

(c) Speedup over 4 lanes with

44 matrix registers

(d) Speedup over 4 lanes with

84 matrix registers

THE SCALABILITY OF MAT-CORE PROCESSOR 107

 The number of FLOPs in SAD can be easily calculated from Equation 5 as 2*n-1,

where n is the number of vertices. The ideal performances for SAD are 1, 4, 4 and 8

FLOPs per clock cycle on Mat-Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-

88, respectively. This is because each lane has one adder pipeline, which is used by

SAD kernel. The MAC pipeline is used only one time at the end of calculation. Since the

number of vertices n is large, the MAC pipeline is ignored in calculation.

Figure 16-a shows the performance scalability of the SAD on the Mat-Core versions

on volume vertices 2k, 4k, 8k, . . ., and 64k, where k = 1024, in FLOPs per clock cycle.

The maximum performances achieved are 0.76, 2.46, 3 and 6.1 FLOPs/cycle for Mat-

Core-81, Mat-Core-44, Mat-Core-84, and Mat-Core-88, which represents 76%, 61.

5%, 75%, and 76.25% of the ideal values, respectively.

Figure 16-b shows the speedup of Mat-Core-44, Mat-Core-84, and Mat-Core-88

over Mat-Core-81. Increasing the number of parallel lanes from one to four and then to

eight results in speeding up the execution of SAD by factors of 4 and 8, respectively. This

indicates the scalability of Mat-Core architecture. Moreover, the enhancement in

performance of SAD on Mat-Core-84 and Mat-Core-88 over Mat-Core-44 (see

Figure 16-c) is because the larger matrix blocks (84 or 88) amortize the pipelines

latencies better than small blocks (44). In addition, increasing the number of parallel

lanes from four to eight (see Figure 16-d) speeds up the execution of SAD twice on large

number of vertices.

Figure 16. Performance evaluation of SAD on scalable Mat-Core processor

(a) Performance evaluation (b) Speedup over 1 lane with

8-element registers

(c) Speedup over 4 lanes with

44 matrix registers
(d) Speedup over 4 lanes with

84 matrix registers

108 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

6. CONCLUSION

This paper has described the implementation of DCT/IDCT and image registration on

Mat-Core processor. Moreover, it investigated the scalability of Mat-Core architecture

with different number of parallel lanes (one, four, and eight) and variable matrix register

size (44 and 84). Thus, four versions of Mat-Core processor (Mat-Core-81, Mat-

Core-44, Mat-Core-84, and Mat-Core-88) have been implemented using SystemC as

a cycle accurate models.

Our results show that scaling the Mat-Core processor from one lane with 81 vector

registers to four lanes with 44 matrix registers improves the performance by factors of

3.1, 3.2, 2.75, 3.5, 2.75, 4.1, 3.3, 4.1, and 3.2 on scalar-vector multiplication, SAXPY,

Givens, rank-1 update, vector-matrix multiplication, matrix-matrix multiplication, DCT,

3D affine transformation, and SAD, respectively. Moreover, increasing the number of lanes

from one to eight with 88 matrix registers on the same kernels improves the

performance by factors of 7.94, 7.95, 7.95, 9.6, 8.82, 10.6, 9.5, 9.2, and 8, respectively. In

addition, scaling matrix registers from 44 to 84 improves the performance on the same

kernels by factors of 1.2, 1.3, 1.4, 1.4, 1.6, 1.2, 1.3, 1.1, and 1.25, respectively. That is

because the larger matrix blocks (84) amortize the pipelines latencies better than small

blocks (44). The percentage of the maximum performance in the version with 8 lanes

and matrix register size 88 (Mat-Core-88) is 90% of the ideal value for DCT and

matrix-matrix multiplication. The speedups of the execution of the kernels from different

application fields on Mat-Core-84, and Mat-Core-88 over Mat-Core-81 are 3.6x-4.8x

and 7.94x-10.6x, respectively.

REFERENCES

[1] M. Soliman, “Mat-Core: A Matrix Core Extension for General Purpose Processors,”

Proc. The 2007 International Conference on Computer Engineering & Systems

(ICCES'07), Cairo, Egypt, pp. 304-310, November 2007.

[2] M. Soliman, “Mat-Core: A Decoupled Matrix Core Extension for General-Purpose

Processors,” Neural, Parallel and Scientific Computations, Dynamic Publishers,

Atlanta, USA, ISSN 1061-5369, Vol. 19, No. 2, 2011, pp. 91-110.

[3] M. Soliman and A. Al-Junaid “SystemC Implementation and Performance

Evaluation of a Decoupled General-Purpose Matrix Processor,” Parallel Processing

Letter (PPL), World Scientific Publishing Company, June 2010, pp. 103-121.

[4] C. Lee, Code Optimizers and Register Organizations for Vector Architectures,

Ph.D. Thesis, Computer Science Division, University of California at Berkeley,

1992.

THE SCALABILITY OF MAT-CORE PROCESSOR 109

 [5] R. Espasa, Advanced Vector Architectures, Ph.D. Thesis, Department of Computer

Architecture, Universitat Politecnica de Catalunya, Barcelona, Spain, February

1997.

[6] K. Asanovic, Vector Microprocessors, Ph.D. Thesis, Computer Science Division,

University of California at Berkeley, 1998.

[7] C. Kozyrakis, Scalable Vector Media-processors for Embedded Systems, Ph.D.

Thesis, Computer Science Division, University of California at Berkeley, 2002.

[8] R. Krashinsky, Vector-Thread Architecture and Implementation, Ph. D. Thesis,

Massachusetts Institute Of Technology, 2007.

[9] J. Gebis, Low-complexity Vector Microprocessor Extensions, Ph. D. thesis,

University of California at Berkeley, 2008.

[10] G. Moore, Cramming more Components onto Integrated Circuits, Electronics, Vol.

38, No. 8, 1965.

[11] M. Soliman and A. Al-Junaid, “Codevelopment of Multi-level ISA and hardware for

an efficient matrix processor,” Proc. IEEE International Conference on Computer

Engineering & Systems (ICCES'09), Cairo, Egypt, December 2009, pp. 211-217.

[12] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick,

“Hardware/Compiler Codevelopment for an Embedded Media Processor,”

Proceedings of the IEEE, Vol.89, No.11, pp.1694-709, November 2001.

[13] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, San Francisco, CA, 5
th

 Edition, 2011.

[14] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proceedings of the IEEE,

Vol.89, pp.490-504, No.4, April 2001.

[15] R. Ho, K. Mai, and M. Horowitz, “Efficient On-Chip Global Interconnects,” Proc.

IEEE Symposium on VLSI Circuits, pp.271- 274, June 2003.

[16] N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete Cosine Transform,” IEEE

Transaction on Computers, vol. C-23, pp. 90-93, Jan 1974.

[17] K. R. Rao and P.C. Yip, The Transform and Data Compression Handbook, CRC

Press, 2001.

[18] K. R. Rao and J. J. Hwang, Techniques and Standards for Image, Video and, Audio

Coding, Upper Saddle River, NJ: Prentice Hall, 1996.

[19] B. Zitova and J. Flusser, “Image Registration Methods: a Survey,” Image and Vision

Computing, Vol. 21, No. 11, 2003, pp. 977-1000.

[20] V. Hajnal, D. Hill and D. Hawkes, Medical Image Registration, CRC Press, New

York, 2001.

[21] A. Maintz and M. Viergever, A Survey of Medical Image Registration, Medical

Image Analysis, Vol. 2, No. 1, 1998, pp. 1-36.

[22] T. Yoo, Insight into Images: Principles and Practice for Segmentation, Registration,

and Image Analysis, A K Peters, Ltd, Massachusetts, 2004.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5383281&queryText%3DCodevelopment+of+Multi-Level+ISA+and+Hardware++for+an+Efficient+Matrix+Processor%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5383281&queryText%3DCodevelopment+of+Multi-Level+ISA+and+Hardware++for+an+Efficient+Matrix+Processor%26openedRefinements%3D*%26searchField%3DSearch+All

110 M. SOLIMAN, M. T. EL-MELEGY, AND A. F. AL-JUNAID

[23] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C:

The Art of Scientific Computing, 2
nd

 Edition, Cambridge University Press, 1992.

[24] S. Buss, 3-D Computer Graphics: A Mathematical Introduction with OpenGL,

Cambridge University Press, New York, USA, 2003.

[25] M. Agoston, Computer Graphics and Geometric Modeling: Implementation and

Algorithms, Springer-Verlag, London Limited, 2005.

[26] F. Bensaali, A. Amira, and A. Bouridane, “Accelerating Matrix Product on

Reconfigurable Hardware for Image Processing Applications,” IEE Proceedings on

Circuits Devices Systems, Vol. 152, No. 3, June 2005, pp. 236-246.

[27] A. Watt, 3-D computer graphics, Addison–Wesley, 2000.

[28] J. Fitzpatrick, J. West, and C. Maurer, “Predicting Error in Rigid-Body Point-Based

Registration”, IEEE Transactions on Medical Imaging, Vol. 17, No. 5, 1998, pp.

694-702.

[29] S. Umeyama, “Least-squares Estimation of Transformation Parameters between

Two Point Patterns”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 13, No. 4, 1991, pp. 376-380.

[30] G. Golub and C. Van Loan, Matrix Computations, 3
rd

 Edition, The Johns Hopkins

University Press, Baltimore and London, 1996.

