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ABSTRACT. We demonstrate a direct recovery of elasticity distribution from ultrasound-modulated
optical tomography data gathered at a single detector. The reconstructions are seen to be of good
quality and the convergence of the algorithm quick. We have en route devised a means to estimate
the Jacobian needed for this reconstructions which uses both the equations of correlation transport
and momentum balance. The inversion scheme uses the Gauss-Newton algorithm resulting in a fast
decay of the error to convergence in less than 10 iterations in most of the cases.
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1. Introduction

Ultrasound-modulated optical tomography (UMOT) [1], [2] has been introduced

as a remedy for the poor resolution in the optical contrast recovery available from dif-

fuse optical tomography (DOT). In UMOT, a tightly focused ultrasound (US) beam

introduces mechanical vibration in a localized region presently referred to as the re-

gion of interest (ROI) in the object to be imaged, thereby resulting in a modulation

of the refractive index (n(r)) and the mean position of the scattering centers [3].

A coherent light beam interrogating the object picks up a phase modulation from

the insonified ROI, which is reflected as a modulation in the amplitude autocorre-

lation (G(r, τ)) of light. What is usually measured is the intensity autocorrelation

g2(r, τ) = 〈I(r, τ)I(r, t + τ)〉 a quantity that is related to g1(r, τ) = G(r, τ)/G(r, 0)

through the Seigert relation [4] from which optical and mechanical properties of the

material in ROI can be reconstructed. The mechanical property is the Young’s mod-

ulus influencing the amplitude of oscillation of the scattering centers. In an earlier

work, we have demonstrated the recovery of p(r), the distribution of the mean-squared
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amplitude of vibration (i.e. p(r) = 〈|A(r)|2〉, where 〈〉 represents averaging the am-

plitude A(r), over a volume (l∗)3, with l∗ denoting the transport-mean-free path)

from M , the modulation depth in g1(r, τ) measured (or inferred) at the boundary.

Since local absorption coefficient µa(r), together with p(r) and n(r) influence M ,

it should be possible, at least in theory, to recover all the above three parameters

pertaining to the ROI from a set of M measured on the boundary. In [2], we have

demonstrated the recovery of p(r) distribution (space-resolved tomographic recovery)

in the ROI. For this, a perturbation equation was set up from the correlation diffusion

equation (CDE) describing propagation of G(r, τ) in a turbid medium, in order to

relate the US induced perturbations in the ROI (which are in n(r) and the dynamics

of the scattering centers) to M which is related to the perturbation on G(r, τ). This

equation, which provides a nonlinear relationship between p(r) and M (as in [2]),

is solved either directly, using an iterative procedure, or, for ease of computation,

after linearization at p = 0. The solution involves an error minimization strategy

(i.e. find p(r) which minimizes ε(p) = 1
2
|M e −M c|2 where M e is the experimentally

measured modulation length and M c is its computationally obtained counterpart)

and employs an iterative regularized Gauss-Newton algorithm. In [2] recovery of p(r)

within the ROI, typically the region of inhomogeneous Youngs modulus distribution,

had a spatial resolution limited to l∗ owing to the diffusion model used for modeling

the propagation of G(r, τ).

The novelty of this paper is in the form of a single direct recovery of Young’s

modulus from M e without recovering p(r). This requires an additional partial differ-

ential equation (PDE), a momentum balance equation connecting A(r) to the Young’s

modulus distribution and the external sinusoidal forcing applied. The A(r) is tied to

the measurement M through the PDE that G(r, τ) obeys which contains p(r) as a

parameter. The second PDE is viewed as a constraint that A(r) (from which p(r)

is computed) should satisfy. The two PDEs help to compute the measurement M

given a distribution of Young’s modulus (E) and Poissons ratio. In addition, with

their help, we also compute the Jacobian matrix giving the rate of change of M to

E as the composite of the Jacobians of M with respect to p and p with respect to

E, where we also employ a measurement operator connecting A to p. The nonlinear

relation which connects M to E is locally linearized and the perturbation equation

connecting changes in M to changes in E is setup and inverted for update in E. The

local linearization of M(E) is redone at the new E(r) and a new update for E(r) is

obtained.

In this work, another novel modification is introduced to greatly simplify the data

collection experiment. Since the modulation depth is to be obtained with good signal-

to-noise ratio the interface to the photo-detector is through a single-mode fiber which

is painstakingly aligned to a single speckle. To have sufficient data in a tomography
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experiment a multitude of detectors are used for each source location which would

make the alignment (and its maintenance) very cumbersome. In diffuse optical to-

mography (DOT)which aims to recover functional parameters such as oxygen partial

pressure and concentration of hemoglobin and lipids from recovered spectroscopic

variation of absorption coefficient (µa) data collection is simplified by substituting

many detectors with only a few whilst making up for the loss of data by scanning

over wavelengths (λ) of importance [5], [6]. Sure enough as λ varies the number of

unknowns to be recovered (µa) also increases making the inversion more ill-posed.

One way to address this difficulty could be by projecting the increasing set of µa to a

new set of unknowns which are the concentration of functional parameters that are λ-

invariant. Specifically, in the present work, a simplification is effected by replacing the

data over many locations by those corresponding to variation over acoustic frequency.

Similar to the DOT there is an increase in the dimension of the primary unknown

which is the discretized set obtained from p(r); but here we escape this growth and

the consequent instability in the reconstruction through projecting p(r) to E(r) (the

latter being invariant to acoustic frequency) through a momentum balance equation

as applied to the vibrating ROI. The experimental simplification achieved, as seen in

Section 4 below, is that we can get enough orthogonal data with barely one (or at

most two) detectors.

The rest of the paper is organized as follows. In Section 2, the forward models,

connecting the measurement, first to the amplitude of vibration, and then to Young’s

modulus, are introduced. In Section 3, the inverse problem of recovering E(r) from the

measurement is posed as one of error minimization and solved through a regularized

Gauss-Newton algorithm. Here the computation of the Jacobian matrix making use of

the forward PDEs is also described. Numerical simulations demonstrating the efficacy

of the procedure are given in Section 4. The concluding remarks are in Section 5.

2. Forward models for correlation propagation and momentum balance

2.1. A model used for correlation diffusion in a turbid medium. It has been

shown [3] that the specific intensity I(r, k̂s, τ) at a point r and time τ in the direc-

tion given by the unit vector k̂s obeys a correlation transport equation (CTE). In a

medium where scattering predominates, an angle-averaged version of I(r, k̂s, τ), given

by G(r, τ) =

∫
4π

I(r, k̂s, τ)dk̂s and referred to as the amplitude autocorrelation, obeys

the following diffusion equation:

(2.1) −∇ · κ∇G(r, τ) + (µa + 2µsk
2
0DBτ)G(r, τ) = S0(r0)

Here κ = 1
3(µa+µ′s)

is the optical diffusion coefficient, where µa and µ′s are the optical

absorption and (reduced) scattering coefficients respectively. Moreover DB is the

particle diffusion coefficient of the medium, k0 is the modulus of the light propagation
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vector and S0 is the strength of the isotropic point source at r0. The term 2µsk
2
0DBτ

is owing to the Brownian motion of the scattering centers induced by the background

temperature. When a focused US beam insonifies the object, it produces a refractive

index modulation (∆n) and oscillations in the scattering centers in the focal region,

the ROI, which is approximately hyperboloidal in shape whose volume and length-

to-width ratio can be tailored by the parameters such as the focal length and f/ No.

of the focusing US transducers [7]. At this stage, we neglect the modulation ∆n and

consider the oscillations introducing a perturbation term in Eq. (2.1) which, in turn,

perturbs G(r, τ) to G(r, τ) +Gδ(r, τ). The equation (2.1) thus becomes:

(2.2) −∇·κ∇(G+Gδ)(r, τ) + (µa +B(r, τ) +A(τ)χIp(r, τ))(G+Gδ)(r, τ) = S0(r0)

Here the perturbation term on the left-hand side is denoted by A(τ)χIp(r, τ)

where A(τ) = c sin2 ωaτ
2

and χI is the characteristic function over I, the insonified

ROI. Further, ωa is the acoustic frequency in radians and c is a constant depending

on l∗, ka, the acoustic wave vector and the elasto-optic coefficient of the material of

the object [3]. Equation (2.2) is supplemented with the boundary condition:

(2.3) (G+Gδ)(r, τ) + κ
∂(G+Gδ)(r, τ)

∂n
= 0, r ∈ ∂Ω

The equation (2.1) is also given the Robin-type boundary conditions. Given all

the material properties, and the US-induced oscillations, Eqs. (2.2) and (2.3) can be

solved to get (G+Gδ)(r, τ) which is the forward solution of UMOT. This facilitates

computing a quantity M , which is the measurement in UMOT given by:

(2.4) M(p, r, ω) =

∣∣∣∣∫ α

0

(G+Gδ)(r, τ) exp−jωτ dτ

∣∣∣∣
ω=ωa

Here, ωa is also the frequency of the US forcing. Yet another related measurement

is obtained from Gδ(r, τ) that is readily computable from the perturbation equations

(2.6) and (2.7) (to be given below):

(2.5) M1(p, r, ωa)|r∈∂Ω =

∣∣∣∣∫ α

0

Gδ(r, τ) exp−jωτ dτ

∣∣∣∣
ω=ωa

.

In an experiment, intensity autocorrelation is measured, from which M(p, r, ω)

is easily computed; however, M1 is easily obtained from M by subtracting the back-

ground pedestal from M at ω = ωa. With this measurement, (a part of) the inverse

problem of UMOT is the recovery of p(r) given M1(p, r, ωa) and the forward model of

Eqs. (2.2) and (2.3). In order to facilitate this inversion, we first rewrite the forward

equation as a perturbation equation given by

(2.6)

−∇ · κ∇Gδ(r, τ) + (µa +B(r, τ) + A(τ)χIp(r, τ))Gδ(r, τ) = −A(τ)χIp(r, τ)G(r, τ)
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with the boundary condition

(2.7) Gδ(r, τ) + κ
∂Gδ(r, τ)

∂n
= 0, r ∈ ∂Ω

The above equation connects p(r, τ) nonlinearly to Gδ(r, τ) because of the presence

of a term containing p(r, τ) on the left-hand side (LHS) of it. If we neglect the term

containing the product of Gδ and p from the LHS of Eq. (2.6), then it becomes linear

in the unknown p and hence renders computationally more expedient the inversion of

p using equations (2.6) and (2.7). When we use the linearized perturbation equation

given by

(2.8) ∇ · κ∇Gδ(r, τ)− (µa +B(r, τ))Gδ(r, τ) = A(τ)χIp(r, τ)G(r, τ),

the following simplifications in the computations accrue [2]. For example, the deriva-

tives need not be re-estimated during the course of the algorithm, but only (F (pi)−
M e). Also the structure of the partial differential equation (PDE) part of the Frchet

derivative operator retains the structure of the forward propagation PDE (Eq. (2.1))

and therefore, en route to recovery of p(r), (when one desires only a recovery of

p(r)) for the calculation of the Jacobian one need only solve the adjoint of Eq. (2.1).

The FEM discretization of PDE (2.8) leads to a set of linear algebraic equations

represented by:

(2.9) K(p)Gδ = q

where K(p) is the system matrix and q is the source vector. As indicated earlier,

we have used this equation derived from the linearized version of the perturbation

equation (Eq. (2.8)) in our inversion scheme. In accordance with the simplified data

collection strategy, we sweep the US frequency resulting in a set of p(r)’s for a given

E(r). To compute the data M1 we use these p(r)’s in Eqs. (2.8) and (2.5).

2.2. The momentum balance equation. Here the object under consideration is

only a part of the one considered in Section 2.1, the portion insonified by the focusing

ultrasound (US) transducer where the displacement is nonzero, designated earlier

the (ROI), Ωf . In contrast, the focal region is defined to be the support of the

US transducer-induced radiation force. To find Ωf , we first compute the US force

[8] corresponding to an approximated focal region (e.g. by incorporating the nodes

where the force exceeds a small fraction of its maximum in a central node) and then

solve for displacement via the momentum balance equation for the entire object,

now considered an infinite medium vis-a-vis the focal region. The internal Dirichlet

boundary ∂Ωf thus separates the zero-displacement region of the object from the rest.

Towards computing the displacement field via an inversion of the momentum bal-

ance equation, a plane stress approach based on a 2D linear elasticity setup is adopted,
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with the ROI material being assumed to be nearly incompressible. Under strictly si-

nusoidal US forcing and the linear elasticity framework, the vibrating ROI would

exhibit sinusoidal response with the frequency of the excitation once the transients

die out. Accordingly, the so called mixed form of the governing equations (in terms

of the amplitude u0(r) of the displacement vector field u(r, t) := (u(r, t), q(r, t))T and

the pressure field q(r) takes the form [9]:

(2.10a) ρω2u0 +∇ ·
(
−qI +

E

2(1 + ν)
(∇u0 + (∇u0)T )

)
= f0; r ∈ Ωf

(2.10b) ∇ · u0 = −q(1 + ν)(1− 2ν)

Eν
; r ∈ Ωf

with only the Dirichlet boundary condition:

(2.10c) u0 = 0 for r ∈ ∂Ωf

Here E denotes Young’s modulus, ν Poissons ratio, ρ material density, f0(r) the forc-

ing amplitude vector and q the pressure, all referred to the undeformed configuration.

Finally, ω denotes the US forcing frequency. In the context of the FEM, Eq. (2.10)

may be successfully solved via a mixed weak formulation even as the material ap-

proaches the incompressibility limit (i.e. as ν → 0.5). The problem involved in the

weak formulation is to find u = (u0, q) ∈ H1 (Ωf )× L2 (Ωf ) /R so as to satisfy:

(2.11a) B(w , u) = (w, f0), ∀ w = (w, ϕ) ∈ H1
0 (Ωf )× L2 (Ωf )

Here (w, f0) =

∫
Ωf

w · f0dΩf is the linear form and B(w , u) the bilinear form defined

as:

B(w , u) =

∫
Ωf

(
ρω2w · u0 −

[
∇w +∇wT

]
:

[
E

4(1 + ν)

(
∇u0 + (∇u0)T

)])
dΩf

+

∫
Ωf

(
(∇ ·w)q + ϕ∇ · u0 +

ϕq

βE

)
dΩf ,

where β is a large scalar multiplier ensuring that the bulk modulus is much higher

than E.

Indeed the pressure q can be eliminated using the second equation in (2.10) and

one can get a weak formulation for u0 alone. In the FE implementation, the equation

(2.11) may finally be reduced to the matrix-vector equation given by:

(2.12) Khuh = sh

where h denotes the characteristic element size, Kh the so-called stiffness matrix, uh

the unknown vector (in general consisting of both the nodal displacement amplitudes

and pressure) and sh the source vector Equation (2.12) is inverted for uh and p(r) =

〈|uh(r)|2〉.
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3. Direct recovery of E from modulation depth

We introduce the operator F1(µa, p, κ) = Gδ through Eq. (2.8) and the mea-

surement operator M1(Gδ) = M1 through Eq. (2.5). Then the composite operator

FA = M1 � F1 maps p to M1. Similarly, we introduce F2(E, ρ, ν) = u using

Eq. (2.10), the measurement operator M2(u) = p through p(r) = 〈|u(r)|2〉 and the

composite operator FB = M2 � F2 which maps E to p(r). With these, we define

the operator, F = FA�FB which maps E to M1, the measurement from the UMOT

experiment. Our attempt is to recover E from M1 through the (direct) inversion of

F .

3.1. Parameter estimation through nonlinear optimization. We invert the

equation F(E) = M1 for E1 by solving the following nonlinear minimization problem:

(3.1) Minimize
E∈L∞(Ωf )

Θ(E) =
1

2
‖F(E)−M1‖2

L2(∂Ωf ) +
λ

2
‖E‖2

L2(Ωf )

Here λ is an appropriate regularization parameter. We employ the Gauss-Newton

algorithm to arrive at this minimization through the iteration

(3.2) Ei+1 = Ei −H(Ei)−1G(Ei)

where H and G are the Hessian and Gradient of error functional Θ evaluated at

E = Ei using

(3.3) H(E)(δE) = (DF∗(E)DF(E) + λI)(δE) and G(E) = DF∗(F(E)−M1),

where I denotes the identity matrix, (δE) is an increment in E and DF and DF∗ are

the Frechet derivative and its adjoint of F . The Frechet derivative, or more appropri-

ately its finite dimensional equivalent, the Jcobian, is a matrix whose elements are the

rate of change of measurement(s) with respect to nodal values of E. This is obtained

by combining the derivatives of M1 with respect to p (which is the discretized version

of p(r)) and those of E with respect to p.

For the correlation propagation equation we have derivatives of the type ∂M1i

∂pj
, the

computation of which should involve two forward solves of the correlation diffusion

equation (CDE). A complete row of the Jacobian matrix can be computed with only

one forward solve of the CDE and its adjoint, making use of the reciprocity relation

which light diffusion obeys [2]. Similarly, for ∂pi

∂Ej
the momentum-balance equation

(Eq. (2.10)) and its adjoint as given in [9], can be made use of. However, since

the number of unknowns in Ωf and the number of measurements (p) are equal the

computational advantage of using the adjoint formulation is little; therefore for this

part we use the perturbation scheme which involves two forward solves for each nodal

unknown.
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In order to compute a typical element of the Jacobian matrix J =
{
∂M1i

∂Ej

}
one

should consider the fact that a change in E at a typical node, δEj, necessarily results

in changes of p at all nodes. Therefore, ∂M1i

∂Ej
=
∑N

k=1
∂M1i

∂pk

∂pk

∂Ej
; the evaluation of this

requires all the N derivatives of the type ∂pk

∂Ej
. The set of all derivatives is evaluated

using the appropriate forward equation (Eqs. (2.6), (2.7) and (2.11)).

Once the derivatives are computed, Eq. (3.2) is set-up and the increment in E,

(δE)i is obtained from it. A direct inversion of H(Ei) is not attempted; instead

a second optimization step using a conjugate gradient search to reach the optimal

point is employed. The algorithm is stopped when the norm of the error between

experimental measurement and its computed counterpart becomes below a preset

small value.

4. Numerical simulations

We consider two objects, both 2-D, one a rectangular cross-section of a slab and

the other a circular cross-section of a cylinder. (We note that a plane stress approx-

imation is not necessarily valid for any cross-section of the insonified volume which

receives the US forcing. However, to demonstrate recovery of the location and ap-

proximate validation of quantitative variation of E in a computationally expedient

manner, we chose a 2-D problem.) The object is assumed to have acoustic and optical

properties to match those of (poly) vinyl alcohol (PVA) gel which have gone through

two cycles of freezing and thawing [10]. The dimensions of the objects are 6cmx4cm

(for the rectangular one) and 6cm diameter (for the circular one). The optical proper-

ties are: µa (absorption coefficient) = 0.1 cm−1 and µ′s(reduced scattering coefficient)

= 8.0 cm−1. The mechanical properties are: E (Background Young’s modulus) =

11300 Pa, ρ (density)=1 cgs unit and ν (Poisson’s ratio)=0.49.

We locate the origin of co-ordinates at the centre of the object domain. With this,

for parallel illumination from a laser, the equivalent isotropic source is at one l∗ inside

the boundary point where the parallel beam strikes the object, which is assumed at

(-2.875,0.0). (Note: Unit of length is cm everywhere.) A confocal US transducer

with two regions oscillating at f and f + δf Hz focuses its beams to a region in Ω

(the ROI) assumed hyperboloidal with centre at (2.0,0.0). The waves mix in the ROI

and produce a difference frequency forcing at (δf) Hz. It is this frequency difference

we vary in the simulations to gather a number of modulation depth measurements.

In our simulations f is chosen to be 1 MHz. The hyperboloidal shape is verified

by solving the Westervelt equation [8] for acoustic pressure propagation through the

object and computing the distribution of force in the focal region, which is shown in

Fig. 1. The size of the ROI is found to be of length 1.42 cm and width of the waist
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Figure 1. Computed distribution of force in the focal region of the

US transducer

region 0.2 cm. The interrogating light beam is either sent along the US transducer

axis or perpendicular to it.

When the momentum-balance equation is solved with the beat frequency of the

two-region US transducer incremented from low (from around 300 Hz in our case) to

high frequency (to nearly 600 Hz in our case) we observe that the amplitude of vibra-

tion goes through many resonant peaks. The δf scan in our numerical simulations

is so chosen to cover the sharply varying regions around the three resonant peaks in

the frequency response.

In the ROI, inhomogeneities are introduced in Young’s modulus. In the first case,

the central region has a higher E of 22.39 KPa and the peripheral upper and lower

regions have an E the same as that of the background which is 11.3 KPa (see Figs. 2(a)

and 6(a)). In the second case, the inhomogenous regions are at top and bottom of

the ROI with E = 22.39 KPa and the central region has E at the background level

of 11.3 KPa (see Figs. 6 and 14).

The rectangular object is discretized with a Finite Element (FE) mesh with 13168

triangular elements and 6740 nodes. For the circular object these values are 14976

and 7633 respectively. As indicated earlier, we have used just a single light source

and detector and the modulation depth in the amplitude autocorrelation (M1) is

computed by solving Eqs. (2.8) and (2.5). The p(r) used in Eq. (2.8) is obtained

by solving Eq. (2.10); a set of 50 measurements {M1} is generated by employing

p(r)’s generated by varying the US frequency used in Eq. (2.10). The ‘experimental’

measurement is obtained from M1 by adding an 1% noise.

The sets of measurements generated with the two objects are input a Gauss-

Newton algorithm [2] to recover E. The increments for δE are obtained by inverting

the linearized perturbation equation (Eq. (3.2)) which is the heart of the Gauss-

Newton procedure. The δE updates the elasticity vector and the perturbation equa-

tion itself is updated with the help of the two forward equations, Eqs. (2.8) and (2.10).
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The value of the regularization parameter used in the algorithm (λ) at the start is

3.2116× 10−54, which is reduced by a factor of 1.5 at each iteration.

4.1. Results and discussions. The data (M1) gathered from the rectangular ob-

jects shown in Figs. 2(A) and 2(B), are input to the Gauss-Newton algorithm and

the gray-scale images of the reconstruction of the isonified ROI are in Figs. 3(A) and

3(B). The cross-sectional plots through the original object and the reconstruction

are shown in Fig. 4(A) (for case (i) with central δE inhogeneity) and Fig. 4(B) (for

case(ii) with δE inhomogeneity at the peripheries). The decay of the error measured

in the data domain is shown in Figs. 5(B) and 5(B) for the two cases.

The circular disc objects with inhomogeneous inclusions are shown in Figs. 6(A)

and 6(B) and their reconstructions are in Figs. 7(A) and 7(B). The cross-sectional

plots through the centre of the inclusion are in Figs. 8(A) and 8(B) (for the two cases)

and data-domain error .vsiteration number in Figs. 9(A) and 9(B).

It is seen form the reconstructions and the error plots that the new procedure is

able to recover the Young’s modulus distribution from correlation modulation mea-

surements from a single detector. The absence of data from many detectors is com-

pensated by that at many US frequencies. Excepting for the case of circular object

with inhomogeneity at the periphery of the ROI for all the others the algorithm con-

verged in 5–6 iterations and for the case mentioned it took 18–19 iterations. We have

thus shown that the data gathered here with US frequency are linearly independent

and can be used for tomographic inversion of a parameter like E which is invariant to

change in US frequency. The goal of the present work is also to introduce a scheme

which is experimentally viable. (Correlation modulation measurement with a large

number of detectors is quite cumbersome for experimental implementation). The ex-

periment set-up is currently under development and the results from this will be the

subject of another publication.
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(a) (b)

Figure 2. The grey-scale image of the rectangular object with inho-

mogeniety in E at the US focal region. (A) the central area has larger

E value and (B) peripheral area has larger E value. The unit of E is

in KPa.

(a) (b)

Figure 3. Reconstructed images corresponding to the originals in Fig-

ures 2(A) and 2(B), respectively. The unit of E is in KPa.

5. Conclusions

We have devised a new scheme to recover Young’s modulus from UMOT data

which gathers data using only a single detector, but at many US frequencies. When

the US frequency varies the oscillation amplitude introduced by the US force also

varies. Therefore, an algorithm which aims to recover p(r) which is related to this

amplitude will not succeed here because of ill-conditioning of the inversion scheme

arising out of the large dimension of the unknown vector. However, when we project

p(r) to E which does not vary with frequency, the problem with the present data set

becomes well-posed. We have used numerically simulated data and shown the recon-

struction results showing space-resolved elasticity map within the US focal region.

We note that light diffusion puts a resolution limit to the recovery depending on l∗.

Within this limitation we have shown that a tomographic recovery of the distribution

of elasticity is possible from data gathered at a single detector.
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Figure 4. Cross-sectional plots through the center of the recon-

structed inhomogenity (shown in Figure 3) compared with that for the

original.
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Figure 5. Data domain mean-square error .vs. iteration number cor-

responding to the reconstruction shown in Figures 3(A) and 3(B)
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(a) (b)

Figure 6. The grey-scale image of the circular object with inhomo-

geneity in E at the US focal region. (A) the central area has larger E

value and (B) peripheral area has larger E value. The unit of E is in

KPa.

(a) (b)

Figure 7. Reconstructed images corresponding to the originals in Fig-

ures 6(A) and 6(B), respectively. The unit of E is in KPa.
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Figure 8. Cross-sectional plots through the center of the recon-

structed inhomogeneity (shown in Figure 7) compared with that for

the original.
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Figure 9. Data domain mean-square error .vs. iteration number cor-

responding to the reconstruction shown in Figures 7(A) and 7(B).
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