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ABSTRACT. The generalized monotone method to compute solutions for two system of Caputo
fractional differential equations using coupled lower and upper solutions is very useful, since it does
not require any additional assumption. In this work we provide theoretical as well as computational
methodology to compute coupled lower and upper solutions of type I to any desired interval. Further
the computation of coupled lower and upper solutions can be accelerated by Gauss-Seidel method.
We have applied our theoretical results to population models and have obtained corresponding
numerical results.
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1. INTRODUCTION

Nonlinear problems (nonlinear dynamic systems) occur naturally as mathematical

models in many branches of science, engineering, finance, economics, etc. So far, in

literature, most models are differential equations with integer derivative. However,

the qualitative and quantitative study of fractional differential and integral equations

has gained importance recently due to its applications. See[1, 3, 8, 6] for details. In

solving nonlinear problems, monotone method combined with method of upper and

lower solutions is a popular choice, because the existence of solution by monotone

method is both theoretical and computational. In addition the interval of existence

is guaranteed. Monotone method for various nonlinear problems has been developed

in [4]. Monotone method(monotone iterative technique) combined with method of

lower and upper solutions yields monotone sequences, which converges to minimal

and maximal solutions of nonlinear differential equation.
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In many nonlinear problems (nonlinear dynamic systems), the nonlinear term is

the sum of an increasing and decreasing functions. Monotone method extended to

such systems is called generalized monotone method. Generalized monotone method

for first order nonlinear initial value problems and for fractional order nonlinear ini-

tial value problem has been developed in [11, 7] respectively. See [10] for general-

ized monotone method for fractional order of N systems. The generalised monotone

method for nonlinear fractional differential equations with initial conditions has an

added advantage over the usual monotone method, since the former method does not

need the computation of Mittag-Leffler function. However the difficulty is in comput-

ing the coupled upper and lower solutions of type I (see [7] for details) to any desired

interval. In this work we provide a methodology to compute coupled lower and upper

solutions of type I for two system of Caputo fractional differential equation with ini-

tial conditions on any given interval. We also develop accelerated convergence results

using generalized monotone method. Finally, we provide a numerical example as an

application of all our theoretical results. In our numerical results we have considered

two nonlinear fractional differential systems which represent cooperative, competitive

and prey-predator models.

2. PRELIMINARY RESULTS

In this section, we recall known results, which are needed for our main results.

Initially, we recall some definitions.

Definition 2.1. Caputo fractional derivative of order q is given by equation

cDqu(t) =
1

Γ(1− q)

∫ t

0

(t− s)−qu′(s)ds,

where 0 < q < 1.

Also, consider nonlinear Caputo fractional differential equation with initial con-

dition of the form:

(2.1) cDqu(t) = f(t, u(t)), u(0) = u0,

where f ∈ C[J × R,R] and J = [0, T ].

The integral representation of (2.1) is given by equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds,

where Γ(q) is the Gamma function.

The equivalence of (2.1) and (2.2) is established in [3]. This equivalence means if

we prove the existence of the solution of (2.2) on J , then we have proved the existence

of solution of (2.1) and vice versa.
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In order to compute the solution of linear fractional differential equation with

constant coefficients we need Mittag Leffler function.

Definition 2.2. Mittag Leffler function is given by equation

Eα,β(λ(t− t0)α) =
∞∑
k=0

(λ(t− t0)α)k

Γ(αk + β)
,

where α, β > 0. Also, for t0 = 0, α = q and β = 1, we get equation

Eq,1(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider linear Caputo fractional differential equation,

(2.3) cDqu(t) = λu(t) + f(t), u(0) = u0, on J,

where J = [0, T ], λ is a constant and f(t) ∈ C[J,R].

The solution of (2.3) exists and is unique. The explicit solution of (2.3) is given

by the equation

u(t) = u0Eq,1(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λt
q)f(s)ds.

See [5] for details.

In particular, if λ = 0, the solution u(t) is given by equation

(2.4) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(q) is the Gamma function.

Note that, in generalized monotone method, we need to compute the solution of

the type (2.3) for λ = 0 only, whether it is for scalar or vector nonlinear fractional

differential equations. The next result is related to the Reimann-Liouville fractional

derivative. For that purpose we define Cp continuous function.

Definition 2.3. Let p = 1 − q. A function φ(t) ∈ C[(0, T ],R] is a Cp function if

tpφ(t) ∈ C([0, T ],R). The set of Cp functions is denoted Cp[J,R]. Further, given a

function φ(t) ∈ Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).

Lemma 2.4. Let m(t) ∈ Cp[J,R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],

m(t1) = 0 and m(t) ≤ 0, on J , then Dqm(t1) ≥ 0.

Proof. See [2, 5] for details.
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However note that we have not assumed m(t) to be Holder continuous as in [5].

The above lemma is true for Caputo derivative also, using the relation cDqx(t) =

Dq(x(t)−x(0)) between the Caputo derivative and the Reimann-Liouville derivative.

This is the version we will be using to prove our comparison results. The next lemma

states the Caputo derivative version.

Lemma 2.5. Let m(t) ∈ C1[J,R] (where J = [0, T ]) be such that m(t) ≤ 0 on J and

for t1 > 0, if m(t1) = 0, then cDqm(t1) ≥ 0.

Also we recall known results related to two system of first order fractional differ-

ential equations of the following form:

(2.5) cDqui = fi(t, u) + gi(t, u), ui(0) = u0i on J for i = 1, 2,

where fi, gi ∈ C(J × R2,R2).

Here and throughout this paper we assume fi(t, u1, u2) is non-decreasing in u1 and

u2, and gi(t, u1, u2) is non-increasing in u1 and u2 for i = 1, 2 and for t ∈ [0, T ] = J .

We recall the following known definitions which are needed for our main results.

Definition 2.6. Let vi, wi for i = 1, 2 be C[J,R]. Then vi and wi are called natural

lower and upper solutions of (2.5), if they satisfy the following inequalities:

(2.6) cDqvi ≤ fi(t, v1, v2) + gi(t, v1, v2), vi(0) ≤ u0i,

(2.7) cDqwi ≥ fi(t, w1, w2) + gi(t, w1, w2), wi(0) ≥ u0i.

Definition 2.7. Let vi, wi for i = 1, 2 ∈ C[J,R]. Then vi and wi are called coupled

lower and upper solutions of (2.5), if they satisfy the following inequalities:

(2.8) cDqvi ≤ fi(t, v1, v2) + gi(t, w1, w2), vi(0) ≤ u0i,

(2.9) cDqwi ≥ fi(t, w1, w2) + gi(t, v1, v2), wi(0) ≥ u0i.

The next result is the existence theorem for the solutions of the system (2.5) by

generalized monotone method. The first result proves the existence of a solution of

(2.5), when we have coupled lower and upper solutions as in definition 2.7.

Theorem 2.8. Let vi(t), wi(t) ∈ C1[J,R2] and fi, gi ∈ C[Ωi,R2], for i = 1, 2, where

Ωi = {(t, ui), t ∈ J, vi ≤ ui ≤ wi} such that vi(t) ≤ wi(t) on J and vi(t) and wi(t)

are coupled lower and upper solutions as in definition 2.7 for (2.5). Then there exists

a solution ui ∈ C1[J,R2] of (2.5) such that vi(t) ≤ ui(t) ≤ wi(t) on J , provided

vi,0 ≤ ui,0 ≤ wi,0.

Proof. See [9] for details.
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Theorem 2.9. Let fi, gi ∈ C[J × R2,R2] such that fi(t, u) is nondecreasing in ui

components and gi(t, u) is nonincreasing in ui components for t ∈ J , and for each

i = 1, 2. Let v0,i, w0,i ∈ C1[J,R2] be coupled lower and upper solutions of (2.5),

such that v0,i(t) ≤ w0,i(t) for i = 1, 2, on J . Then, there exists monotone sequences

{vn,i} and {wn,i} which converges uniformly and monotonically to coupled minimal

and maximal solutions of (2.5) such that vn,i → vi and wn,i → wi as n→∞, provided

v0,i(0) ≤ ui(0) ≤ w0,i(0), for i = 1, 2. Further, if ui for i = 1, 2, is any solution of

(2.5) such that v0,i ≤ ui ≤ w0,i, then vi ≤ ui ≤ wi on J .

The following result is a comparison theorem related to coupled lower and upper

solutions.

Theorem 2.10. Let (v0,1, v0,2) and (w0,1, w0,2) be coupled lower and upper solutions

of (2.5). Further let

(i) fi(t, u) is nondecreasing in ui components and gi(t, u) is nonincreasing in ui

components for i = 1, 2;

(ii) fi(t, u) and gi(t, u) satisfy the one sided Lipschitz condition of the form,

fi(t, u)− fi(t, u) ≤ Li
∑2

j=1(uj − uj), Li > 0, i = 1, 2 and

gi(t, u)− gi(t, u) ≥ −Mi

∑2
j=1(uj − uj), Mi > 0, i = 1, 2,

whenever ui ≥ ui for i = 1, 2.

Then vi(t) = wi(t) = ui(t) for i = 1, 2, where ui(t) is the unique solution of (2.5).

The following Corollary is useful in the generalized monotone method.

Corollary 2.11. Let

cDqpi(t) ≤
2∑
j=1

(Lij +Mij)pj, for i = 1, 2.

Then we have pi(t) ≤ 0 for i = 1, 2 on J = [0, T ], whenever pi(0) ≤ 0 for i = 1, 2.

The next result is monotone method for (2.5) where we use natural lower and

upper solutions.

Theorem 2.12. Assume that

(i) v0,i and w0,i are natural lower and upper solutions of (2.5) with v0,i(t) ≤ w0,i(t)

for i = 1, 2 on J .

(ii) fi, gi ∈ C[J×R2,R2], fi(t, u1, u2) is nondecreasing in ui components and gi(t, u1, u2)

is nonincreasing in ui components for i = 1, 2 on J .

Then there exists monotone sequences {vn,i} and {wn,i} on J such that vn,i(t)→ vi(t)

and wn,i(t) → wi(t) uniformly and monotonically and (vi, wi) are coupled minimal
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and maximal solutions, respectively to equation (2.5). That is, (vi, wi) satisfy

cDqvi ≤ fi(t, v1, v2) + gi(t, w1, w2), vi(0) ≤ u0,i,

cDqwi ≥ fi(t, w1, w2) + gi(t, v1, v2), wi(0) ≥ u0,i

provided v0,i ≤ v1,i and w1,i ≤ w0,i on J .

See [10] for details of the proofs of Theorems 2.9, 2.10, 2.12. Also note that the

iterative schemes used in Theorems 2.9 and 2.12 are one and the same. Theorem 2.12,

uses v0,i, w0,i as natural lower and upper solutions. The natural lower and upper

solutions are easy to compute. For example the equilibrium solutions provide natural

lower and upper solutions. Then v1,i, w1,i will be coupled lower and upper solutions

only on some interval [0, t1,i] and not necessarily on [0, T ] in general. However if we

have coupled lower and upper solutions on [0, T ] then generalized monotone method

can be used to compute solutions on [0, T ]. This is the motivation for our main result

relative to equation (2.5).

3. MAIN RESULTS

Theorem 3.1. Assume that

(i) v0,i, w0,i ∈ C[J,R2] for i = 1, 2 are natural lower and upper solutions of system

(2.5) such that v0,i(t) ≤ w0,i(t) on J .

(i) fi, gi ∈ C[J × R2,R2] such that fi(t, u) is nondecreasing in ui components and

gi(t, u) is nonincreasing in ui components for t ∈ J , and for each i = 1, 2.

Then there exists monotone sequences {vn,i(t)} and {wn,i(t)} on J such that

vn,i(t)→ vi(t) and wn,i(t)→ wi(t) uniformly and monotonically and (vi, wi) are

coupled lower and upper solutions of (2.5) such that vi ≤ wi on J . The iterative

scheme for the two system is given by

cDqvn+1,1 = f1(t1, vn,1, vn,2) + g1(t1, wn,1, wn,2), vn,1(0) = u0,1 on [0, tn,1],

cDqvn+1,2 = f2(t1, vn,1, vn,2) + g2(t1, wn,1, wn,2), vn,2(0) = u0,2 on [0, tn,2],

cDqwn+1,1 = f1(t1, wn,1, wn,2) + g1(t1, vn,1, vn,2), wn,1(0) = u0,1 on [0, tn,1],

cDqwn+1,2 = f2(t1, wn,1, wn,2) + g2(t1, vn,1, vn,2), wn,2(0) = u0,2 on [0, tn,2],

and

vn,1(t) = v0,1(t) on [tn,1, T ], vn,2(t) = v0,2(t) on [tn,2, T ],

wn,1(t) = w0,1(t) on [tn,1, T ], wn,2(t) = w0,2(t) on [tn,2, T ].

Proof. Note that vn,i, wn,i are the nth elements of the sequences {vn,i}, {wn,i} such

that v0,i ≤ vn,i and wn,i ≤ w0,i on [0, tn,i] and [0, tn,i] for i = 1, 2 respectively. To
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continue the proof we relabel vn,i and wn,i such that they are sequences on the in-

terval [0, T ] using the vn,i, wn,i computed above. That is vn,i = vn,i on [0, tn,i] and

vn,i = v0,i on [tn,i, T ]. Similarly wn,i = wn,i on [0, tn,i] and wn,i = w0,i on [tn,i, T ]. Thus

the sequences {vn,i}, {wn,i} are defined on [0, T ]. The proof follows similar to the

generalised monotone method except that the sequences {vn,i}, {wn,i} are piecewise

fractional differentiable functions on J . We can prove the sequences are equicontinu-

ous and uniformly bounded on J . Hence by Ascoli Arzela’s theorem, a subsequence

converges uniformly and monotonically. Since the sequences are monotone, the entire

sequence converges uniformly and monotonically to vi and wi respectively.

Note that for some n > N ,

cDqvn,i = fi(t, vN,1, vN,2) + gi(t, wN,1, wN,2) on J,

cDqwn,i = fi(t, wN,1, wN,2) + gi(t, vN,1, vN,2) on J,

for i = 1, 2. Further it follows,

cDqvN,i ≤ fi(t, vN,1, vN,2) + gi(t, wN,1, wN,2),

cDqwN,i ≥ fi(t, wN,1, wN,2) + gi(t, wN,1, wN,2),

for i = 1, 2. Hence vi, wi, for i = 1, 2 are coupled lower and upper solutions of (2.5)

on J .

Remark 3.2. Note that Theorem 3.1 provides a method to compute coupled lower

and upper solutions of (2.5) on the desired interval [0,T]. We can develop an acceler-

ated convergence result for the system (2.5) similar to Theorem 3.1. This is precisely

our next result.

Theorem 3.3. Let all the hypothesis of Theorem 2.9 hold. Then there exists sequences

{v∗n,i}, {w∗n,i} for i = 1, 2, on [0, T ], such that it converges uniformly and monotonically

to coupled minimal and maximal solutions of (2.5). These sequences converge at a

much faster pace than the sequences of Theorem 2.9. The sequences {v∗n,i}, and {w∗n,i},
are developed as follows: where the iterative scheme is given by

cDqv∗n+1,1 = f1(t, v
∗
n,1, v

∗
n,2) + g1(t, w

∗
n,1, w

∗
n,2), vn,1(0) = u0,1,

cDqv∗n+1,2 = f2(t, v
∗
n+1,1, v

∗
n,2) + g2(t, w

∗
n,1, w

∗
n,2), vn,2(0) = u0,2,

cDqw∗n+1,1 = f1(t, w
∗
n,1, w

∗
n,2) + g1(t, v

∗
n+1,1, v

∗
n+1,2), wn,1(0) = u0,1,

cDqw∗n+1,2 = f2(t, w
∗
n+1,1, w

∗
n,2) + g2(t, v

∗
n+1,1, v

∗
n+1,2), wn,2(0) = u0,2.
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Proof. Let v1,1 = v∗0,1 ,then

cDqv∗0,2 = f2(t, v
∗
0,1, v0,2) + g2(t, w0,1, w0,2), v∗0,2(0) = u0,2,

cDqw∗0,1 = f1(t, w0,1, w0,2) + g1(t, v
∗
0,1, v

∗
0,2), w∗0,1(0) = u0,1,

cDqw∗0,2 = f2(t, w
∗
0,1, w0,2) + g2(t, v

∗
0,1, v

∗
0,2), w∗0,2(0) = u0,2.

We will prove that v∗0,2 ≥ v1,2 on J . For that purpose, set p(t) = v∗0,2 − v1,2, p(0) = 0.

Then cDqp(t) = cDqv∗0,2− cDqv1,2 = f2(t, v
∗
0,1, v0,2)+g2(t, w0,1, w0,2)−(f2(t, v0,1, v0,2)+

g2(t, w0,1, w0,2)) = f2(t, v1,1, v0,2) − f2(t, v0,1, v0,2) ≥ 0, using the fact that v1,1 ≥ v0,1.

This proves v∗0,2 ≥ v1,2. Similarly, we can prove w∗0,1 ≤ w1,1 using the information

v0,1 ≤ v1,1 = v∗0,1 and v0,2 ≤ v1,2 ≤ v∗0,2. Continuing this process we can show

the sequences {v∗n,i} and {w∗n,i} converges faster than the sequence {vn,i} and {wn,i}
computed using Theorem 2.9.

4. NUMERICAL RESULTS

In this section, we provide numerical examples justifying our main results. We

consider three Volterra-Lotka models namely, the prey-predator model, competitive

model and cooperative model and apply Theorem 2.9. In order to apply Theorem 2.9,

we assume that v1,i and w1,i should satisfy v0,i ≤ v1,i, w1,i ≤ w0,i for i = 1, 2 on [0, T ].

In all these examples first we will apply Theorem 3.1 to obtain the coupled lower and

upper solutions v1,i and w1,i for i = 1, 2 on a desired interval. Then using these coupled

lower and upper solutions we apply Theorem 2.9 to obtain the coupled minimal and

maximal solutions. Also we use Theorem 3.3 to accelerate the rate of convergence.

First, we consider the prey-predator model

(4.1)


cD

1
2u1(t) = 5u1 − 2u2

1 − 3u1u2,

cD
1
2u2(t) = −2u2 + u1u1 + u2

2.

It is easy to observe that (v0,1, v0,2) = (0, 0), and (w0,1, w0,2) = (1, 1) are natural lower

and upper solutions respectively of (4.1) such that v0,1 ≤ w0,1 and v0,2 ≤ w0,2 on

[0, T ]. Using our main result namely Theorem 3.1 we can compute coupled lower and

upper solutions on [0, 1]. In figure 1 we apply Theorem 3.1 to example (4.1).

In figure 1, using Theorem 3.1 we have computed v1,i and w1,i such that v1,i ≤ w1,i

for i = 1, 2 on the interval [0, 0.02]. Further v1,i, w1,i, for i = 1, 2 are coupled lower

and upper solutions of (4.1) on [0, 0.02]. In figure 2, we use the coupled upper and

lower solutions obtained in figure 1 and apply Theorem 2.9 to compute the coupled

minimal and maximal solutions.
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Figure 1. Coupled lower and upper solutions of (4.1) using Theorem 3.1

Figure 2. Coupled min and max solutions of (4.1) using Theorem 2.9

We have plotted figure 2 on the interval [0, 0.02] showing seven iterations. In

figure 3, again using the coupled lower and upper solutions obtained in figure 1,

we compute the coupled minimal and maximal solutions of example (4.1) with less

number of iterations, using the accelerated convergence of Theorem 3.3.

Figure 3. Coupled min and max solutions of (4.1) using Theorem 3.3

We can observe that figure 3 took only six iterations compared to seven iterations

in figure 2, as we have used accelerated convergence.
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Next, we consider the Cooperative model

(4.2)


cD

1
2u1(t) = 2u1 + 2u1u2 − 3u2

1,

cD
1
2u2(t) = u2 + 4u1u2 − 6u2

2.

It is easy to observe that (v0,1, v0,2) = (0, 0), and (w0,1, w0,2) = (7
5
, 33

30
) are natural

lower and upper solutions respectively of (4.2) such that v0,1 ≤ w0,1 and v0,2 ≤ w0,2

on [0, T ].

Using our main result namely Theorem 3.1 we can compute coupled lower and

upper solutions on [0, 1]. In figure 4 we apply Theorem 3.1 to example (4.2).

Figure 4. Coupled lower and upper solutions of (4.2) using Theorem 3.1

In figure 4 we have computed v1,i and w1,i such that v1,i ≤ w1,i for i = 1, 2 on

the interval [0, 0.0120]. In figure 5 we use the coupled upper and lower solutions ob-

tained in figure 4 and apply Theorem 2.9 to obtain the coupled minimal and maximal

solutions of example (4.2).

Figure 5. Coupled min and max solutions of (4.2) using Theorem 2.9

We have plotted figure 5 on the interval [0, 0.0120] showing seven iterations. In

figure 6, again using the coupled lower and upper solutions obtained in figure 4,

we compute the coupled minimal and maximal solutions of example (4.2) with less

number of iterations, using the accelerated convergence of Theorem 3.3.
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Figure 6. Coupled min and max solutions of (4.2) using Theorem 3.3

We can observe that figure 6 took only five iterations compared to seven iterations

in figure 5, as we have used accelerated convergence.

Finally, we consider the Competitive model

(4.3)


cD

1
2u1(t) = 6u1 − 3u2

1 − 2u1u2,

cD
1
2u2(t) = 6u2 − 2u1u2 − u2

2.

It is easy to observe that (v0,1, v0,2 = (0, 0) and (w0,1, w0,2 = (6,−6) are natural lower

and upper solutions respectively of (4.3) such that v0,1 ≤ w0,1 and v0,2 ≤ w0,2 on

[0, T ]. Using our main result namely Theorem 3.1 we can compute coupled lower and

upper solutions on [0, 1].

In figure 7 we apply Theorem 3.1 to example (4.3).

Figure 7. Coupled lower and upper solutions of (4.3) using Theorem 3.1

In figure 7 we have computed v1,i and w1,i such that v1,i ≤ w1,i for i = 1, 2 on

the interval [0, 0.0128]. In figure 8 we use the coupled upper and lower solutions of

figure 7 and apply Theorem 2.9 to obtain the coupled minimal and maximal solutions

of example (4.3).



358 S. MUNISWAMY AND A. S. VATSALA

Figure 8. Coupled min and max solutions of (4.3) using Theorem 2.9

We have plotted figure 8 on the interval [0, 0.0128] showing six iterations. In

figure 9, again using the coupled lower and upper solutions obtained in figure 7, we

compute the coupled minimal and maximal solutions of example (4.3) showing less

number of iterations, using the accelerated convergence of Theorem 3.3.

Figure 9. Coupled min and max solutions of (4.3) using Theorem 3.3

We can observe that figure 9 took only three iterations compared to six iterations

in figure 8, as we have used accelerated convergence.

In all the examples we have considered, if the coupled minimal and maximal so-

lutions vi, wi, for i = 1, 2 satisfy the Lipschitz condition then those solutions converge

to a unique solution ui, for i = 1, 2.

5. CONCLUSION

In general in order to compute the coupled lower and upper solutions of fractional

differential equations, using the usual monotone method we need the Mittag Leffler

function. In this work, we have computed the coupled lower and upper solutions of

two system of Caputo fractional differential equations, on a desired interval using the

generalised monotone method. The advantage of the generalised monotone method
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over the usual monotone method is that it does not require the computation of Mittag

Leffler function. As we are using generalised monotone method, even we were able

to accelerate the convergence by using Gauss-Seidel method. The disadvantage of

the generalized monotone method is that its rate of convergence is linear. The use of

Mittag Leffler function in computing the solution may give us a faster convergence. In

our future work we want to use the generalized quasilinearization method to compute

the solutions, which uses the Mittag Leffler function. We expect to get a faster

convergence using the generalized quasilinearization method.
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