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ABSTRACT. We consider a singularly perturbed semilinear reaction-diffusion problem. Its diffu-

sion parameter ε is arbitrarily small, which induces boundary layers. To approximate the solution of

this problem we propose a hybrid difference scheme on a generalized Shishkin mesh. We prove that

the numerical approximations obtained from this method are almost fourth order uniformly conver-

gent (in the maximum norm) with respect to the perturbation parameter. Numerical experiments

are given that illustrate the theoretical order of convergence established for the numerical method.
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1. Introduction

Consider the following singularly perturbed semilinear reaction-diffusion problem

(1a) Tu := −εu′′ + f(x, u) = 0, x ∈ Ω = (0, 1),

(1b) u(0) = 0, u(1) = 0,

where ε is a small parameter, such that 0 < ε ≪ 1, and f is a sufficiently smooth

function satisfying

(1.2) fu(x, y) ≥ α for all (x, y) ∈ Ω × R, α > 0.

Under this assumption, problem (1) and the reduced problem f(x, u0(x)) = 0, for all

x ∈ Ω, defined by setting ε = 0 in (1a) have unique solutions u and u0 respectively.

The solution u generally has exponential boundary layers at x = 0 and x = 1 of width

O(
√

ε ln(1/
√

ε)). More precisely, u can be decomposed into two parts: u = v + w,

where

(1.3) |v(s)(x)| ≤ C and |w(s)(x)| ≤ Cε−s/2(e(−x
√

α/ε) + e(−(1−x)
√

α/ε))
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for x ∈ Ω and s = 0, . . . , 6 [14]. The use of classical numerical methods on uniform

meshes for solving such problems give rise to difficulties when perturbation param-

eter becomes sufficiently small. Then the mesh needs to be refined substantially to

grasp the solution within the boundary layers. Properly layer-adapted meshes have

been proven to overcome these difficulties and to yield methods that converge uni-

formly with respect to the perturbation parameter ε ([11, 3, 5, 6]). Among these

meshes, Shishkin type meshes gained more popularity because of their simplicity and

applicability to problems in higher dimensions.

Problem (1) were solved asymptotically in [2, 7] and numerically in [14, 9, 10,

4, 11, 17, 15, 12], and the references therein. Vulanović [14] considered the central

difference scheme and achieved second order uniform convergence result on a special

graded mesh of Bakhvalov type. Rao et al. [10] developed a cubic B-spline collocation

method on a piecewise uniform Shishkin mesh and proved that the method is almost

second order uniformly convergent. Rao and Kumar [9] derived an exponential spline

difference scheme on the basis of spline in tension on a piecewise-uniform Shishkin

mesh and proved an almost second order uniform convergence of the scheme. Higher

order uniformly convergent schemes are always attractive, because they provide very

accurate numerical approximations with a low computational cost. Herceg [4] consid-

ered a non-equidistant generalization of the fourth order three point finite-difference

scheme, known as the Hermite or Numerov scheme, on a graded mesh of Bakhvalov

type and achieved fourth order uniform convergence result (in the discrete maximum

norm) under extra somewhat restrictive assumptions on the nonlinear term f(x, u).

It was these unpleasant assumptions on f(x, u) that motivated the work in Vulanović

and Herceg [17], Vulanović [15], and Sun and Stynes [12], which resulted in eliminat-

ing these assumptions on f(x, u), usually at a certain price. Vulanović and Herceg [17]

used the method which was essentially the same as in Herceg [4], but the numerical

error was estimated differently, viz. using an L1 discrete norm instead of the usual

maximum norm. Vulanović [15] considered a more complicated Bakhvalov mesh.

Sun and Stynes [12] considered the Hermite scheme on a piecewise-uniform Shishkin

mesh and proved that the scheme is almost fourth order uniformly convergent (in the

discrete maximum norm) when ε ≤ N−1.

In this article we propose a hybrid difference scheme, combining the Hermite

scheme and the central difference scheme in a special way, on a generalized Shishkin

mesh. The proposed numerical method preserves inverse monotonicity of the con-

tinuous problem. We prove that the numerical approximations obtained from this

method are almost fourth order uniformly convergent (in the maximum norm). Nu-

merical results are given to illustrate the efficiency of the proposed method.

Notation: Throughout the article we use C to denote a generic positive constant

independent of ε and the discretization parameter. Let Ω
N

denote any mesh with
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points 0 = x0 < x1 < · · · < xN = 1. For any function g ∈ C(Ω), define gj =

g(xj). We consider the maximum norm and denote it by ‖.‖D, where D is a closed

and bounded subset of Ω. For a real valued function v ∈ C(D), define ‖v‖D =

maxx∈D |v(x)|. Let zN is a mesh function. Mesh functions will be identified with

R
N+1 column vectors zN = (zN

0 , . . . , zN
N )T . We use the maximum vector norm, ‖zN‖ =

max0≤i≤N |zN
i |, and denote the corresponding subordinate matrix norm in the same

way.

2. Discretization

2.1. The Mesh. We first construct a generalized Shishkin mesh using a suitable

mesh generating function ξ as described in [16]. Let Ω
N

= {xj}N
j=0 be the partitioning

of Ω with mesh spacing hj = xj − xj−1, j = 1, . . . , N . For simplicity, we assume that

N ≥ 4 is an even integer and that xN−j = 1−xj , j = 0, 1, . . . , N . It therefore suffices

to describe the mesh on the interval [0, 1/2]. Let L = L(N) satisfying ln(ln N) ≤ L ≤
ln N and

(2.1) e−L ≤ L

N
.

Define

σ = min

{
1

4
, σ0

√
εL

}
,

where σ0 is a positive constant which we define later. The standard Shishkin mesh

uses L = ln N, and is constructed by forming a fine equidistant mesh with N/4

mesh steps on the interval [0, σ], and a coarse equidistant mesh with N/4 steps on

[σ, 1/2]. Next we define a generalized Shishkin mesh S(L) that changes smoothly in

the transition point xN/4 = σ from the fine part to the coarse part. Let S(L) be

the mesh defined by xj = ξ(j/N), j = 0, 1, . . . , N/2, where ξ ∈ C2[0, 1/2] is a mesh

generating function

(2.2) ξ(t) =





4σt for t ∈ [0, 1/4];

p(t − 1/4)3 + 4σ(t − 1/4) + σ for t ∈ [1/4, 1/2].

The coefficient p is determined from ξ(1/2) = 1/2. Let h∗ = maxj hj . For the

generalized Shishkin mesh S(L), the maximum mesh width h∗ always correspond to

the N/2 mesh width and N/2 + 1 mesh width, that is, h∗ = hN/2 = hN/2+1 ≤ CN−1.

2.2. The Scheme. On S(L) we introduce a hybrid finite difference scheme in the

form

r−j uN
j−1 + rc

ju
N
j + r+

j uN
j+1 + q−j f(xj−1, u

N
j−1) + qc

jf(xj , u
N
j )

+ q+
j f(xj+1, u

N
j+1) = 0, j = 1, . . . , N − 1, uN

0 = 0, uN
N = 0.(2.3)
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The coefficients r⋆
j , j = 1, . . . , N − 1, ⋆ = −, c, +, are given by

(2.4) r−j =
−2ε

hj(hj + hj+1)
, rc

j =
2ε

hjhj+1
, r+

j =
−2ε

hj+1(hj + hj+1)

The values of the coefficients q⋆
j , j = 1, . . . , N −1, ⋆ = −, c, +, depend on the location

of the mesh points, and also on the relation between step sizes of the mesh and

the perturbation parameter. For the mesh points located in (0, σ) ∪ (1 − σ, 1), the

coefficients q⋆
j , ⋆ = −, c, +, are given by

(2.5)

q−j =
h2

j − h2
j+1 + hjhj+1

6hj(hj + hj+1)
, qc

j =
h2

j + h2
j+1 + 3hjhj+1

6hjhj+1
, q+

j =
h2

j+1 − h2
j + hjhj+1

6hj+1(hj + hj+1)
.

For the mesh points located in [σ, 1−σ], depending on the relation between h∗ and ε,

the coefficients q⋆
j , ⋆ = −, c, +, are defined in two different cases. Let fu(x, y) ≤ β, for

all (x, y) ∈ Ω × R. If τh2
∗ β ≤ ε, the coefficients q⋆

j , j = N/4, . . . , 3N/4, ⋆ = −, c, +,

are defined again by (2.5). While for the case, when τh2
∗ β > ε, the coefficients q⋆

j ,

j = N/4, . . . , 3N/4, ⋆ = −, c, +, are given by

(2.6) q−j = 0, qc
j = 1, q+

j = 0.

The above definition of coefficients qj ’s and rj ’s show that the fourth order Hermite

scheme [4] is considered within the boundary layer region (0, σ) ∪ (1 − σ, 1). While

in the regular region [σ, 1 − σ], the fourth order Hermite scheme is considered when

τh2
∗ β ≤ ε and the central difference scheme is considered when τh2

∗ β > ε.

The Scheme (2.3) can be written in the form

(2.7) TuN = 0,

where T = A + B, A is a (N + 1) × (N + 1) tridiagonal matrix defined by

A =




1 0 0

r−1 rc
1 r+

1

. . .

. . .

. . .

r−N−1 rc
N−1 r+

N−1

0 0 1




,

and B : R
N+1 → R

N+1 is the mapping

(BzN )j =





0, for j = 0;

q−j f(xj−1, z
N
j−1) + qc

jf(xj , z
N
j ) + q+

j f(xj+1, z
N
j+1), for j = 1, . . . , N − 1;

0, for j = N.
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2.3. Existence and Uniqueness. The Frechet-derivative T ′ of T at any arbitrary

vector zN is a (N + 1) × (N + 1) tridiagonal matrix and is given by

T ′(zN ) =




1 0 0

η−
1 ηc

1 η+
1

. . .

. . .

. . .

η−
N−1 ηc

N−1 η+
N−1

0 0 1




,

where for j = 1, 2, . . . , N − 1,

(2.8) η−
j = r−j + q−j fu(xj−1, z

N
j−1),

(2.9) ηc
j = rc

j + qc
jfu(xj , z

N
j ),

(2.10) η+
j = r+

j + q+
j fu(xj+1, z

N
j+1).

For what follows, we assume that N ≥ N0, where N0 is sufficiently large such

that

4σ2
0β/3 < N2

0 / ln2 N0.

Let τ = 1/6. The choice of the coefficients rj ’s and qj ’s together with the definition

mesh step sizes prove that T ′ is an M-matrix with

ηc
j − |η−

j | − |η+
j | ≥ α > 0 for j = 1, . . . , N − 1.

By Theorem A of [13], we get

(2.11) ‖T ′(zN )−1‖ ≤ 1

min{1, α} .

Then (2.7) has a solution by Hadamard’s theorem ([8]). An immediate consequence

of (2.11) is the following uniform stability result.

Lemma 2.1. Let yN and zN be any two mesh functions such that yN
0 = zN

0 and

yN
N = zN

N . Then

‖yN − zN‖ ≤ 1

min{1, α}‖TyN − TzN‖.

The above lemma implies that the solution of (2.7) is unique.
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3. Error Analysis

We first estimate the truncation error of T on S(L). For what follows, let us

assume that σ = σ0

√
εL, as otherwise N−1 is exponentially small compared with

√
ε.

We have

(Tu)j = Λu(xj), j = 1, . . . , N − 1,

where

Λu(xj) = r−j u(xj−1) + rc
ju(xj) + r+

j u(xj+1) + ε(q−j u′′(xj−1) + qc
ju

′′(xj) + q+
j u′′(xj+1)).

Consider xj ∈ (0, σ) ∪ (1 − σ, 1). Note that hj = hj+1 ≤ C
√

εN−1L. By Taylor

expansions we have

|Λu(xj) | ≤ Cεh4
j‖u(6)‖[xj−1,xj+1].

Using ‖u(6)‖Ω ≤ Cε−3, we get

|Λu(xj)| ≤ C(L/N)4 for xj ∈ (0, σ) ∪ (1 − σ, 1).

Next consider xj ∈ [σ, 1 − σ]. We now consider two distinct cases: τh2
∗ β ≤ ε and

τh2
∗ β > ε. In the first case the Hermite scheme is used. For any y ∈ C6(Ω), Taylor

expansions give

(3.1) |Λy(xj)| ≤ Cε(Pj + Rj),

where

Pj = |hj+1 − hj |(hj+1 + hj)
2|y(5)(xj)|, Rj = (h4

j + h4
j+1)‖y(6)‖[xj−1,xj+1].

For generalized Shishkin mesh S(L), the mesh width hj , for j = N/4, . . . , 3N/4,

satisfies the following

(i) For some ϑj ∈ (j/N, j + 1/N),

(3.2) hj+1 = ξ((j + 1)/N) − ξ(j/N) ≤ N−1 max
(j/N,(j+1)/N)

ξ ′(ϑj) ≤ CN−1.

(ii) For some ϕj ∈ ((j − 1)/N, (j + 1)/N),

|hj+1 − hj | = |ξ((j + 1)/N) − 2ξ(j/N) + ξ((j − 1)/N)|
≤ N−2 max

((j−1)/N,(j+1)/N)
ξ′′(ϕj) ≤ CN−2.(3.3)

These properties are important in estimating the term Pj. Using the decomposition

u = v + w, we get

(3.4) |Λu(xj)| ≤ |Λv(xj)| + |Λw(xj)|.

The first term is bounded using (3.1)–(3.3), and (1.3). We get |Λv(xj)| ≤ CN−4. To

bound the second term we use (3.1)–(3.3), (1.3) and τh2
∗ β ≤ ε to get

|Λw(xj)| ≤ C‖e−x
√

α/ε + e−(1−x)
√

α/ε‖[xj−1,xj+1].
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For xj ∈ [σ, 1 − σ],

‖e−x
√

α/ε + e−(1−x)
√

α/ε‖[xj−1,xj+1] ≤ e(−xN/4−1

√
α/ε) + e(−(1−x3N/4+1)

√
α/ε)

= 2e(−xN/4−1

√
α/ε) = 2e(−σ

√
α/ε)e(hN/4

√
α/ε) ≤ Ce−σ0

√
αL.

Using that it holds e−L ≤ L/N and taking σ0 such that σ0

√
α ≥ 4, it follows that

‖e−x
√

α/ε + e−(1−x)
√

α/ε‖[xj−1,xj+1] ≤ C(L/N)4.

Hence

|Λu(xj)| ≤ C(L/N)4 for xj ∈ [σ, 1 − σ], τh2
∗ β ≤ ε.

Now consider the case τh2
∗ β > ε. Using the decomposition u = v + w, we get

(3.5) |Λu(xj)| ≤ |Λv(xj)| + |Λw(xj)|.

For the first term, Taylor expansions give

(3.6) |Λv(xj)| ≤ Cε(Pj + Rj),

where

Pj = |hj+1 − hj | |v(3)(xj)|, Rj = h2
j+1‖v(4)‖[xj−1,xj+1].

Using (3.2), (3.3) and (1.3) we get |Λv(xj)| ≤ CεN− 2 ≤ CN− 4. For the second term,

by Taylor expansions and (1.3) we obtain

|Λw(xj)| ≤ Cε‖w′′‖[xj−1,xj+1] ≤ C(L/N)4.

Hence

|Λu(xj)| ≤ C(L/N)4 for xj ∈ [σ, 1 − σ], τh2
∗ β > ε.

Thus we have

(3.7) ‖Tu‖ ≤ C(L/N)4.

Then using Lemma 2.1, we get the following main result of this paper.

Theorem 3.1. Let u be the solution of the problem (1) and uN that of the hybrid

difference scheme (2.7) on S(L). Then

‖u − uN‖ ≤ C(L/N)4.

We now extend the nodal parameter-uniform error estimate obtained in Theo-

rem 3.1 to the global parameter-uniform error estimate. For the purpose we define a

cubic C0-spline PuN that approximates u on the whole domain, by clustering three

adjacent and equidistant mesh intervals and fitting a cubic function through the nu-

merical approximation on the four associated mesh points.

To define a cubic C0-spline PuN , we modify the mesh slightly. First we construct

a generalized Shishkin mesh with N/3 mesh intervals as described in Section 2.1.

Then we subdivide each mesh interval into three subintervals of equal length. This
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gives us a modified generalized Shishkin mesh S̃(L). This modification is necessary

because the stability constant of the operator P depends on the local mesh size ratio.

With this modification the stability constant of the operator P is independent of ε

and N . Note that the nodal parameter-uniform error estimate of Theorem 3.1 is true

on S̃(L) also.

Theorem 3.2. Let u be the solution of problem (1) and uN that of the hybrid differ-

ence scheme (2.7) on S̃(L). Then

‖u − PuN‖Ω ≤ C(L/N)4.

Proof. By a triangle inequality we get

(3.8) ‖u − PuN‖Ω ≤ ‖u −Pu‖Ω + ‖P(u − uN)‖Ω.

For the second term we use the uniform stability of the operator P to get

(3.9) ‖P(u − uN)‖Ω ≤ C‖u − uN‖ ≤ C(L/N)4.

Suppose I denote the cluster of three adjacent and equidistant mesh intervals of length

hI . We have the following standard interpolation error estimates

(3.10) ‖g − Pg‖I ≤ Ch4
I‖g(4)‖I and ‖g −Pg‖I ≤ C‖g‖I for any g ∈ C4(I).

First consider the case when I lies in the layer regions. Using hI ≤ C
√

εN−1L,

‖u(4)‖Ω ≤ Cε−2, and the first bound of (3.10) it follows that

‖u − Pu‖I ≤ C(L/N)4.

Next consider the case when I lies in the regular region. Using the decomposition of

u we get

‖u − Pu‖I ≤ ‖v − Pv‖I + ‖w − Pw‖I

For the regular part v, we use the first estimate of (3.10), hI ≤ CN−1 and (1.3), while

for the layer part w, we use the second estimate of (3.10) and (1.3). Thus we get

‖u − Pu‖I ≤ CN−4 + C‖e−x
√

α/ε + e−(1−x)
√

α/ε‖I

≤ CN−4 + C(L/N)4

≤ C(L/N)4.

Collecting the various bounds for the interpolation error we have

(3.11) ‖u −Pu‖Ω ≤ C(L/N)4.

Combining (3.8), (3.9) and (3.11) we get the desired result.



A HYBRID DIFFERENCE SCHEME FOR SINGULARLY PERTURBED SEMILINEAR RDP’S 343

4. Numerical Results

To demonstrate the efficiency of the proposed method we consider the following

test problem

−εu′′ +
u − 1

2 − u
+ g(x) = 0, u(0) = u(1) = 0,

where g(x) is chosen so that the exact solution is

u(x) = 1 − e−x/
√

ε + e−(1−x)/
√

ε

1 + e−1/
√

ε
.

A version of this problem, when g ≡ 0, represents one of the models for the Michaelis-

Menten process in biology, Bohl [1], and its solution behaves similarly to u above.

To solve the nonlinear system of equations, the Newton’s method is used with

the initial guess uN,0 = (0, u0(x1), . . . , u0(xN−1), 0)T , where u0 is the solution of the

reduced problem. In all our computations 5 Newton iterations were sufficient to get

discrete solutions within the tolerance of 10−15. For different values of N and ε, we

compute the maximum nodal errors, EN
ε = ‖u−uN‖. From these values we compute

uniform errors by EN = max∀ε EN
ε . Define LN , the value of L with N elements,

that is, LN = L(N). Assuming the convergence of order (LN/N)r, we compute the

uniform convergence rates rN using

rN =
ln(EN ) − ln(E2N)

ln(2LN

L2N
)

.

By using L < ln N instead of ln N we are trying to bring the point x1 closer to x = 0

and this provide the higher density of mesh points in the layers. The motivation

for this is the fact that the better performance of the mesh can be governed by the

high density of mesh points in the layers. The smallest value of L is chosen to be

L∗ = L∗(N) which satisfies

e−L∗

= L∗/N.

Table 1 represents the maximum nodal errors EN
ε of the hybrid difference scheme on

S(L∗). The last two rows in the table represent the uniform nodal errors EN and the

uniform convergence rates rN .

The hybrid difference scheme (2.7) is also implemented on generalized Shishkin

mesh S(L) with L = ln N and on standard Shishkin mesh Ŝ(L) with L = ln N . The

comparison of the hybrid difference scheme on these meshes is given in Table 2. From

the last two rows in the table we observe that the numerical results are identical for

S(ln N) and Ŝ(lnN). The reason for this is that these meshes are identical in layer

regions. From Table 2 we observe that the hybrid difference scheme is more accurate

on S(L∗) when compared with S(lnN) and Ŝ(ln N).

To compute the maximum global errors we additionally take N divisible by three

and construct the modified generalized Shishkin mesh S̃(L) as described in Section 3.
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We define PuN on macro intervals [x3j , x3(j+1)], j = 0, . . . , N/3−1. Let Ω̆N := {x̆j}2N
0

be the mesh that contains the mesh points of the original mesh and their midpoints,

that is,

x̆2j = xj , j = 0, . . . , N, x̆2j+1 = (xj + xj+1)/2, j = 0, . . . , N − 1.

For different values of N and ε, we compute the maximum global errors, ẼN
ε =

maxx̆j∈Ω̆N |u(x̆j) − (PuN)(x̆j)|. Then uniform global errors are calculated by ẼN =

max∀ε ẼN
ε . We compute the uniform convergence rates r̃N using the formula

r̃N =
ln(ẼN ) − ln(Ẽ2N)

ln(
2LN/3

L2N/3
)

.

Table 3 represents the maximum global errors ẼN
ε of the hybrid difference scheme on

S̃(L∗). The last two rows in the table represent the uniform global errors ẼN and the

uniform convergence rates r̃N . Clearly numerical results given in Tables 1 and 3 are

in good agreement with our theoretical results.

5. Conclusions

We proposed a hybrid difference scheme, combining the Hermite scheme and the

central difference scheme in a special way, on generalized Shishkin mesh S(L) for

solving singularly perturbed semilinear reaction diffusion problems. The proposed

numerical method preserves inverse monotonicity of the continuous problem. It is

observed that the fine parts of standard Shishkin mesh Ŝ(L) and generalized Shishkin

mesh S(L) are identical, but the coarse part of S(L) is a smooth continuation of the

fine mesh and is no longer equidistant. Using this fact we established almost fourth

order pointwise uniform convergence of the present scheme on S(L). Furthermore,

on a slightly modified generalized Shishkin mesh, we proved that the present scheme

is almost fourth order global uniformly convergent. Numerical results illustrate the

efficiency of the present method.
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Table 1. Nodal errors EN
ε , EN and uniform convergence rates rN of the hybrid

difference scheme (2.7) on S(L) with L = L∗.

ε = 10−k N = 27 28 29 210 211 212

k=1 6.20E-10 3.87E-11 2.42E-12 1.50E-13 1.27E-14 1.02E-15

2 3.57E-08 2.23E-09 1.39E-10 8.72E-12 5.45E-13 3.85E-14

3 3.54E-06 2.22E-07 1.39E-08 8.69E-10 5.43E-11 3.40E-12

4 3.34E-04 2.19E-05 1.39E-06 8.68E-08 5.43E-09 3.39E-10

5 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

6 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

7 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

8 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

EN 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

rN 3.94 4.00 3.98 4.00 4.00

Table 2. Comparison of the errors EN
ε of the hybrid difference scheme (2.7) on

Shishkin mesh Ŝ(L) and on generalized Shishkin mesh S(L) for ε = 10−6.

N = 27 28 29 210 211 212

S(L∗) 5.84E-04 6.70E-05 6.98E-06 7.01E-07 6.69E-08 6.17E-09

S(ln N) 1.92E-03 2.06E-04 2.18E-05 2.091E-06 1.92E-07 1.70E-08

Ŝ(ln N) 1.92E-03 2.06E-04 2.18E-05 2.091E-06 1.92E-07 1.70E-08

Table 3. Global errors ẼN
ε , ẼN and uniform convergence rates r̃N of the hybrid

difference scheme (2.7) on S̃(L) with L = L∗.

ε = 10−k N = 3 × 26 3 × 27 3 × 28 3 × 29 3 × 210 3 × 211

k=1 2.82E-09 1.78E-10 1.12E-11 8.13E-13 5.36E-14 4.27E-15

2 2.68E-07 1.74E-08 1.10E-09 6.96E-11 3.90E-12 3.01E-13

3 2.31E-05 1.61E-06 1.06E-07 6.83E-09 4.33E-10 2.72E-11

4 1.34E-03 1.28E-04 9.45E-06 6.44E-07 4.20E-08 2.68E-09

5 1.34E-03 2.09E-04 2.72E-05 3.13E-06 3.30E-07 3.25E-08

6 1.34E-03 2.09E-04 2.72E-05 3.13E-06 3.30E-07 3.25E-08

7 1.34E-03 2.09E-04 2.72E-05 3.13E-06 3.30E-07 3.25E-08

8 1.34E-03 2.09E-04 2.72E-05 3.13E-06 3.30E-07 3.25E-08

ẼN 1.34E-03 2.09E-04 2.72E-05 3.13E-06 3.30E-07 3.25E-08

r̃N 3.50 3.70 3.83 3.90 3.95
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