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ABSTRACT. Consider propagation of a wavefront in a medium. According to Fermat’s principle

a ray, travelling from one point P0 to another point P1 in space, chooses a path such that the time

of transit is stationary. Given initial position of a wavefront Ω0, we can use rays to construct the

wavefront Ωt at any time t. Huygens’ method states that all points of a wavefront Ω0 at t = 0 can

be considered as point sources of spherical secondary wavelets and after time t the new position Ωt

of the wavefront is an envelope of these secondary wavelets. The equivalence of the two methods of

construction of a wavefront Ωt in a medium governed by a general hyperbolic system of equations

does not seem to have been proved. Hyperbolic equations have their own method of construction

of a wavefront. We shall discuss this still open (as far as I know) problem for a general hyperbolic

system and briefly sketch the relation between the three methods for a particular case when the

medium is governed by Euler equations of a polytropic gas in free space [16].

AMS (MOS) Subject Classification. 39A10

1. Introduction

We represent a wavefront at any time t by Ωt : ϕ(x, t) = 0, x ε R
m. There are

three important methods of construction of a wavefront Ωt at time t starting from its

initial position Ω0:

1. Huygens method1 (1676-78) of construction of an envelop Ωt of spherical sec-

ondary wavelets with centres on the primary wavefront Ω0.

2. Using a nonlinear first order partial differential equation (PDE)2, called eikonal

equation, for the function ϕ(x, t):

(1.1) Q(x, t, ∇ϕ, ϕt) = 0

Received July 15, 2013 1061-5369 $15.00 c©Dynamic Publishers, Inc.
1Also known as Huygens’ principle. Huygens formulated what became the guiding principle in

theory of wave propagation and which is of great interest in mathematics [3]. It has inspired research

of deep mathematical value and many areas of mathematical physics.
2Theory was developed mainly by Lagrange (1774), Charpit (1784), Monge (1809) and Cauchy

(1819), see [7]
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in constructing the secondary wavelets or using it to derive the ray equations

to construct Ωt. The equation (1.1) is in a slightly different form in which an

eikonal equation is written.

3. Fermat’s variational formulation3 leading to a ray, which is a path such that

the time of transit along the path is stationary for a given ray velocity4
χ =

(χ1, χ2, . . . , χn) at a point x ε R
m and then using the rays to construct Ωt.

All the three methods are discussed in detail in [14]. In Huygens method, wave-

front is the primary object and existence of rays is not postulated. In PDE method

also, we can completely bypass use of rays by constructing the solutions of (1.1)

with the help of complete integrals, which form the secondary wavelets. In Fermat’s

method ray is the primary object and the wavefront Ωt at time t is obtained as locus

of tips of rays drawn from various points of Ω0. Tips here refer to the end points

of the rays at time t. We can obtain rays also from (1.1) as projections on x-space

of the of the characteristic curves of (1.1) in space-time and then use these rays to

construct Ωt. We shall explain briefly these results in the next section. In this article

we discuss our attempt to prove equivalence of Fermat’s and Huygens’ methods of

wavefront construction in a medium governed by a hyperbolic system and having no

boundaries.

2. Basic mathematical steps in proof of equivalence in

construction of a wavefront Ωt

Discussion of Huygens’ and Fermat’s methods requires a medium in which the

wave propagates. We shall choose a medium whose motion is governed by a hyperbolic

system of n first order partial differential equations in m + 1 independent variables

(x, t):

A(u,x, t)ut +B(α)(u,x, t)uxα
+ C(u,x, t) = 0(2.1)

where u ∈ R
n, A ∈ R

n×n, B(α) ∈ R
n×n and C ∈ R

n. The characteristic equation

(which we also call eikonal equation) of (2.1) is

(2.2) Q(x, t;∇φ, φt) := det(Aφt +B(α)φxα
) = 0.

3It is an outcome of Fermat’s principle, which is dated as 1660 in Holliday and Resnick’s book

“Physics”. In 1662 Fermat wrote to C. de la Chambre on his investigation of the refraction of light

“. . . from the principle, so common and so well-established, that Nature always acts in a shortest

ways.” The Principle is an important mathematical formulation, which precedes calculus of varia-

tions, one of the very central field of analysis [5].
4Note that not every vector χ qualifies to be a ray velocity (see footnote 5 on page 3).
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We choose a wavefront Ωt corresponding to a specific family of characteristic field

with characteristic velocity c and unit normal n:

(2.3) c = −
ϕt

|∇ϕ|
, n =

∇ϕ

|∇ϕ|
.

Let l and r be the corresponding left and right eigenvectors of the characteristic

matrix [nαB
(α) − cA]. Then the ray velocity χ and the wavefront velocity c are given

by

χα = lB(α)r
lAr

and c = 〈n,χ〉.(2.4)

The expression for χα in (2.4) was derived in [5].

A point x on a ray moving with above ray velocity satisfies5

(2.5)
dxα

dt
=

lB(α)r

lAr
≡ χα.

The time rate of change (along the ray) of the components of the unit normal n to

Ωt was given by Prasad in 1993 (see [14] and [15] for the original reference and a

derivation) as

dnα

dt
= −

1

lAr
l

{

nβ

(

nγ

∂B(γ)

∂ηα
β

− c
∂A

∂ηα
β

)}

r = Ψα, say,(2.6)

where

(2.7)
∂

∂ηα
β

= nβ

∂

∂xα

− nα

∂

∂xβ

are tangential derivatives on the wavefront Ωt. (2.5) and (2.6) are the ray equations

derived from the eikonal equation (2.2) of a hyperbolic system (2.1). Once the rays

have been calculated, we can construct Ωt from Ω0 as described in Fermat’s method

at the end of the last section.

We now indicate very briefly two methods of construction of spherical wavefronts,

t = W (x,x0) with centre at x0 on Ω0, for a general eikonal equation (1.1) and in

particular for the hyperbolic system (2.1).

1. We solve ϕ(x, t) = 0 for t, write the equation of the wavefront in the form

t = ψ(x) and derive from (1.1) a first order nonlinear PDE for ψ. A suitable

m − 1 parameter family of complete integrals of this equation can be found as

the required spherical wavefronts (see [14], section 3.2.2). The parameters are

chosen as the n−1 surface coordinates on Ω0 (see the statement in theorem 3.1).

5Not every vector χ qualifies to be a ray velocity. The equations (2.5) for a general χ contain

some additional terms but for the velocity χ of a hyperbolic system, given by (2.4), these additional

terms disappear and now χ qualifies as a ray velocity [15].
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2. The second method uses the characteristic curves of the (1.1) or the bicharac-

teristics or rays of the hyperbolic system (2.1). The tips of all the rays at time t

starting from x0 at time 0 generate the spherical wavefront (see equation (3.2.9),

[14]) with centre at x0.

Let us use Fermat’s method to derive now the equation for n in a medium in

steady state. The medium need not be governed by a hyperbolic system. We start

with a general ray velocity χ, not necessarily given by (2.4) i.e., we just take

(2.8)
dx

dt
= χ(x,n),

where we have also assumed χ to be independent of t. For a given medium in steady

motion the ray velocity χ depends on the point x on Ωt and the normal direction n

of Ωt. For example, in gas dynamics χ = q + na, where q is fluid velocity and a is

local sound velocity. We should be able to express n in terms x and the ray direction

N = χ/|χ|.

Consider a point P (x(t)) moving according to (2.8) with velocity χ. The time

of transit T along a path joining two points P0(x0) and P1(x1) in R
m is

(2.9) T =

∫ P1

P0

ds

|χ|
=

∫ P1

P0

|x′|dt

|χ|

where ds is an element of distance along the path and

(2.10) x′ =
dx

dt
.

Let µ be a parametrisation of this path such that

(2.11) x(µ = 0) = x0, x(µ = 1) = x1

and let

(2.12) ẋ =
dx

dµ
,

then N = ẋ/|ẋ|. The expression T in (2.9) becomes

(2.13) T =

∫ 1

0

|ẋ|

|χ|
dµ =

∫ 1

0

F (x, ẋ, µ)dµ, F (x, ẋ, µ) =
|ẋ|

|χ(x, ẋ)|
.

The Euler equations for the variational problem, which makes T stationary are

(2.14)
d

dµ

(

∂F

∂ẋα

)

=
∂F

∂xα

, α = 1, 2, . . . , m.

Given the expression for χ, we should be able to derive from (2.14) the equation

for n, which along with (2.8) would complete the ray equation by Fermat’s principle.

To discuss relation between Fermat’s and Huygens’ methods of wavefront con-

struction in a medium governed by the hyperbolic system (2.1), we begin with the

following two propositions.
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Proposition 2.1. For χ given by (2.5), deduce equations (2.6) from the Euler equa-

tions (2.14). This means Fermat’s method implies the wavefront construction by

eikonal equation method of the hyperbolic system.

Proposition 2.2. The method using spherical wavefronts from the eikonal equation of

the hyperbolic system implies Huygens’ method. In the case of a steady state solution

(see solution u0(x) of (3.9)) these two methods are equivalent i.e., eikonal equation

method of a hyperbolic system and Huygens’ method are equivalent.

Remark 2.3. We note that proposition 2.1 contains only one way implication. The

first part of the proposition 2.2 also contains only one way implication, where as its

second part implies two way implication.

Remark 2.4. A wavefront construction with the help rays of the eikonal equation

(2.2) is unique. Hence proposition 2.1 and the first part of the proposition 2.2 imply

that given Ω0 the only wavefront Ωt obtained by Fermat’s method is also a wavefront

by Huygens’ method. Please note that we use here a wavefront and not the wavefront

by Huygens’ method. In the case of wave propagation in a steady medium both

methods always give the same wavefront.

3. Some results on the three methods

There is no doubt of the equivalence of the famous and old methods of Fermat

and Huygens for a wavefront construction in an isotropic medium (like light waves

and sound waves in a gas at rest). In this case mathematical proof is very simple, see

[6] and [14]. The proof of equivalence is not available for a wavefront in anisotropic

medium governed by a general hyperbolic system. We discuss some results in this

direction.

3.1. Huygens’ and eikonal equation methods for a hyperbolic system. We

briefly elaborate the proposition 2.2 by two theorems. The proofs, inspired by related

results in [6], is available in detail in sections 3.2.2 and 3.2.3, [14]. In the first theorem,

we deduce Huygens’ method with the help of rays of the eikonal equation (2.2):

Theorem 3.1. Consider a parametric representation x0(η1, η2, . . . , ηm−1) of points

on the primary wavefront Ω0 and spherical wavefronts of radius t and centres at x0,

obtained from the eikonal equation (2.2). The spherical wavefronts are defined in

terms of the metric determined by the hyperbolic system. Then the envelop of these

spherical wavefronts is Ωt. This is the Huygens’ method of construction the wavefront

Ωt at time t.

Thus with the help of the eikonal equation (2.2) we have deduced the Huygens’

method of wavefront construction.
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In the second theorem we deduce the rays of (2.1) starting from Huygens’ method.

As we mentioned in the introduction, Huygens’ method does not assume existence of

rays - even in construction of the spherical wavefronts. Assuming that the coefficient

metrices A and B(α) do not depend on t but only on x and further assuming existence

of spherical wavefronts of the form t = W (x,x0) with x0 lying on the initial wavefront

Ω0, the following result has been proved (stated slightly differently from the statement

at the end of section 3.2.3, [14]).

Theorem 3.2. From Huygens’ method of wavefront construction we can deduce the

ray equations of the hyperbolic system (2.1) when A and B are independent of t.

The above two theorems prove the equivalence of the Huygens’ method and the

eikonal method completely for a system when the coefficients A andB are independent

of t.

Let us now go to discussion of Fermat’s method. Proof of the proposition 2.1 i.e.,

{Wavefront obtained from rays from Fermat’s principle} ⇒

(3.1) {Wavefront obtained from rays of the corresponding hypebolic system}

has not yet been achieved in this generality.

It appears that this equivalence has been proved for elastodynamics by Epstein

and Sniatycky, 1992. It has been very clearly proved for Euler equations of a poly-

tropic gas by us in 1993 ([16], also mentioned in [14]) but we did not publish it because

we hoped that we could prove it for a general hyperbolic system. The equivalence for

Euler equation has now been written and will be sent for publication. We describe it

very briefly in section 3.2.

As mentioned in proposition 2.1 the proof of (3.1) in most general form reduces to

proving the equivalence of (2.6) and (2.14) for F (x, ẋ, µ) = |ẋ|
χ(x,ẋ)

, where χα = lB(α)r
lAr

is given.

3.2. Proof of (3.1) for Euler equations of a polytropic gas in steady motion.

Let us consider motion of a polytropic gas, for which we denote mass density by ρ,

particle velocity by q = (q1, q2, q3) and pressure by p. The sound velocity a is given by

a2 = γp

ρ
, where γ is a constant. For a forward facing gas we can write characteristic

equation (or eikonal equation) as

(3.2) Q := ϕt + 〈q,∇ϕ〉 + a|∇ϕ| = 0.

The ray equations are

(3.3)
dx

dt
= q + na = χ, say,
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and

(3.4)
dn

dt
= −La− nβLqβ = Ψ, say,

where

(3.5) L = ∇− n〈n,∇〉

is a tangential derivative on the wavefront Ωt : φ(x, t) = 0.

We consider a steady solution (ρ0,q0, p0) of the Euler equations, then the function

F (x, ẋ, µ) appearing in the variational problem (2.13) is F (x, ẋ, µ) = ẋ
|q0+na0|

and

Euler variational equation (2.14) becomes

(3.6)
d

dµ

{

∂

∂ẋα

(

F =
|ẋ|

|q0 + na0|

)}

=
∂

∂xα

(

F =
|ẋ|

|q0 + na0|

)

.

Note that the function F is to be expressed in terms of x and ẋ, which requires

expressing n as a function of N = ẋ
|ẋ|

. This is one of the most difficult part of the

proof and requires many pages of calculations. One of intermediate steps in these

calculations leads to equations

(3.7)
d

dµ

(nα

c

)

=
∂

∂xα

(

|ẋ|

|χ|

)

= |ẋ|
∂

∂xα

(

1

|χ|

)

where c = a0 + 〈n,q0〉, or

(3.8)
d

dt

(nα

c

)

= |χ|
∂

∂xα

(

1

|χ|

)

.

After some more lengthy calculations, we can derive (3.4) (with a and q replaced

by a0 and q0 respectively) from (3.8). Thus for the ray velocity (3.3) of a polytropic

gas in steady motion, we have proved that the rays obtained by Fermat’s principle

are indeed the rays of Euler equations of a polytropic gas. Since the ray equations

of Euler equations are unique, this means that in a steady motion the wave front Ωt

obtained by Fermat’s method and that obtained by using the rays of the equations of

motion of the polytropic gas are the same.

3.3. Fermat’s principle for deducing ray equations of hyperbolic system

representing a steady state of a medium. The quantities n, c, and χ appearing

in the equation (3.8) do not refer to gasdynamic equations alone but to a general

hyperbolic system. They are given in terms of the coefficients A and B(α) for a given

mode of propagation (i.e., a characteristic field) under consideration. A beautiful,

simple, elegant and general result like this, that too after a long and involved calcu-

lations from a particular case, must be true for a general system. This leads me to

make me a conjecture, which we shall state soon.
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For many physical systems, the equations of motion of media is governed by

hyperbolic systems in which A,B(α), and C do not depend explicitly on t i.e., by a

hyperbolic system of the form

A(u,x)ut +B(α)(u,x)uxα
+ C(u,x) = 0.(3.9)

This system can have both steady solution u0(x) and an unsteady solution u(x, t).

When the latter is substituted in coefficients in (3.9), they depend on t.

For a steady solution u0(x) of (3.9), the ray equations (2.5) and (2.6) become

(3.10)
dxα

dt
=

(

lB(α)r

lAr

)

u0

= χα0, say,

and

dnα

dt
= −

(

1

lAr
l

{

nβ

(

nγ

∂B(γ)

∂ηα
β

− c
∂A

∂ηα
β

)}

r

)

u0

= Ψα0, say.(3.11)

Now we state the conjecture

Conjecture 3.3. The Fermat’s variational principle, with ray velocity χ0 given by

(3.10), leads to the second part of the ray equations (3.11) of hyperbolic system (3.9)

with its solution representing a steady state of a medium.

I have attempted to prove this conjecture many times since 1993 but have not

succeeded. We have seen this result to be true for steady motion of a polytropic gas.

4. Extended Fermat’s principle and a lemma

The equation (2.13) for the time of transit T has been deduced for a ray velocity

χ(x,n) in a stationary medium (see the line just below(2.8)). In a non-stationary

medium χ depends also on time t and the time of transit from P0(x0) to P1(x1) is

(4.1) T =

∫ 1

0

F (x, ẋ, t)dµ, F =
|ẋ|

|χ(x, ẋ, t)|
.

It has been shown (see section 3.2.4, [14]) that the variational problem for (4.1) is ill

posed.

One of the reasons of illposedness is the following. Fermat’s principle was first

formulated for a stationary medium in which any two distinct points in space could

be connected at two different times by a ray and hence also the end points P0 and P1

in x-space could be connected by a ray. The formulation (4.1) given above for two

arbitrary points P̃0(x0, t0) and P̃ (x1, t1) in space-time requires examination whether

P̃0 and P̃1 can also be connected by a ray. This is not true for an arbitrary pair (P̃0, P̃1)

in space-time. This was observed by Kovner (1990) followed by a demonstration by

Nityananda and Samuel (1992) in general relativity, who restricted the points P̃0

and P̃1 to points which can be joined by null curves. The point noted by Kovner
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is relevant not only in general relativity but in a physical system governed by any

hyperbolic system. We should consider only those points P̃0 and P̃1 in space-time

which can be connected by a bicharacteristic curve i.e., P̃1 should be a point on the

forward characteristic conoid of the point P̃0. When P̃0 and P̃1 are such points, it is

now clear that the value of T should be stationary with respect to paths which lie on

the characteristic conoid at P̃0; such paths need not be bicharacteristics but the path

which makes T stationary should turn out to be the bicharacteristic curve joining P̃0

and P̃1.

Now we give a general formulation of the Fermat’s principle, which we call ex-

tended Fermat’s principle in a nonstationary medium governed by a hyperbolic sys-

tem. Let the equation of the forward characteristic conoid of the point P̃0(x0, t0) be

given by

(4.2) t = ψ(x)

and let P̃1(x1, t1) be such that t1 = ψ(x1). We now define a function F̄ on the

characteristic conoid by

(4.3) F̄ (x, ẋ) =
|ẋ|

χ̄(x)
, χ̄(x) = χ(x, ψ(x)).

Extended Fermat’s principle says that a ray is defined to be a path which makes

the integral

(4.4) T =

1
∫

0

F̄ (x, ẋ)dσ, F̄ =
|ẋ|

χ̄(x)

stationary with respect to variations in the paths, which now obviously lie on the

characteristic conoid at the point P̃0.

The Euler’s equations corresponding to the variational problem (4.4) are

(4.5)
d

dµ

(

∂F̄

∂ẋα

)

=
∂F̄

∂xα

, α = 1, 2, . . . , m

or

(4.6)
d

dµ

(

∂F

∂ẋα

)

=
∂F

∂xα

+ ψχα

∂F

∂t
.

Note that the ∂
∂xα

+ψxα

∂
∂t

is an operator, which represents differentiation in a direction

of a tangent to the characteristic conoid t = ψ(x).

We denote χ and Ψ on the right hand sides of (2.5) and (2.6) by χ(A,B,n)

and Ψ(A,B,n) respectively. Let Ω0 : ϕ0(x) = 0 be the initial position of a surface

represented parametrically in the form x = x0(η), η = (η1, η2, . . . , ηm−1) and let n0(η)

be the unit normal vector calculated on Ω0. We now prove the following lemma.
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Lemma 4.1. Let A(x, t) and B(x, t) = (B(1), . . . , Bm) be C1 functions. Let Ωt :

ϕ(x, t) = 0 be a surface generated by the end points (at time t) the integral curves (let

us call them rays) of the initial value problem

(4.7)

dx

dt
= χ(A,B,n),

dn

dt
= Ψ(A,B,n)

x(0) = x0(η), n(0) = n0(η).

Further let us represent Ωt in the form t = ψ(x) and set

(4.8) Ā(x) = A(x, ψ(x)), B̄ = B(x, ψ(x)).

Then the surface generated by the end points (at time t) of the integral curves of

initial value problem

(4.9)

dx

dt
= χ(Ā, B̄,n),

dn

dt
= Ψ(Ā, B̄,n)

x(0) = x0(η), n(0) = n0(η)

coincides with surface Ωt.

Proof. The expression for Ψα given on the right hand side of (2.6), does not contain

any derivative of n. Therefore, the expressions for χ and Ψ on the right hand side of

(4.7) are C1 functions of x, t and n. We can find local solutions (depending on m− 1

parameters in η) of the problem (4.7). From the tips of these rays we can generate

the surface Ωt and find the function t = ψ(x). With this function ψ(x), the initial

value problem (4.9) is well defined and we can be solve it locally.

The operators ∂
∂ηα

β

appearing in (2.6) or (4.9) are tangential derivatives on the

surface Ωt. Hence, at any point (x, t) on t = ψ(x)

(4.10)
∂A

∂ηα
β

=
∂Ā

∂ηα
β

and
∂B(γ)

∂ηα
β

=
∂B̄(γ)

∂ηα
β

.

(4.10) implies that the solution of the problem (4.9) i.e., rays given by (4.9) coincides

with those of (4.7). Therefore the tips of the rays of (4.7) and (4.9) at time t generate

the same surface Ωt. This completes a proof of the lemma.

4.1. Derivation of ray equations of a hyperbolic system with time de-

pendent coefficients from extended Fermat’s principle. Let us use the above

lemma to derive the ray equations (2.5)–(2.6) of the (2.1) with time dependent coeffi-

cients and having an unsteady solution u(x, t). Consider a wavefront Ωt : ϕ(x, t) = 0

in the state represented by this solution at a time t. ϕ(x, t) satisfies the eikonal equa-

tion (2.2). Let ϕ(x, t) = 0 be expressed in the form t = ψ(x). As in the lemma, we de-

fine functions Ā(x) = A(u(x, ψ(x)),x, ψ(x)), B̄(x) = B(u(x, ψ(x)),x, ψ(x)). Assum-

ing that the conjecture (3.3) is true, we drive from it the equations dn
dt

= Ψ(Ā, B̄,n)

in (4.9) from the expression of ray velocity χ(Ā, B̄,n). From relations (4.10) it fol-

lows that Ψ(Ā, B̄,n) = Ψ(A,B,n). Thus using the extended Fermat’s principle, we
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have derived the ray equations (2.5)–(2.6) of the hyperbolic system (2.1) with time

dependent coefficients.

4.2. Fermat’s principle for derivation of ray equations of a weakly nonlin-

ear ray theory (WNLRT). Consider a steady solution u = u0(x) of (3.9) and a

perturbation v(x, t) of u0(x). Assume that

(4.11) u = u0(x) + v(x, t), |v| ≪ 1

satisfies (3.9) in high frequency approximation [14]. Then

(4.12) v ≃ r0(x,n)w(x, t,n), |w| ≪ 1,

where right eigenvector r0 satisfies

(4.13) [nαB
(α)(u0(x),x) − cA(u0(x),x)]r0 = 0

and the amplitude w of the nonlinear wave satisfies a transport equation (chapter 4,

[14]), which we do not write here.

The ray velocity χ of the nonlinear wavefront, retaining only the first order terms,

is

(4.14)
χ ≃ χ(A(u0 + r0w,x), B(u0 + r0w,x),n)

≃ χ0 + χ1w, χ1 = (∇uχ)0r0.

We now use the conjecture (3.3), that the Fermat’s principle gives the ray equations

of a hyperbolic system and also use the extended Fermat’s principle to derive the

equation (2.6) with u given by (4.11) and (4.12). To the first order we get the ray

diffraction rate Ψ

(4.15)
Ψ ≃ Ψ(A0 + (∇uA)0r0w, B0 + (∇uB)0r0w,n)

≃ Ψ0 + Ψ1w, Ψ1 = (∇uΨ)0r0,

where Ψ0 and Ψ1 contain differential operators in directions tangential to the nonlinear

wavefront Ωt.

The ray equations of WNLRT for a hyperbolic system (3.9), with solutions given

by (4.11) and (4.12), are

(4.16)
dx

dt
= χ0 + χ1w

and

(4.17)
dn

dt
= Ψ0 + Ψ1w.

These two equations are exactly the same as the ray equations (4.3.28) and

(4.3.29) of [14]. Derivation of the transport equation, which couples the amplitude

equation for w to the ray equations leading to WNLRT forms a difficult mathemat-

ical problem. Its various formal derivations started in 1975 and ended in 2000 (see
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[14]). An alternative formal derivation following [4] (see also [8]), in which the ray

diffraction term Ψ1w due to nonlinearity is missing and which is valid as long as the

nonlinear rays do not deviate significantly from the linear rays (see [14] for a detailed

discussion), does not satisfy Fermat’s principle. Our WNLRT follows the nonlinear

rays, is valid over a long distance far beyond a caustic region and gives many phys-

ically realistic results ([10] and [2]). There is no doubt of validity of the WNLRT,

however a rigorous mathematical proof of its validity is extremely difficult and is still

an open problem.

4.2.1. Derivation of ray equation of WNLRT in a polytropic gas. We can use the

Fermat’s principle to derive the ray equations WNLRT in a forward facing wave in

polytropic gas at rest and in uniform state: (ρ0 = constant, q = 0 and p0 = constant).

The small amplitude perturbation from (4.12) is given by

(4.18) ρ− ρ0 = (ρ0/a0)w, q = nw, p− p0 = ρ0a0w, |w| ≪ 1.

The equations (4.16) and (4.17) reduce to (see equations (6.1.2), [14])

(4.19)
dx

dt
=

(

a0 +
γ + 1

2
w

)

n,
dn

dt
= −

γ + 1

2
Lw.

These equations can be also be obtained from (3.3) and (3.4) using (4.18).

An important use of extended Fermat’s principle is not only in a simple and

elegant derivation of the nonlinear rays but also in convincing us that these ray equa-

tions, obtained by a different method, are correct and physically realistic. Applications

of these equations are available in [2] and [1].

4.3. Derivation of shock ray equations in a polytropic gas. It is interesting to

use the extended Fermat’s principle to derive the shock ray equations. The eikonal

equation in this case is the shock manifold partial differential equation (SME), dis-

cussed in detail in [13]:

(4.20) Q := ϕt + 〈qr,∇ϕ〉 + S|∇ϕ| = 0,

where qr is the fluid velocity ahead of the shock and S is the shock velocity. S depends

on the state on two sides of the shock and does not depend on its unit normal N .

The equation (4.20) is exactly the same as (3.2) except that q is replaced by qr and

a is replaced by S. The shock ray equations obtained in [13] are

(4.21)
dx

dt
= qr + NS

and

(4.22)
dN

dt
= −LS −NβLqrβ
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where L here is same as that in (3.5) except that n is replaced by N. Since S is well

defined on the shock front, its tangential derivative LS is also well defined. Unless a

shock front is stationary, a flow containing a shock is always unsteady.

Following the derivation of the ray equations (3.3) and (3.4) from (extended)

Fermat’s principle in section 4.2, we can derive the shock ray equations (4.21) and

(4.22) also from Fermat’s principle. The relation discussed between the Huygens’

method and eikonal equation method remains true also for the construction a shock

front.
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