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ABSTRACT. Fatigue is considered as a primary model of failure for metallic structures or me-

chanical devices subjected to oscillatory stress processes. In this paper we study fatigue failure and

consider certain random polynomial as the underlying stress process. Let Qn(t) =
∑

n

k=0
Ait

i be

a random algebraic polynomial in which the coefficients A0, A1, A2, . . . , An form a sequence of i.i.d

random variables with standard normal distribution. We obtain the distribution of peaks’s magni-

tude of Qn(t). We also evaluate the behavior of the distribution, expectation and variance of the

peaks magnitude. Finally we provide a method for evaluation of time to failure and the number of

cycles to failure for such a situation.

AMS (MOS) Subject Classification. Primary 60H42, Secondary 60G99

1. Introduction

Let Qn(t) be the dynamic response, (either a deflection, a strain or a stress) at

a critical point in a given structure. Damage to the structure accumulated as Qn(t)

fluctuates at small or moderate excursions, and failure occurs when the accumulated

damage reaches a fixed total. We call the failures due to this reason fatigue fail-

ures. Fatigue is considered as a primary model of failure for metallic structures or

mechanical devices subjected to oscillatory stress processes. Customary stationary

processes are assumed as the underlying stress process. In this paper we consider

certain random polynomials as the underlying stress processes. Let Qn(t) be a con-

tinuous function of t, which is also a continuous valued random process. Miles [8]

studied fatigue damage under some proposed random loading. Lin [6] is a rich liter-

ature in the theory of random vibration and fatigue failure for stationary processes.

The stationary assumption is rather restricted so that it can be met under labora-

tory conditions. Lutes and Sarkani [7] and Benasciutti and Tovo [1] used spectral

method for fatigue life prediction under non stationary random processes. Rezakhah

and Soltani [10] studied structural fatigue design, by assuming stress process to be
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random polynomials with wave coefficients. In this work we propose certain random

algebraic polynomials with normal coefficients as the underlying stress process. There

is a rich literature on the theory of the number of real zeros of random polynomi-

als. This area of research was elaborated by the fundamental work of M. Kac [5]

and Rice [15]. The books of Bharucha-Ried and Sambandham [2] and [4], presents

fundamental contributions to the subject. Recently there has been much interest in

cases where the coefficients form certain random processes, see for e.g. Rezakhah and

Shemehsavar [11, 12, 13, 14]. This paper is organized as follows: We present some

preliminaries about random algebraic polynomial Qn(t), expected number of peaks

below a prescribed level u and expected total number of peaks of Qn(t) in section 2.

We obtain probability density, mean and variance of peak’s magnitude of Qn(t) in

section 3. Finally we study fatigue failure and provide a method for evaluating time

to failure and also expected number of cycles to failure, and provide some graphical

and numerical evaluation for these in section 4.

2. Preliminaries

Let

Qn(t) =

n
∑

i=0

Ait
i (2.1)

be a random algebraic polynomial whose coefficients A0, A1, . . . , An form a sequence

of i.i.d random variables with standard normal distribution.

In this paper we study the behavior of the distribution of peak’s magnitude for

such polynomials. A peak (or maxima ) of a random algebraic polynomial Qn(t)

occurs whenever Q′
n(t) is zero and Q′′

n(t) is negative, then the magnitude of such a

peak could be positive as well as negative. The peak’s magnitude distribution of

Qn(t) can be obtained from the joint distribution of Qn(t), Q′
n(t) and Q′′

n(t).

Lutes and Sarkani [7] showed, the probability distribution of the peak’s magnitude

of stress process can be found by deriving the rates of the occurrence of the peaks

below every level u. We follow this method of deriving the probability distribution of

peak’s magnitude of Qn(t).

Thus we define γ
Z
[t, Qn(t) ≤ u] as the expected rate of occurrence of those peaks

that their magnitude do not exceed the level u. So in an infinitesimal interval ∆t, the

expected number of peaks is the same as the probability of one peak in the interval.

This is by neglecting the probability of two or more peaks in such infinitesimal interval.

Thus

γ
Z
[t, Qn(t) ≤ u]∆t = P (peak ≤ u during [t, t + ∆t]) (2.2)

just as

γ
Z
(t)∆t = P (peak during [t, t + ∆t]) (2.3)
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in which γ
Z
(t) is the expected rate of occurrence of peaks of all magnitudes, which is

the limit of γ
Z
[t, Qn(t) ≤ u] as u goes to infinity. Furthermore

P (peak ≤ u, peak ∈ [t, t + ∆t]) =

P (peak ∈ [t, t + ∆t])P (peak ≤ u | peak ∈ [t, t + ∆t])

The final term in this expression is the cumulative distribution function of peak’s

magnitude at point t:

FZ(t)(u) = P (peak ≤ u | peak during [t, t + ∆t]).

By (2.2) and (2.3) we find that

FZ(t)(u) =
γ

Z
[t, Qn(t) ≤ u]

γ
Z(t)

(2.4)

Thus the probability distribution of the peak’s magnitude FZ(t)(u) depends on the

rate of occurrence of peaks below level u.

Rice [15] showed that for any function of the random variables A0, A1, . . . An like

Qn(t), the expected number of peaks within the interval (a, b) is equal to
∫ b

a

∫ ∞

−∞

∫ 0

−∞
|x|pt(r, 0, x)dx dr dt (2.5)

where pt(r, s, x) is the joint probability density function of Qn(t), Q′
n(t) and Q′′

n(t).

Let Mu(a, b) be the number of peaks of Qn(t) inside interval (a, b), whose magnitudes

are smaller than or equal to u. Using (2.5) we find that

E(Mu(a, b)) =

∫ b

a

∫ u

−∞

∫ 0

−∞
|x|pt(r, 0, x)dx dr dt

Now we call

E(Mu(t)) :=

∫ u

−∞

∫ 0

−∞
|x|pt(r, 0, x)dx dr = −

∫ u

−∞

∫ 0

−∞
xpt(r, 0, x)dx dr, (2.6)

the expected rate of the number of peaks of Qn(t) below level u.

Therefore the expected rate of total number of peaks, regardless of their magni-

tude is obtained from (2.6) by letting u → ∞, say

E(MT (t)) := −
∫ ∞

−∞

∫ 0

−∞
xpt(r, 0, x)dx dr (2.7)

In this way, we obtain the rate of occurrence of peaks not exceeding the level u as

γ
Z
[t, Qn(t) ≤ u] = −

∫ u

−∞

∫ 0

−∞
xpt(r, 0, x)dx dr.

Thus from (2.4) we have that

FZ(t)(u) =
E(Mu(t))

E(MT (t))
=

−
∫ u

−∞
∫ 0

−∞ xpt(r, 0, x)dx dr

−
∫ ∞
−∞

∫ 0

−∞ xpt(r, 0, x)dx dr
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3. Distribution of the Peak’s Magnitude of Qn(t)

In this section we obtain probability distribution function of the peak’s magnitude

of Qn(t) defined in (2.1).

Theorem: Let Qn(t) be the random algebraic polynomial given by (2.1) in which

A0, A1, A2, . . . , An are i.i.d random variables with standard normal distribution. Then

the probability density of the peak’s magnitude of Qn(t) is equal to

PZ(t)(u) =
Wu(L − W 2

K
)(1 + erf (Wu√

K
))

√
KL

e−(L−W2

K
)u2

+
(L − W 2

K
)√

πL
e−Lu2

Proof : Let Z(t) be the magnitude of the peak of Qn(t) at t. Let us envisage a sample

space, each point of which corresponds to a peak in Qn(t). Then we can define a

probability measure for the peaks at t, which are smaller or equal to a specified level

u. Thus the probability distribution function of the peak’s magnitude at t is

FZ(t)(u) = P (Z(t) ≤ u) =
E(Mu(t))

E(MT (t))
, (3.1)

Differentiating from relation (3.1), we find the probability density function of the

peak’s magnitude as

PZ(t)(u) =
1

E(MT (t))

∂E(Mu(t))

∂u
=

−
∫ 0

−∞ xpt(u, 0, x)dx

E(MT (t))
(3.2)

Let

ak(t) = tk, bk(t) = ktk−1, ck(t) = k(k − 1)tk−2.

By the assumptions of the theorem we find that

A2 := Var(Qn(t)) =

n
∑

k=0

a2
k(t), B2 := Var(Q′

n(t)) =

n
∑

k=0

b2
k(t), (3.3)

C2 := Var(Q′′
n(t)) =

n
∑

k=0

c2
k(t), D := Cov(Qn(t), Q′

n(t)) =
n

∑

k=0

ak(t)bk(t),

H := Cov(Qn(t), Q′′
n(t)) =

n
∑

k=0

ak(t)ck(t),

F := Cov(Q′
n(t), Q′′

n(t)) =
n

∑

k=0

bk(t)ck(t).

Farahmand [4] showed that the three dimensional normal density of (Qn(t), Q′
n(t),

Q′′
n(t)) is equal to

pt(r, 0, x) =
exp(−Lr2 − 2Wrx − Kx2)

(2π)3/2 det(Σ)1/2

in which Σ is the covariance matrix of (Qn(t), Q′
n(t), Q′′

n(t)), that its determinant

det(Σ) = A2B2C2 − A2F 2 − B2H2 − C2D2 + 2DHF
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and

K =
A2B2 − D2

2 det(Σ)
, L =

B2C2 − F 2

2 det(Σ)
, W =

DF − B2H

2 det(Σ)
, (3.4)

where A, B, C, D, H and F defined by (3.3). By (3.2) and above calculation we obtain

the probability density function of the peak’s magnitude of Qn(t) as

PZ(t)(u) =
−

∫ 0

−∞ xpt(u, 0, x)dx

E(MT (t))
,

in which

−
∫ 0

−∞
xpt(u, 0, x)dx = −

∫ 0

−∞
x

exp(−Lu2 − 2Wux − Kx2)

(2π)3/2 det(Σ)1/2
dx

=
Wu

√
πe−(L−W2

K
)u2

(1 + erf (Wu√
K

)) +
√

Ke−Lu2

2(2πK)3/2(det Σ)1/2
,

and

E(MT (t)) = −
∫ ∞

−∞

∫ 0

−∞
x

exp(−Lu2 − 2Wux− Kx2)

(2π)3/2 det(Σ)1/2
dxdu

=

√
πL

2(KL − W 2)(2π)3/2 det(Σ)1/2
.

Therefore

PZ(t)(u) =
Wu(L − W 2

K
)(1 + erf (Wu√

K
))

√
KL

e−(L−W2

K
)u2

+
(L − W 2

K
)√

πL
e−Lu2

.⋄ (2.5)

Here we plot density of peak’s magnitude of Qn(t) (DPM) for different points

of t, which explain what magnitude has more chance to appear for each point, see

Figure 1 and Figure 2. In other words these figures show that which magnitude are

more likely to happen at each point. It also distinguish between positive and negative

magnitudes.

We remind that peak’s magnitude density Z(t) is an even function of t. So we

plot the densities only for positive t. As we find from the densities behavior of the

peak’s magnitude at different points, say t = 0.4, 0.8, 1, 1.1, 1.2, 1.3, two special

features can be highlighted here.

• As the point t is taking far from zero the peak of the densities are moving from

zero toward positive direction and this means that we could have peaks with

larger magnitudes for points far from zero.

• The second interesting feature is that as t is taking far from zero the densities

are going to concentrate on positive real numbers, and this means that as the

point t is taking far from zero we have more peaks with positive magnitudes and

the peaks with negative magnitudes are eliminated.
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n=16,t=1.2
n=16,t=1.3
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Figure 1: Density of peak’s magnitude of Qn(t) for n = 16 at points t = 1.2, 1.3

n=15,t=1
n=15,t=1.1
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Figure 2: Density of peak’s magnitude of Qn(t) for n = 15, 20 at points t = 1, 1.1, 0.4, 0.8

Mean and Variance of the Peak’s Magnitude. Peak’s magnitude and its prop-

erties are the main interests in the theory of vibration. Here we denote the magnitude

of the peaks at each point t of the polynomials by Z(t). As the effect of vibration to

the dynamic structures, subject to such polynomials, can be evaluated by the mag-

nitude of the peaks and as the vibrations could be upward or downward so we could

have peaks with positive or negative magnitude. Thus we prefer to evaluate means

and variances of such magnitudes at different points. We denote the mean of the

magnitude of peaks at point x by E(t) = E(Z(t)), and the variance of the magnitude

of peaks by V (t) = Var(Z(t)). Thus

E(t) =

∫ ∞

−∞
uPZ(t)(u)du =

W
√

π

2
√

KL2 − LW 2
,

E(Z(t)2) =

∫ ∞

−∞
u2PZ(t)(u)du =

W 2 + LK

2L(KL − W 2)
,

Then

V (t) =
2W 2 + 2LK − W 2π

4L(KL − W 2)
.
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4. Fatigue Failures

Analysis of fatigue is typically based on the concept of a function D(t) that

represents the accumulated damage due to stresses and strains occurring prior to time

t. This function is presumed to increase monotonically, and failure is expected when

the accumulated damage reaches some critical level. Usually the damage function is

normalized so that it reaches unity at failure D(T ) = 1 if T is time of failure.

Current fatigue analysis methods are based on approximation of D(t). The goal

in formulating such approximations is to achieve compatibility with the results of

experiments. These experiments are sometimes performed with quite complicated

time histories of loading, but they more typically involve simple periodic loads in

so-called constant-amplitude tests. It is presumed that each period of the motion

contains only one peak and one valley.

In this situation, the number of cycles until failure is usually found to depend

primarily on the amplitude of the cycles, although this is usually characterized with

the alternative nomenclature of stress range, which is essentially the double amplitude,

being equal to a peak value minus a valley value.

We will use the notation Sr to denote the stress range of a cycle and let Nf desig-

nate the number of cycle until failure in a constant amplitude. A typical experimental

investigation of constant-amplitude fatigue for specimens of a given configuration and

material involves performing a large number of tests including a number of values of

Sr, then plotting the (Sr, Nf(Sr)) results. This is called an S/N curve and it forms

the basis for most of our information and assumption about D(t). We will emphasize

the dependence of the fatigue life on stress range by writing Nf(Sr) for the fatigue life

observed for a given value of the stress range. In principle, the S/N curve of Nf(Sr)

versus Sr could be any non increasing curve.

Table 1: Mean and Variance of DMP

n = 5 t = 0.8 t = 1.2 t = 2 t = 3

E(t) 0.6884922672 1.516250836 6.024064731 24.25500411

V (t) 1.222674270 2.045427820 13.56715371 176.7972921

Table 2: Mean and Variance of DMP

t = 2 n = 2 n = 3 n = 7 n = 10

E(t) 1.215893310 2.143831089 17.80179311 100.5520012

V (t) 1.403956398 2.609403313 100.6521551 2943.76819



136 S. SHEMEHSAVAR AND S. REZAKHAH

But experimental data commonly show that a large portion of that curve is well

approximated by an equation of the form

Nf (Sr) = cS−b
r (4.1)

in which c, b are positive constant which are material properties. The constant c is

positive since N and S are positive quantities. As the experimental fatigue data are

typically characterized by the number of cycles to failure rather than time, we define

the accumulated damage to be the sum of a number of discrete quantities

D(t) =

N(t)
∑

j=1

∆Dj (4.2)

in which ∆Dj, the increments of damage during cycle j, and N(t) is the number of

applied cycles of load up to time t. Furthermore, let T to be failure time. Thus

N(T ) = Nf is the number of cycles to failure, this gives D(T ) = 1. So

N(T )
∑

j=1

∆Dj = 1, (4.3)

First we note that (4.3) indicates that the average value of ∆Dj over an entire

constant − amplitude fatigue test at constant stress level Sr is 1
Nf (Sr)

. Let us now

assume that the conditional expected value of ∆Dj for all the cycles of stress level Sr

within a stochastic time history will have this same average level of damage per cycle

E(∆D | Sr = u) =
1

Nf (u)

This then gives the expected value of damage per cycle for any cycle, with random

stress range Sr, within the time history as

E(∆D) =

∫ ∞

0

PSr
(u)E(∆D | Sr = u)du = E

(

1

Nf (Sr)

)

(4.4)

One of the most obvious cycle identification schemes is to consider the segment of a

stress time history Qn(t) between any two subsequent local extrema (from a peak to

a valley or from a valley to a peak) to be a half cycle. In this scheme the number

of cycles is the same as the number of peaks. If the S/N curve is taken to have the

power law form of (4.1), then by using (4.1), (4.4), (3.5) and by considering the stress

range as 2u, where u is the magnitude of peaks, we have that

E

(

1

Nf (Sr)

)

=
2b

c

∫ ∞

0

ubPSr
(u)du

=
K−3/2c−12b−1

√
πL

[

Γ

(

b + 1

2

) (

−W 2

K

)− b+1
2

(

W 2 − KL

W 2

)− 3+b
2

× (b + 1)
(√

KW 2 − K3/2L
)

hypergeom

(

[
1

2
,
3 + b

2
], [

3

2
],

W 2

W 2 − KL

)
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+

(

−W 2 − KL

K

)−1/2 b

Γ (1 + 1/2 b)
√

πKW

−Γ

(

b + 1

2

)

(

−L− b−1
2 K3/2 + L− b+1

2 W 2
√

K
)

]

and the expected number of cycles to failure is given by

E(N(T )) =
1

E
(

1
Nf (Sr)

) , (4.5)

The results (4.4) and (4.5) are also equivalent to the common Palmgren-Miner hy-

pothesis, Lin [6], that
N(T )
∑

j=1

(Nf(Sr,j))
−1 = 1 (4.6)

The situation with b = 1 is a special in which we can also exactly evaluate the

prediction of the fatigue life. in particular (4.1) and (4.6) give the fatigue condition

as

c−1

N(T )
∑

j=1

Sr,j = 1

However, we can rewrite this summation of Sr values by noting the contributions

to the summation from each time increment of length dt. In particular, there is an

excursion |Q′

(t)|dt during the time increment, this increment of excursion becomes a

part of some Sr,j stress range. Thus, it adds directly to the summation of all stress

ranges, and we can say that

N(T )
∑

j=1

Sr,j =
1

2

∫ T

0

|Q′

(t)|dt

in which the factor of 1/2 comes from the fact that a full cycle with range Sr cor-

responds to a total excursion of 2Sr substituting this relationship and taking the

expected value gives

1 =
c−1

2

∫ T

0

E(|Q′

(t)|)dt =
c−1

2

∫ T

0

(

2

π

)1/2

σQ′dt, (4.7)

where probability density function of |Q′(t)| equal to

P|Q′(t)|(y) =
2√

2πσQ′

exp

{

− y2

2σ2
Q′

}

,

and

E(|Q′(t)|) =

(

2

π

)1/2

σQ′

in which by (3.3) we have that

σQ′ = (Var(Q′
n(t)))

1
2 =

√

(

t4n2 − (2n2 + 2n − 1) t2 + (n + 1)2
)

(t2n+2) − t2 − t4

t2 (t2 − 1)3
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Figure 3: (a) Expected Number of Cycle (b) Expected Number of Cycle

Time to Failure T , and Expected Number of Cycles. Using (4.7), one can

evaluate time to failure of systems under such stress process Qn(t). In table 3, this is

done for the case b = 1. Using (4.5), we also evaluate the expected number of cycles

to failure, E(N(T )), for different values c and n, for the case b = 1, which is recorded

in table 3.

In figure 3(a), the parameter c is constant, so the structure of the systems are

the same. For the case that n is 7 or 10, as the effect of the excitation of the system

is based on the variance of the components of polynomial, so the failure time is less

in compare with the cases with smaller n. This can be seen by table 3. As the

cumulative number of cycles to the failure can be evaluated by the surface under the

curve in figure 3(a) up to the failure time, so this is less as n is larger.

In figure 3(b) as the degree of polynomial n = 5 is fixed it can be seen by table 3

that as c is larger the structure of the systems are stronger and failure time are

greater, and also as it can be seen by figure 3(b) the cumulative number of cycles to

failure which is the surface under the curves up to the failure time is greater.

As our method is to provide a platform to study the effect of non-stationary

stress process. One can use the classical methods to approximate the underlined

stress process with some random polynomials, and then apply the method of this

paper. In the following example we assume that such approximation by random

polynomials has been done and so evaluate characteristics of the underlined process.

Example. We assume that the stress process has been evaluated with a random

algebraic polynomial as Q∗
n(t) = A1t + A2t

2 + A3t
3, where the coefficients Ai are i.i.d

random variable with standard normal distribution. So we have by (3.3) that

A2 = t2 + t4 + t6, B2 = 1 + 4t2 + 9t4, C2 = 4 + 36t2
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Table 3: Expected Number of Cycles to Failure E(N(T )) and Time to Failure T for b = 1

c n 2 5 7 10

0.5 T 0.8946932015 0.764136589 0.752569374 0.7482467534

E(N(T )) 1.177971022 1.324358126 1.309516770 1.262196083

1 T 1.395645645 1.0022981559 0.952824031 0.9240957382

E(N(T )) 3.581700163 3.763357000 3.634746927 3.425049612

2 T 2.0870963405 1.234613382 1.1255412145 1.0561167474

E(N(T )) 11.91232355 10.53928346 9.694139600 8.744537285

3 T 2.609103731 1.3736938635 1.2218261402 1.1242783208

E(N(T )) 24.92007552 19.29590011 17.20622447 15.10455626

5 T 3.428249425 1.5566961273 1.3427691936 1.2060980629

E(N(T )) 64.98443665 41.34518168 35.50692973 30.21206506

Figure 4: DPM at differen point t = 0.8, 1.2, 2

D = t + 2t3 + 3t5, H = 2t6 + 6t4, F = 4t + 18t3

Using (3.4) and above relation we can obtain density of peaks magnitude of Q∗
n(t)

(DPM). Here we plot (DPM) by figure 4, at different points t = 0.8, 1.2, 2.

Using (4.5)–(4.7) we evaluate the time to failure and expected number of cycle

for this stress process in table 4.

Conclusion

Many stress processes in real life are non-stationary and there is no method to

handel non-stationary stress process in general. This paper provide a break through so

that one can find an appropriate approximation for the non-stationary stress process
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Table 4: Failure Time and Expected Number of Cycle at Failure Time

c = 0.5 c = 1 c = 2 c = 3 c = 5

T 0.810829597 1.152700499 1.5539501985 1.8242292795 2.211597854

E(N(T )) 98.21081777 98.77883741 134.2722994 176.9701853 270.0795861

by a random polynomial, which is still non-stationary. Then by the method of this

paper one can evaluate statistical properties under study. To make more clarification

for providing such approximation it is recommended to re-scale the time and consider

the whole time duration of the study of the process as one, then largest term happens

as the first term of the approximating random polynomial, A1t, and as we have further

terms as Ant
n, we provide a better approximation. Approximating the stress process

by a random polynomial with independent Gaussian coefficients, one can apply results

of this paper.
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