
Neural, Parallel, and Scientific Computations 21 (2013) 201-216

CLASSIFICATION OF CANCERS
BY MICROARRAY GENE EXPRESSION DATA

USING THE BEHRENS-FISHER STATISTIC

NABIN K. MANANDHAR SHRESTHA AND KANDETHODY M. RAMACHANDRAN

Department of Mathematics and Statistics

University of South Florida

Tampa, FL 33620 USA

ABSTRACT. Microarray expression experiments allow the recording of expression levels of thou-

sands of genes simultaneously. Such data have been useful for classifying different types of cancers.

Majority of literature on this topic assumes equality of variance between control and treatment

samples. However the variance of the expression levels in different classes are generally different

due to the nature and response of the mRNA at the different conditions, the classification methods

should take account of this information. In this paper, we have proposed a new method of selecting

informative genes based on the Bayesian Version of Behrens-Fisher distribution. We have found that

the proposed method better to others because it selects the genes that are useful for classification

and gives the better result. The efficiency of this method has been demonstrated by applying them

in three real microarray data. We have compared our result with some of the other popular methods

that are found in the literature.

AMS (MOS) Subject Classification. 39A10

1. Introduction

Classification of biological samples using the gene expression data is a broad area

in functional genomic and has drawn much attention in the field of cancer classifi-

cation that evolved from the Leukemia data set first analyzed by Golub et. al. [6].

Various methods have been suggested in building classifier. Microarray data is a spe-

cial type of data, which is distinguished from other types of data by the fact that

the number of genes (predictors) is usually much larger than the number of samples.

More importantly, only a small fraction of genes are meaningful for classifying the

samples. Thus identification of these genes not only makes the computation easier

but it reduces the cost and time. Selecting differentially expressed genes between

different classes can be taken as the marker genes for the classification. It is because

these are the genes that play vital role that shows differential expression between

samples. This idea can be extended if there are more than two conditions or classes.

Golub et. al. [6] have used the weighted voting criteria for selecting the marker genes
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for the classification, but the problem with this approach is the number of genes that

is to be selected as informative. The maximum margin classifiers, like support vector

machines [12] has been used for the classification. This method, being the sophis-

ticated mathematical result, has shown the promising result on the field of pattern

recognition and classification. The main problem with support vector machines is

that it uses all the genes for the classification of samples. Guyon et. al. (2002) pro-

posed the feature selection by recursive elimination method and showed that just few

of the genes are useful for the classification.

In this paper, we briefly describe different methods used for the classification and

propose our method of gene selection as the feature selection in the small sample high

dimensional data for the classification .

The structure of the paper is as follows. Section 2 reviews the literatures in the

microarray classification. In section 3, we propose our method - called Behrens Fisher

(BF) method, for selecting genes that are used for classification. Section 4 discusses

about the application of new method and resulting classification.

2. Review of classification Methods

In the case of microarray data, the number of genes p are far greater than the

number of samples n. This creates problems for classification of samples into different

classes. The prediction rule may not be able to be formed by using all of the p genes.

Even if we could use all of the genes, the noise associated with the genes having

little or no discriminatory power makes the classification process unsuitable. The

generalization error does not decrease although the training error is small. Although

different classification methods uses some or all of the genes, they do not classify the

samples without error. Actually, the methods are data dependent. One method gives

better result in one data, while other method gives the better classification in another

data.

2.1. Nearest Shrunken Centroids Method. The purpose of discriminant analysis

or classification is to assign samples to one of the several (G) classes based on a set of

measurements x = (x1, x2, . . . , xp) measured from samples. In the case of supervised

learning, the classes are predetermined from a set of samples, called training samples.

These training samples are used to build a classifier. The classifier is then used to

determine the class of a new sample. When a sample is misclassified, then an error

is said to be incurred. The cost or loss associated with such an error is defined as

(2.1) L(k, k̂) =

{

0, if k = k̂ ;

1, otherwise.

where k is the correct group of the sample and k̂ is the assignment made to that

sample by the classifier. If the class conditional densities, fk(x), and the class priors,
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πk, of class k are known, then Bayesian optimal rule of classification to classify a new

sample x∗ is to minimize the risk

(2.2) R(k̂|x) =

G
∑

k=1

L(k, k̂) Pr(G = k|X = x)

Then the classification rule is:

k̂ = argmaxk fk(x
∗)πk.

But, the problem is we do not know the class conditional densities, fk(x), of each of

the classes. So, many researchers assume that these densities are multivariate normal

with densities,

fk(x) = (2π)−p/2|Σk|
−1/2 exp

[

−1

2
(x − µk)

′Σ−1
k (x − µk)

]

Then assuming the equal variance-covariance matrix of each class, Σk = Σ, the linear

discriminant score

(2.3) Dl
k(x) = x′Σ−1µk −

1

2
µ′

kΣ
−1µk + log πk

and assuming classwise covariance matrices unequal, the quadratic discriminant score

(2.4) Dq
k(x) = −

1

2
log |Σk| −

1

2
(x − µk)

′Σ−1
k (x − µk) + log πk

Generally, the maximum likelihood estimate are used to estimate the population mean

and population variance. Furthermore, the empirical probability is used to estimate

the class priors.

In the case of DNA microarray data, the number of covariates (genes), p, which

are in the order of several thousands, are much greater than the number of samples,

nk, generally within hundreds, in each class. So, the sample covariance matrix is

singular and this gives the unreliable estimate of covariance matrix because of high

variability. Friedman [1] introduced the regularized discriminant analysis in which

the the unequal variances were shrinked towards the common variance using the

regularization, thus increasing the performance of the RDA classifier. The microarray

problem is thus unique and challenging. Since the expression level of most of the genes

are same in two different treatment samples, those genes contribute little in the case

of classification. Thus it is important to identify the genes that actually contribute for

the classification. Assuming that those genes which have common class means do not

contribute for the classification, Tibshirani et. al. [2] proposed the Nearest Shrunken

Centroids (NSC) method. They used the shrinkage parameter, ∆, for thresholding

and declared those genes as non-contributing genes if the shrunken centroids for gene

g in class k,

x̄′
gk shrinks to the overall mean x̄g
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when the

|dgk| − ∆ ≤ 0

where

s2
g =

1

n − G

G
∑

k=1

∑

j∈Ck

(xgj − x̄gk)
2, dgk =

x̄gk − x̄g
√

1/nk + 1/n · s2
g

The non-contributing genes are removed from the data, thus reducing the dimension-

ality of the gene-matrix. The discriminant score of the NSC classifier was defined

as

(2.5) Dk(x
∗) =

p
∑

g=1

(x∗
g − x̄′

gk)
2

s2
g

− 2 log πk

In the classification process, the genes g which have each of the shrunken class-means

x̄′
gk shrinks towards the overall class means x̄g in each class k = 1, 2, . . . , G have the

same (x∗
g − x̄′

gk)
2 values. So, the numerator of the above discriminant score (2.5) can

be replaced by the square of differences of only those genes g for which

x̄′
gk 6= x̄g, ∀k = 1, 2, . . . , G

The optimal value of the shrinkage parameter, ∆, is chosen by the cross validation

that minimizes the cross-validation error. The idea of cross-validation is to obtain the

unbiased estimate of future prediction error associated with a particular observation

and is obtained by removing it from the model. This gives the genes that are useful

for classification.

2.2. Weighted Voting Method. Here we briefly review the methods of classifica-

tion that are used by Golub et. al. To identify the genes which are truly expressed

in the new samples, one can use the weighted voting scheme (WVS) method. This

uses a weighted linear combination of the “marker” or “relevant” genes obtained in

the training set to classify the new sample. In this method, the correlation between

the expression values of a gene g in two classes is defined as

(2.6) wg =
µg1 − µg2

σg1 + σg2

where µgi and σgi are the mean and standard deviations of gene g in the class i,

i = 1, 2. The larger the absolute value |wg| is the more important the gene g is for

prediction. The genes are ranked by their |wg|’s and top ones are selected. These top

selected genes are the marker or informative genes.

For each informative gene g in the training sample, let µg1 and µg2 be the means

and σg1 and σg2 be the standard deviations respectively. Then the weight of gene g

is determined by

(2.7) wg =
µg1 − µg2

σg1 + σg2
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This measure is also called the signal-to-noise ratio. This weighting factor reflects

the correlation between the expression level of gene g and class distinction. The

parameter bg is calculated as

(2.8) bg =
µg1 + µg2

2
,

which is the average mean of expression levels of two classes. Hence we define the

parameters (wg, bg) for each informative gene in the training set. For a new sample

x∗ with x∗
g being the normalized log expression level of the gene g, we calculate the

votes casted by each of the genes in the “informative” set. The vote of a gene g is

(2.9) vg = wg(x
∗
g − bg) =

µg1 − µg2

σg1 + σg2
[x∗

g −
µg1 + µg2

2
]

A positive vote indicates that the sample belongs to class 1 and negative vote

indicates it being in class −1. Then the total vote for the sample to be in class 1 is

obtained by adding V1 =
∑

g max(vg, 0) and the total vote for sample to be in class

-1 is V2 =
∑

g max(−vg, 0). Then the sample is assigned to that class corresponding

to the higher total vote. Generally, we take the 5% of most positive and 5% most

negative genes as the “informative” genes in the training set. But this number is a

free parameter and depends on the user.

2.3. Dudoit’s Multi-class Classification Method. Several proposals have been

made for ranking the genes for multiclass classification. Dudoit et al. (2002) used the

ratio of between-sum-squares to within-sum-squares of each gene for the multiclass

classification. Explicitly, let there are G classes and the number of samples be n each

of dimension p. Then, the samples in each class

n = n1 + n2 + · · ·+ nG

Let x̄g be the mean of gene g over all classes. For each gene g, g = 1, 2, . . . , p,

let x̄
(k)
g be the mean in class k, k = 1, 2, . . . , G. Then the ranking of genes are done

using the ratio

ρg = |

∑G
k=1 nk(x̄

(k)
g − x̄g)

2

(n − G)σ2
g

|

where σg is the pooled within class standard deviation of gene g:

σ2
g =

1

(n − G)

G
∑

k=1

(nk − 1)σ(k)2
g

A new sample x∗ = (x∗
1, x

∗
2, . . . , x

∗
p) is then classified into class k, if

k = min
k′

‖x′∗ − x̄(k′)‖

where ‖ · ‖ is the Euclidean norm, and x′∗ and x̄(k′) are the component vector and

mean of class k′ of only those component genes selected by the ranking procedure.
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2.4. Support Vector Machines (SVM) Methods. In the SVM classification

method of linearly separable samples, one finds the separating hyperplane

(2.10) f(x) = b + w′x

from the training samples {(x1, y1), (x2, y2), . . . , (xN , yN)} where yi = ±1 are binary

class labels, that correctly classifies the training samples and maximizes the margin.

The class of a new sample x is determined by the sign[f(x)]. All the training samples

are classified correctly if

yi(b + w′xi) ≥ 1 for all i

The hyperplanes

b + w′x = ±1

are called the canonical hyperplanes and the distance 1/w between one of the canoni-

cal hyperplanes and separating hyperplane (2.10) is the margin. So, the optimization

problem can be rephrased as

min
w

‖w‖

subject to

yi(b + w′xi) ≥ 1 for all i

For the non-separable case, we still maximize the margin but we allow some points

on the wrong side of the hyperplane defining the slack variables ξ = (ξ1, ξ2, . . . , ξn).

The optimization problem is

min ‖w‖ + γ

N
∑

i=1

ξi

subject to

yi(b + w′xi) ≥ 1 − ξi, ξi ≥ 0 for all i

where γ is the cost parameter that is determined by cross-validation. Using the

Karush -Kuhn-Tucker condition, the optimal values of the parameters of the hyper-

plane are obtained as

ŵ =
∑

i∈SV

αiyixi

where 0 < αi ≤ γ. The sum
∑

i αiyi = 0 corresponds to the support vectors xi. The

bias parameter

b̂ =
1

n0
{
∑

i∈SV

yi −
∑

i,j∈SV

αiyix
′
ix

′
j}

where n0 is the number of support vectors. Since αi = 0 for the non-support vectors

xi, the summation indices i and j are only for the support vectors. The separating

hyperplane is thus given by

(2.11) f(x) = b̂ + ŵ′x
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and the corresponding decision rule for a new sample x∗ is:

(2.12) f(x∗) = ŵ′x∗ + b̂

{

> 0, Classify to class 1;

< 0, Classify to class 2.

Using the non linear basis functions φ(xi), one can map the input space into a high

dimensional feature space. Then the samples are classified by the linear boundaries in

the feature space using the kernel K(xi,xj) = φ(xi) · φ(xj) which corresponds to the

non linear boundaries in the input space. The separating hyperplane in the feature

pace is

(2.13) f(x) = b̂ +

N
∑

i=1

αiyiK(xi,x)

Different kernels are obtained by

K(y,x) = φ′(y)φ(x)

where φ(y) and φ(x) can be any linear or non linear transformations of y and x and

must satisfy the Mercer’s Conditions [11]. But for this work, we use simple linear

kernel,

K(y,x) = φ′(y)φ(x) = y′x + 1

3. Behrens Fisher Statistic

3.1. Gene Selection by Behrens-Fisher Statistic. Suppose there are G different

classes in the population. Let nk be the number of samples in class k, (k = 1, 2, . . . , G).

Let xgk = (xg1
, xg2

, . . . , xgnk
)

iid
∼ N(µgk, σ

2
gk) be the expression level (possibly log

transformed) of the gene g in class k. For k=1,2,. . . ,G, the density of xgk can be

written as

(3.1) f(xgk) =
1

(σgk)nk(2π)
nk
2

exp
[

−
1

2σ2
gk

{nk − 1)s2
gk + nk(x̄gk − µgk)

2}
]

where x̄gk and s2
gk are sample mean and sample variance of gene g in class k respec-

tively.

Assuming the independency of location parameter µgk and scale parameter σ2
gk,

the joint prior for µgk and σ2
gk can be written as

(3.2) p(µgk, σ
2
gk) = p(µgk)p(σ2

gk)

Assume that the priors for µg1 and µg2 are flat priors and the priors for σ2
g1

and σ2
g2 are scaled inverse χ2 distributions, i.e. p(σ2

g1) = I(σ2
g1; ν0, σ

2
0) and p(σ2

g2) =

I(σ2
g2; η0, τ

2
0 ), where α = (ν0, η0, σ

2
0, τ

2
0 ) is the hyper-parameters that should be esti-

mated from the data.
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Let ∆µg = µg2 − µg1. Then the statistic, called the BF -statistic

B =
∆µg − (x̄g2 − x̄g1)

(
σ2

g1

n1
+

σ2
g2

n2
)

1

2

(3.3)

= Bx2
cos θ − Bx1

sin θ

where

tan θ =
σg1/

√
n1

σg2/
√

n2
, 0 ≤ θ ≤ π

2

Bx1
=

(µg1−x̄g1)

σg1/
√

n1

Bx2
=

(µg2−x̄g2)

σg2/
√

n2

and, Bx1
and Bx2

are independently distributed as t-statistics with vn1
and vn2

degrees

of freedom respectively. Hence, the statistic B is distributed as the Behrens-Fisher

distribution with

vn1
= n1 + ν0 − 1, and vn2

= n2 + η0 − 1

degrees of freedom [5]. That is,

B ∼ BF (vn1
, vn2

, θ)

with pdf

f(β|µg1, µg2, σ
2
g1, σ

2
g2) = k

∫ ∞

−∞

[

1 +
(α cos θ − β sin θ)2

vn1

]−
vn1

+1

2

×
[

1 +
(α sin θ + β cos θ)2

vn2

]−
vn2

+1

2

dα

where

α = Bx2
sin θ + Bx1

cos θ, β = Bx2
cos θ − Bx1

sin θ

This can be further approximated by scaled t-statistic [7]:

(3.4)
B

a
∼ t(b)

where

f1 =
(

vn1

vn2−2

)

cos2 θ +
(

vn1

vn1−2

)

sin2 θ

f2 =
v2

n2

(vn2−2)2(vn2−4)
cos4 θ +

v2
n1

(vn1−2)2(vn1−4)
sin4 θ

a2 = (b−2)
b

f1

b = 4 +
f2
1

f2

cos2 θ =
σ2

g2

n2
(

σ2
g2

n2
+

σ2
g1

n1

) , sin2 θ = 1 − cos2 θ.
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That is, B has approximately t-distribution with b degrees of freedom (b ≥ 1)

and scale parameter a. This statistic B can also be denoted as B ∼ t(0, a2, b) and is

valid only for vn1, vn2 ≥ 5.

3.2. Choosing the number of genes required for classification. For this work

we select those genes that are uniformly expressed in each of the classes. Since leave-

one-out cross validation (LOOCV) error is almost unbiased estimate of generalization

error [12], we use the leave-one-out cross validation on the training samples. The genes

that are common in each of the cross validated training samples are the preliminary

set of genes that have the power to discriminate between different classes. From

this preliminary gene set, only those genes are selected that do not further decrease

the cross validation error. This final set is the optimal set that is useful for the

classification. Since the genes chosen by the t-test are the marker genes for the two

different conditions, these can be used to classify samples into any one of the two

classes. The genes selected by BF method may not be appropriate for the multi-

class classification. To fit with the multi-class classification, we want to choose the

marker genes that are useful. For this, we can use the one-versus-all method. In this

method, we take one of the class as from normal (condition 1) and combine the rest

of classes and take that combined classes as from diseased (condition 2). Then we use

the leave-one out method in the training set to choose the genes that are useful for

the classification. We simply leave one of the training sample and find the genes that

are differentially expressed by the BF method in the rest of training samples that

contains samples from both conditions. We repeat this procedure for all the samples

in the training set. Then the differentially expressed genes that are common in each

of the leave-one-out training set is taken as the marker genes, which we choose as

the genes useful for classification. We repeat the same procedure for the rest of the

classes (leaving the classes that were used) and get the differentially expressed genes.

Finally, the informative genes are those common genes that is found expressed, thus

uniformly expressed, in all the classes and leave one out training sets. Using this gene

set, we classify one sample with the rest. In the above example, we classify the ALL

sample with the rest. Then, this is repeated for all remaining classes. This method

is the one-versus-all method.

4. Results

4.1. Datasets Pre-processing and Filtering. All the data sets used in this paper

are oligonucleotide microarray data and was pre-processed as in Dudoit et. al. (2002).

The threshold was set with floor of 100 units and ceiling of 16,000 units. A ceiling

of 16,000 units was chosen because it is at this level that we observe the flourescense

saturation of the scanner; values above this can’t be reliable measure. Similarly a



210 N. K. M. SHRESTHA AND K. M. RAMACHANDRAN

floor of 100 units was chosen to minimize the noise and maximise the interpretation

of marker genes due to the correlation of genes. We have filtered out (excluded) those

low quality genes that have ratio (max / min) < 5 and (max−min) < 500 across all

of the samples. To make the data somewhat symmetrical, base-10 logarithm has been

used for the transformation.

4.2. MLL Leukemia Data. MLL Leukemia data is Affymetrix oligonucleotide data

and consists of 72 samples and 12,582 genes. There are 3 different classes - ALL, MLL,

and AML. ALL has 20 training sample and 4 testing samples, MLL has 17 training

samples and 3 test samples and AML has 20 training samples and 8 testing samples.

After the preprocessing and filtering the low quality data, we are left with 8,681 genes.

Table 1 shows the comparison and performance of different methods for this

data. The nearest shrunken centroid (NSC) method chooses only 12 genes but the

performance of the model in the testing samples are not as good as in the other

method. It makes four errors when classifying the training samples. The genes

chosen by the Beherens-Fisher statistic have more discriminating power, as seen these

genes used in weighted voting, Dudoit and Support Vector Machines methods. In all

methods, misclassification occurs only in the training samples. The SVM method

is seem to be the perfect classifier, since it makes no error in training and testing

samples.

Table 1. Comparison of Classification Performance on MLL

Leukemia Data.

Method Training Errors Test Errors Average Error No. of

ALL MLL AML ALL MLL AML Train Test Genes

Dudoit 0 1 1 0 0 0 2 0 23

Wt. Vote 0 1 1 0 0 0 2 0 17

SVM 0 0 0 0 0 0 0 0 17

NSC 0 4 0 0 0 0 4 0 12

4.3. Golub Leukemia Data. Golub Leukemia data consists of 7,129 genes and 72

samples. These samples are from two classes: Acute Lymphoid Leukemia (ALL) and

Acute Myeloid Leukemia (AML). We have chosen 38 training samples: 27 ALL and

11 AML, and 34 testing samples : 20 ALL and 14 AML as in Golub et al. [6]. After

pre-processing and filtering, 3571 genes are remained. For the classification, 33 genes

were selected by the BF method using LOOCV error. These genes were used for

the classification of ALL and AML samples. The classification error are shown in

Figure 2. The genes selected by BF method seems optimal set in the sense that it

makes very few error in classifying the samples. It makes no error while using the
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Figure 1. Cross-Validation Error of Nearest Shrunken Centroid

Method for MLL data

SVM method, whereas it makes 1 error out of 38 training samples and 1 error out

of 34 testing samples. As the number of genes increased, the error does not decrease

when we select 80 genes. By taking 8 genes, it has been found that 3 errors were

made in the training samples and 2 errors were made on the testing sample.

Table 2. Comparison of Classification Performance on Golub Data.

Method Training Errors Test Errors No.of Genes

ALL MLL ALL MLL

W. Vote 1 0 1 0 33

SVM 0 0 0 0 33

NSC 0 0 1 0 18

4.4. Central Nervous System Embryonal Tumor Data. This data consists of

12,625 genes and 327 samples. There are 7 classes and the samples are separated as

training and test samples. For the comparison purposes, we have selected the same

215 training and 112 test samples as in Pomeroy et. al. (2001). These are : BCR (9

train, 6 test), E2A (18 train, 9 test), HYP (42 train, 22 test), MLL (14 train, 6 test),
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Figure 2. Comparison of Errors in Weighted Vote and SVM in Golub Data

T.ALL (28 train, 15 test), TEL.AML (52 train, 27 test), Others (52 train, 27 test).

After applying the pre-processing and filtering steps, ther are 12,061 genes. For the

sake of convenience, we call this data as ALL-7 data.

In this 7 classes case, the genes selected by the BF method has shown the promis-

ing result over the nearest shrunken centroid (NSC) method and shrunken centroid

regularized discriminant analysis (SCRDA) method of Guo et. al. (2007). We have

used the genes selected by the proposed BF statistic for the Weighted Voting method.

For the Dudoit method, we have used the 150 genes selected by the BF statistic. The

classification performed by both weighted vote and Dudoit method are better than

the rest two methods. The overall error for the weighted vote method in the training

samples is .0093 whereas it is 0.1209 and 0.0651 in NSC and SCRDA methods re-

spectively. Similarly, the overall test errors in the weighted voting method is 0.0625,

and that is 0.3482 and 0.1160 in NSC and SCRDA methods respectively. Another

important fact to note is that the number of genes selected for the classification by

BF method is also comparable to both of these methods.
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Figure 3. Training Error in ALL -7 Class Data using NSC Method

Table 3. Comparison of Classification Performance on ALL-7 Data.

Method Classes Total No.of

BCR E2A HY P MLL T.ALL TEL.AML Others Error Genes

Tr W. Vote 0 0 0 0 0 0 2 2 370

a Dudoit 2 0 1 0 0 1 16 20 150

i NSC 9 0 7 8 0 0 2 26 185

n SCRDA 0 0 2 0 0 0 12 14 543

T W. Vote 0 0 3 0 0 0 4 7 370

e Dudoit 1 0 1 0 0 1 3 6 150

s NSC 6 0 21 6 0 0 6 39 185

t SCRDA 1 0 2 0 0 0 10 13 543

The confusion matrix for the different methods are shown in Table 4. and Table 5.

It is the matrix of number of samples classified by the method, and shows explicitly

how many samples are misclassified and in which class they were assigned by the
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Table 4. Confusion matrix for the MLL-3 training data by Dudoit

method, and Golub Test Data by NSC Method.

Class MLL Data Golub Data

Predicted Predicted

True ALL AML MLL ALL AML

ALL 20 0 0 20 0

AML 0 19 1 1 13

MLL 0 1 16

classifier. Since the weighted vote method and SVM method are two class classifier,

confusion matrix can not be calculated for this classifier.

Table 5. Confusion matrix for the ALL-7 test data by SCRDA method.

Class Predicted

True BCR E2A HY P MLL T.ALL TEL.AML Others

BCR 5 0 0 0 0 0 1

E2A 0 9 0 0 0 0 0

HY P 0 0 20 0 0 0 2

MLL 0 0 0 6 0 0 0

T.ALL 0 0 0 0 15 0 0

TEL.AML 0 0 0 0 0 27 0

Others 4 0 3 0 0 3 17

We compare the performance of the classifiers by the accuracy of it to classify

the test samples. The estimated classification or accuracy rate,

Accuracy Rate =
sum of truely classified test samples in different classes

total no. of testing samples

In the case of support vector machines, we have used one-against all method to

get the accuracy. This method uses all the genes in the samples. It is seen that the

genes chosen by the Behrens Fisher distribution is actually useful for the classification.

Table 6. Accuracy Rate for the ALL-7 test data

Data no. of Genes no. of Classes no. of samples Accuracy

Train Test WV Dudoit NSC SCRDA SVM

Golub 7,129 2 38 34 97.06 94.11 97.06 97.06 79.41

MLL 12,582 3 57 15 100 100 100 100 100

ALL-7 12,625 7 215 112 93.75 94.64 65.17 88.40 84.82
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