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ABSTRACT. In this paper an asymptotic numerical method on Shishkin mesh is suggested to

solve singularly perturbed boundary value problem for second order ordinary differential equations

of convection-diffusion type with a negative shift (delay). An error estimate is derived by using the

supremum norm . Numerical results are provided to illustrate the theoretical results.
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1. Introduction

In many applications, one assumes the system under consideration is governed by

a principle of causality; that is, the future state of the system is independent of the

past states and is determined solely by the present. However, under closer scrutiny, it

becomes apparent that the principle of causality is often a first order approximation

to the true situation and more realistic model would involve some of the past states

of the system. This kind of systems are governed by differential equations with delay

arguments.

A subclass of these equations consists of singularly perturbed ordinary differ-

ential equations with a delay, that is an ordinary differential equation in which the

highest derivative is multiplied by a small parameter and involving at least one de-

lay term. Such type of equations arise frequently in the mathematical modeling of

various practical phenomena, for example, in the modeling of the human pupil-light

reflex [4], the mathematical model of the determination of expected time for gener-

ation of action potentials in nerve cell by random synaptic inputs in the dendrites
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[3] and variational problems in control theory [8], etc. The well-posedneess of the

problems for this type of equations has been well studied in the literature [13, 14]. It

is well known that standard discretization methods for solving singularly perturbed

differential equations are sometimes unstable and fail to give accurate results when

the perturbation parameter ε is small. Therefore, it is important to develop suitable

numerical methods to solve this type of equations, whose accuracy does not depend

on the parameter ε, that is the methods are uniformly convergent with respect to

the parameter. For more details of this type of numerical methods one may refer to

[1, 5, 6, 9].

In the past, only very few people had worked in the area numerical methods to

Singularly Perturbed Delay Differential Equation(SPDDE). But in the recent years,

there has been growing interest in this area. In [10, 12] the authors considered second

order linear ordinary differential equations with small delay in the reaction term. In

[10] they solved the problem by using a finite difference method on a special type

of mesh. Kadalbajoo and Sharma [11] considered second order nonlinear ordinary

differential equation with small delay in the first derivative and obtained numerical

solution by the Newton’s method of quasi linearization. In [12] the authors solved

the delay problem by expanding the delay term by Taylor’s expansion in order to

reduce the delay problem to a non-delay problem. Then they applied a standard

uniform numerical method for non-delay second order singularly perturbed differential

equation.

Lange and Miura [2] made a study of a class of BVPs for linear second order

differential difference equations in which the highest order derivative is multiplied

by a small parameter. Motivated by this work, we, in this paper, consider the fol-

lowing singularly perturbed boundary value problem (2.1) for second order ordinary

differential equations of convection-diffusion type with a negative shift and suggest

an asymptotic numerical method. It is proved that this method is convergent of order

O(ε + N−1 ln N).

The present paper is organized as follows. In Section 2, the problem under study

with continuous source term is stated. A maximum principle for the DDE is estab-

lished in Section 3. Further a stability result is derived in the same section. Some

analytical results are derived in Section 4. In Section 5 a mesh selection strategy is ex-

plained. Further the fourth order Runge-Kutta method with piecewise cubic Hermite

interpolation on this mesh for a initial value problem for first order delay differential

equation and an upwind finite difference scheme for non delay singularly perturbed

second order ordinary differential equation are described. Also their error estimates

are given. Section 6 presents the Asymptotic Numerical Method (ANM). The appli-

cability of the ANM to partial differential equations is illustrated in Section 7. Section

8 presents numerical results. The paper concludes with a discussion.
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2. Statement of the problem

Throughout the paper we assume that C and C1 denote generic positive con-

stants independent of the singular perturbation parameter ε and the discretization

parameter N of the discrete problem. The supremum norm is used for studying the

convergence of the numerical solution to the exact solution of a singular perturbation

problem:

‖w‖Ω = sup
x∈Ω

|w(x)|.

Motivated by the work of [2], we consider the following Boundary Value Problem

(BVP) for SPDDE.

Find u ∈ Y = C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) such that

(2.1)







−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x − 1) = f(x), x ∈ Ω− ∪ Ω+,

u(x) = φ(x), x ∈ [−1, 0], u(2) = l,

where a(x) ≥ α1 > α > 0, b(x) ≥ β0 ≥ 0, γ0 ≤ c(x) ≤ γ < 0, 2α1 +5β0 +5γ0 ≥ η > 0,

a, b, c, f , and φ are sufficiently smooth functions on Ω, Ω = (0, 2), Ω = [0, 2],

Ω− = (0, 1), Ω+ = (1, 2).

The above problem is equivalent to

(2.2)

Pu(x) : =







−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) − c(x)φ(x − 1), x ∈ Ω−,

−εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x − 1) = f(x), x ∈ Ω+,

u(0) = φ(0), u(1−) = u(1+), u′(1−) = u′(1+), u(2) = l,

where u(1−) and u(1+) denote the left and right limits of u at x = 1 respectively.

This BVP (2.1) exhibits a strong boundary layer at x = 2 [2].

3. Stability Result

Let

(3.1) s(x) =







1
8

+ x
2
, x ∈ [0, 1],

3
8

+ x
4
, x ∈ [1, 2].

The differential-difference operator P defined in (2.2) satisfies the following maximum

principle.

Theorem 3.1 (Maximum principle). Let w ∈ C0(Ω)∩C2(Ω− ∪Ω+) be any function

satisfying w(0) ≥ 0, w(2) ≥ 0, Pw(x) ≥ 0, ∀x ∈ Ω− ∪ Ω+ and w′(1+) − w′(1−) =

[w′](1) ≤ 0. Then w(x) ≥ 0, ∀x ∈ Ω.

Proof. See [15].
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Corollary 3.2 (Stability Result). For any u ∈ Y we have

(3.2) |u(x)| ≤ C max{|u(0)|, |u(2)|, sup
ξ∈Ω−∪Ω+

|Pu(ξ)|}, ∀ x ∈ Ω.

Proof. See [15].

4. Analytical results

Let u0 ∈ C0(Ω) ∩ C1(Ω ∪ {2}) be the solution of the reduced problem of (2.1)

given by

(4.1)







a(x)u′
0(x) + b(x)u0(x) + c(x)u0(x − 1) = f(x), x ∈ Ω ∪ {2},

u0(x) = φ(x), x ∈ [−1, 0].

Further, we assume that, ‖ u′′
0 ‖Ω−∪Ω+≤ C.

Theorem 4.1. Let u be the solution of (2.1) and u0 be its reduced problem solution

as defined in (4.1). Then, |u(x) − u0(x)| ≤ Cε + C exp(−α(2−x)
ε

), x ∈ Ω.

Proof. Consider the barrier function

ϕ±(x) = C1εs(x) + C1 exp

(

−α(2 − x)

ε

)

± (u(x) − u0(x)), x ∈ Ω,

where s is defined by (3.1). It is easy to see that ϕ± ∈ C0(Ω)∩C2(Ω−∪Ω+). Further,

ϕ±(0) ≥ 0 and ϕ±(2) ≥ 0 for a suitable choice of C1 > 0. When x ∈ Ω− we have

Pϕ±(x) = C1

[ [α

ε
(a(x) − α) + b(x)

]

exp

(

−α(2 − x)

ε

)

+ ε[a(x)s′(x) + b(x)s(x)]
]

± εu′′
0(x)

≥ C1

[ [α

ε
(α1 − α) + β0

]

exp

(

−α(2 − x)

ε

)

+ ε[α1/2 + β0/8]
]

∓ Cε ≥ 0,

for a suitable choice of C1 > 0. When x ∈ Ω+ we have

Pϕ±(x) = C1

[

[

α

ε
(a(x) − α) + b(x) + c(x) exp

(

−α

ε

)]

exp

(

−α(2 − x)

ε

)

+ ε[a(x)s′(x) + b(x)s(x) + c(x)s(x − 1)]
]

± εu′′
0(x)

≥ C1

[

[

α

ε
(α1 − α) + β0 + γ0 exp

(

−α

ε

)]

exp

(

−α(2 − x)

ε

)

+ ε[α1/4 + 5β0/8 + 5γ0/8]
]

∓ Cε ≥ 0,

for a suitable choice of C1 > 0. Then by the Theorem 3.1 we have ϕ±(x) ≥ 0, x ∈ Ω,

that is

|u(x) − u0(x)| ≤ Cε + C exp

(

−α(2 − x)

ε

)

, x ∈ Ω.

Hence the proof of the theorem.
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Note 4.2. From the above Theorem 4.1, it is clear that the solution u of the boundary

value problem (2.1) exhibits a strong boundary layer at x = 2 and further, away from

the boundary layer and in particular on [0, 1], we have

|u(x) − u0(x)| ≤ C
(

ε + exp
(

− α/ε
)

)

≤ Cε, x ∈ [0, 1].

We now define an auxiliary problem to (2.1). Find u∗ ∈ Y ∗ = C0(Ω) ∩ C2(Ω)

such that

(4.2)







P ∗u∗(x) : = −εu∗′′(x) + a(x)u∗′(x) + b(x)u∗(x) = f ∗(x),

u∗(0) = u(0), u∗(2) = u(2),

where

f ∗(x) =







f(x) − c(x)φ(x − 1), x ∈ Ω− ∪ {1},

f(x) − c(x)u0(x − 1), x ∈ Ω+.

We now state a maximum principle for this problem.

Theorem 4.3. Let w ∈ C0(Ω) ∩ C2(Ω− ∪ Ω+) be any function satisfying w(0) ≥ 0,

w(2) ≥ 0, P ∗w(x) ≥ 0, ∀x ∈ Ω− ∪ Ω+ and [w′](1) ≤ 0. Then, w(x) ≥ 0, ∀x ∈ Ω.

Proof. See [9].

Theorem 4.4. Let u and u∗ be the solutions of the problems (2.1) and (4.2) respec-

tively. Then, |u(x) − u∗(x)| ≤ Cε, x ∈ Ω.

Proof. Consider the barrier function

ϕ±(x) = C1ε s(x) ± z(x), x ∈ Ω,

where, z(x) = u(x) − u∗(x). Note that ϕ± ∈ C0(Ω) ∩ C2(Ω− ∪ Ω+). Further,

ϕ±(0) ≥ 0 and ϕ±(2) ≥ 0 for a suitable choice of C1 > 0. Also [ϕ±′

(1)] < 0.

When x ∈ Ω− we have

Pϕ±(x) = C1ε
[

a(x)s′(x) + b(x)s(x)
]

± 0

≥ C1ε[α1/2 + β0/8] ± 0 ≥ 0,

for a suitable choice of C1 > 0. When x ∈ Ω+ we have

Pϕ±(x) = C1ε[a(x)s′(x) + b(x)s(x)] ± c(x)[u0(x − 1) − u(x − 1)]

≥ C1ε[α1/4 + 5β0/8] ∓ Cε ≥ 0,

for a suitable choice of C1 > 0.

Then by the Theorem 4.3 we have ϕ±(x) ≥ 0, x ∈ Ω, that is

|u(x) − u∗(x)| ≤ Cε, x ∈ Ω.

Hence the proof of the theorem.
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5. Discrete problem

In this section, first a mesh selection strategy is explained. Then the fourth order

Runge-Kutta method with piecewise cubic Hermite interpolation on this mesh for

initial value problem (4.1) and an upwind finite difference scheme for the BVP (4.2)

are presented. Further results on error estimates of these methods are stated.

5.1. Mesh selection strategy. Since the BVP (2.1) and the auxiliary problem (4.2)

exhibit a strong boundary layer at x = 2 [2] and the function f ∗ is not differentiable

at x = 1, we choose a piece-wise uniform Shishkin mesh on [0, 2]. For this we divide

the interval [0, 2] into four subintervals, namely Ω1 = [0, 1 − τ ], Ω2 = [1 − τ, 1],

Ω3 = [1, 2 − τ ], Ω4 = [2 − τ, 2], where τ = min{0.5, 2ε ln N
α

}. Let h = 2N−1τ and

H = 2N−1(1 − τ). The mesh Ω
2N

= {xi}
2N
i=1 is defined by

x0 = 0.0, xi = x0 + iH, i = 1(1)
N

2
, xi+ N

2
= xN

2
+ ih, i = 1(1)

N

2
,

xi+N = xN + iH, i = 1(1)
N

2
, xi+ 3N

2
= x 3N

2
+ ih, i = 1(1)

N

2
.

5.2. Numerical Method for (4.1). In order to obtain a numerical solution for the

problem (4.1), we apply the fourth order Runge-Kutta method with piecewise cubic

Hermite interpolation on Ω
2N

[7]. In fact, the numerical solution is given by

U0(x0) = φ(x0),

U0(xi+1) = U0(xi) +
1

6
(K1 + 2K2 + 2K3 + K4), i = 0(1)2N − 1,(5.1)

where






































K1 = h∗

[

f(xi)
a(xi)

− b(xi)
a(xi)

U0(xi) −
c(xi)
a(xi)

Uh∗

0 (xi)
]

,

K2 = h∗

[

f(xi+
h
∗

2
)

a(xi+
h∗

2
)
−

b(xi+
h
∗

2
)

a(xi+
h∗

2
)
(U0(xi) + K1

2
) −

c(xi+
h
∗

2
)

a(xi+
h∗

2
)
Uh∗

0 (xi + h∗

2
)

]

,

K3 = h∗

[

f(xi+
h
∗

2
)

a(xi+
h∗

2
)
−

b(xi+
h
∗

2
)

a(xi+
h∗

2
)
(U0(xi) + K2

2
) −

c(xi+
h
∗

2
)

a(xi+
h∗

2
)
Uh∗

0 (xi + h∗

2
)

]

,

K4 = h∗

[

f(xi+h∗)
a(xi+h∗)

− b(xi+h∗)
a(xi+h∗)

(U0(xi) + K3) −
c(xi+h∗)
a(xi+h∗)

Uh∗

0 (xi + h∗)
]

,

h∗ =







H, i = 0(1)N
2
− 1, i = N(1)3N

2
− 1,

h, i = N
2
(1)N − 1, i = 3N

2
(1)2N − 1,

Uh∗

0 (x) =



























φ(x − 1), x ∈ [xi, xi+1], i = 0(1)N − 1,

U0(xi−N )Ai−N(x − 1) + U0(xi−N+1)Ai+1−N (x − 1)+

Bi−N(x − 1)f̃(xi−N ) + Bi+1−N(x − 1)f̃(xi−N+1),

x ∈ [xi, xi+1], i = N(1)2N − 1,
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Ai(x) =

[

1 −
2(x − xi)

xi − xi+1

]

(x − xi+1)
2

(xi − xi+1)2
, Ai+1(x) =

[

1 −
2(x − xi+1)

xi+1 − xi

]

(x − xi)
2

(xi+1 − xi)2
,

Bi(x) =
(x − xi)(x − xi+1)

2

(xi − xi+1)2
, Bi+1(x) =

(x − xi+1)(x − xi)
2

(xi+1 − xi)2
,

f̃(xi−N) =
f(xi−N)

a(xi−N)
−

b(xi−N )

a(xi−N )
U0(xi−N) −

c(xi−N)

a(xi−N )
φ(xi−N − 1),

f̃(xi−N+1) =
f(xi−N+1)

a(xi−N+1)
−

b(xi−N+1)

a(xi−N+1)
U0(xi−N+1) −

c(xi−N+1)

a(xi−N+1)
φ(xi−N+1 − 1).

Theorem 5.1. Let u0(x) be the solution of the problem (4.1). Further let U0(xi)

be its numerical solution defined by (5.1). Then, ‖ u0 − U0 ‖
Ω

2N≤ Ch
4
, where h =

max{H, h}.

Proof. See [7].

5.3. A finite difference scheme for (4.2). On Ω
2N

, we define the following scheme

for the BVP (4.2):

(5.2)



























P ∗NU∗(xi) = −εδ2U∗(xi) + a(xi)D
−U∗(xi) + b(xi)U

∗(xi) = F ∗(xi),

i = 1(1)N − 1, N + 1(1)2N − 1,

D−U∗(xN ) = D+U∗(xN ),

U∗(x0) = u∗(0), U∗(x2N ) = u∗(2),

where

δ2U∗(xi) =
2

xi+1 − xi−1

[

D+U∗(xi) − D−U∗(xi)
]

,

D−U∗(xi) =
U∗(xi) − U∗(xi−1)

xi − xi−1

, D+U∗(xi) =
U∗(xi+1) − U∗(xi)

xi+1 − xi

,

(5.3) F ∗(xi) = f ∗(xi), xi ∈ Ω
2N

\ {x0, xN , x2N}

or

(5.4) F ∗(xi) =







f(xi) − c(xi)φ(xi − 1), xi ∈ Ω− ∩ Ω
2N

,

f(xi) − c(xi)U0i−N
, xi ∈ Ω+ ∩ Ω

2N
.

Theorem 5.2 (Discrete maximum principle). Suppose a mesh function Z(xi) satisfies

Z(x0) ≥ 0, Z(x2N ) ≥ 0, P ∗NZ(xi) ≥ 0, xi ∈ Ω
2N

\ {x0, xN , x2N} and [D]Z(xN) =

D+Z(xN) − D−Z(xN) ≤ 0. Then, Z(xi) ≥ 0, ∀xi ∈ Ω
2N

.

Proof. See [9].

A consequence of this theorem is the following stability result.
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Theorem 5.3. Let U∗(xi) be a numerical solution of the problem (5.2). Then,

|U∗(xi)| ≤ C max{|U∗(x0)|, |U
∗(x2N)|, max

j∈J
P ∗NU∗(xj)},

J = {1, . . . , N − 1, N + 1, . . . , 2N − 1}, i = 0(1)2N.

Theorem 5.4. Let u∗ be the solution of the auxiliary problem (4.2) and let U∗(xi) be

the corresponding numerical solution defined by (5.2) and (5.3). Then,

|u∗(xi) − U∗(xi)| ≤ CN−1 ln N, xi ∈ Ω
2N

.

Proof. See [9].

Theorem 5.5. Let u∗ be the solution of the auxiliary problem (4.2) and let U∗(xi) be

the corresponding numerical solution defined by (5.2) and (5.4). Then,

|u∗(xi) − U∗(xi)| ≤ CN−1 ln N, xi ∈ Ω
2N

.

Proof. Using the Theorem 5.3 and the results given in [9] one can derive the desired

result.

6. Asymptotic numerical method

We now explain how to obtain a numerical solution for the BVP (2.1) by the

ANM. First we solve the reduced problem (4.1) either exactly or numerically. Then

we solve numerically the auxiliary problem (4.2) by using the scheme (5.2) with

either (5.3) or (5.4). This numerical solution is taken as an approximation to the

exact solution of the BVP (2.1). An error estimate for this approximation is given in

the following theorem.

Theorem 6.1. Let u be the solution of the problem (2.1) and let U∗(xi) be a numerical

solution defined by (5.2) with either (5.3) or (5.4). Then,

‖ u − U∗ ‖
Ω

2N≤ C(ε + N−1 ln N).

Proof. Then by the Theorems 4.4 and 5.4 or 5.5 we have,

|u(xi) − U∗(xi)| ≤ |u(xi) − u∗(xi)| + |u∗(xi) − U∗(xi)|, xi ∈ Ω
2N

≤ Cε + CN−1 ln N = C(ε + N−1 ln N).

Hence the proof of the theorem.
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7. An application to partial differential equations

To illustrate the applicability of the ANM to PDEs we now consider the following

Initial Boundary Value Problem (IBVP):

Find u ∈ C0(G) ∩ C1(G) ∩ C2(G− ∪ G+) such that

(7.1)







































−εuxx(x, t) + ut + a(x)ux(x, t) + b(x)u(x, t) + c(x)u(x − 1, t)

= f(x, t), (x, t) ∈ G− ∪ G+,

u(x, t) = φ(x, t), (x, t) ∈ [−1, 0] × [0, T ],

u(x, 0) = g(x), x ∈ [0, 2],

u(2, t) = g1(t), t ∈ [0, T ].

where 0 < ε ≪ 1, α∗ ≥ a(x) ≥ α1 > α > 0, b(x) ≥ β0 ≥ 0, γ0 ≤ c(x) ≤ 0,

2α + 5β0 + 5γ0 ≥ η > 0, a, b, c and f are sufficiently smooth functions on Ḡ,

G = (0, 2) × (0, T ], G1 = (0, 2] × (0, T ], G− = Ω− × (0, T ], G+ = Ω+ × (0, T ].

The above problem (7.1) is equivalent to

Pu(x, t) :=



























−εuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t)

= f(x, t) − c(x)φ(x − 1, t), (x, t) ∈ G−,

−εuxx(x, t) + a(x)ux(x, t) + b(x)u(x, t)

+c(x)u(x − 1, t) = f(x, t), (x, t) ∈ G+,

(7.2)

u(x, 0) = g(x), x ∈ Ω,

u(0, t) = φ(0, t), u(2, t) = g1(t), t ∈ [0, T ],

u(1−, t) = u(1+, t), ux(1−, t) = ux(1+, t), t ∈ [0, T ],

where u(1−, t) and u(1+, t) denote the left and right limits of u at (1, t), respectively.

Let u0(x, t) be the solution of the reduced problem of (7.1) given by

(7.3)


















∂u0(x, t)

∂t
+ a(x)

∂u0(x, t)

∂x
+ b(x)u0(x, t) + c(x)u0(x − 1, t) = f(x, t), (x, t) ∈ G1,

u0(x, t) = φ(x, t), (x, t) ∈ [−1, 0] × [0, T ],

u0(x, 0) = g(x), x ∈ [0, 2].

Further, it is assumed that, ‖ ∂2u0

∂x2 ‖G−∪G+≤ C.
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We now define an auxiliary problem to (7.1). Find u∗ ∈ Y ∗ = C0(G) ∩ C2(G)

such that

(7.4)


















P∗u∗(x, t) : = −εu∗
xx(x, t) + a(x)u∗

x(x, t) + b(x)u∗(x, t) = f ∗(x, t), (x, t) ∈ G,

u∗(x, 0) = u(x, 0), x ∈ [0, 2]

u∗(0, t) = u(0, t), u∗(1, t) = u(1, t), t ∈ [0, T ].

where

f ∗(x, t) =







f(x, t) − c(x)φ(x − 1, t), (x, t) ∈ G− ∪ {(1, t) : t ∈ (0, T ]},

f(x, t) − c(x)u0(x − 1, t), (x, t) ∈ G+.

Step 1: Solve the reduced problem (7.3) of the IBVP (7.1) numerically by using the

scheme suggested in [16]:


























D+
t U0(xi, tj) + a(xi)D

−
x U0(xi, tj) + b(xi)U0(xi, tj)

+c(xi)U0(xi − 1, tj) = f(xi, tj), (xi, tj) ∈ G1 ∩ Ω̄2N, M

U0(x0, tj) = φ(x0, tj), j = 1(1)M,

U0(xi, t0) = u(xi, t0)), i = 1(1)2N,

(7.5)

where

(7.6) Ω̄2N, M = Ω̄2N × {ti : ti = ih, i = 0(1)M, h = T/M},

Ω̄2N is defined in Section 5.1.

Step 2: Solve the above IBVP (7.4) on the mesh Ω̄2N, M , by using the finite

difference scheme given in [17, 18] we get

(7.7)






































PN,MU∗(xi, tj) = −εδ2
xU

∗(xi, tj) + D−
t U∗(xi, tj) + a(xi)D

−
x U∗(xi, tj)

+b(xi)U
∗(xi, tj) = F ∗(xi, tj), i = 1(1)N − 1, N + 1(1)2N − 1, j = 1(1)M,

D−
x U∗(xN , tj) = D+

x U∗(xN , tj), j = 1(1)M

U∗(xi, t0) = u∗(xi, t0), i = 1(1)2N,

U∗(x0, tj) = u∗(0, tj), U∗(x2N , tj) = u∗(2, tj), j = 1(1)M

where

δ2
xU

∗(xi, tj) =
2

xi+1 − xi−1

[

D+
x U∗(xi, tj) − D−

x U∗(xi, tj)
]

,

D−
x U∗(xi, tj) =

U∗(xi, tj) − U∗(xi−1, tj)

xi − xi−1

,

D+
x U∗(xi, tj) =

U∗(xi+1, tj) − U∗(xi, tj)

xi+1 − xi

,

D−
t U∗(xi, tj) =

U∗(xi, tj) − U∗(xi, tj−1)

tj − tj−1

,
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(7.8) F ∗(xi, tj) =







f(xi, tj) − c(xi)φ(xi − 1, tj), (xi, tj) ∈ G− ∩ Ω
2N, M

,

f(xi, tj) − c(xi)u0(xi − 1, tj), (xi, tj) ∈ G+ ∩ Ω
2N, M

or

(7.9) F ∗(xi, tj) =







f(xi, tj) − c(xi)φ(xi − 1, tj), (xi, tj) ∈ G− ∩ Ω
2N, M

,

f(xi, tj) − c(xi)U0(xi−N , tj), (xi, tj) ∈ G+ ∩ Ω
2N, M

.

The numerical solution U∗(xi, tj) will be taken as an approximation to the solution

of the IBVP (7.1).

8. Numerical results

In this section, three examples are given to illustrate the numerical method dis-

cussed in this paper. The double mesh principle is used to estimate the error and

compute the experiment rate of convergence in our computed solution. For this we

put

DM
ε = max

0≤i≤M
|UM

i − U2M
2i |,

where UM
i and U2M

2i are the ith components of the numerical solutions on meshes of

M and 2M points respectively, here M = 2N . We compute the uniform error and

rate of convergence as

DM = max
ε

DM
ε , pM = log2

(

DM

D2M

)

.

Example 8.1. (Constant coefficient problem)

(8.1)







−εu′′(x) + 3u′(x) − u(x − 1) = 0, x ∈ Ω− ∪ Ω+

u(x) = 1, x ∈ [−1, 0], u(2) = 2.

The exact solution of this problem is given by

u(x) =



















1 + c1[e
3x

ε − 1] + x
3
, x ∈ [0, 1],

c2 + x
3

+ (x−1)2

18
+ εx

27
− c1x

3
− c1x

3
e

3(x−1)
ε

+e
3(x−2)

ε [23
18

− 2ε
27

− c2 + 2c1
3

+ 2c1
3

e
3
ε ], x ∈ [1, 2],

where

c1 = e
−6
ε

[

4ε
9
− ε2

27
− 3

3 − 4e
−6
ε + 2ε

3
[e

−3
ε − e

−6
ε ]

]

,

c2 =

[

1 − 23
18

e
−3
ε + 2ε

27
e

−3
ε − ε

27
+ c1e

3
ε [1 − e

−3
ε − 2

3
e

−6
ε ]

1 − e
−3
ε

]

.

Table 1 presents the values of DM and pM for this problem and Figure 1 represents

the numerical solution U∗(x), exact solution u(x) and the reduced problem solution

u0(x).
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Example 8.2 (Variable coefficient problem).

(8.2)







−εu′′(x) + (x + 10)u′(x) − u(x − 1) = x, x ∈ Ω− ∪ Ω+

u(x) = x, x ∈ [−1, 0], u(2) = 2.

Table 2 presents the values of DM and pM for this problem.

Example 8.3 (Partial differential equation).

−εuxx(x, t) + ut(x, t) + 3ux(x, t) + u(x, t) − u(x − 1, t) = 1,

u(x, t) = 1, (x, t) ∈ [−1, 0] × [0, 1],

u(x, 0) = 1, x ∈ [0, 2], u(2, t) = 1, t ∈ [0, 1].

Table 3 presents the values of DM and pM for this problem and Figure 2 represents

the numerical solution U∗(x, t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

U
*
=U

*
(x) Numerical solution

u=u(x) Exact solution

u
0
=u

0
(x) Reduced problem solution

Figure 1. Numerical solution U∗, exact solution u and reduced prob-

lem solution u0 of the Example 8.1.
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Figure 2. Numerical solution U∗(x, t) of the Example 8.3.
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Table 1. Numerical results for the Example 8.1

ε M (Number of mesh points)

↓ 64 128 256 512 1024 2048 4096

2−6 7.6654e-3 4.4464e-3 2.5266e-3 1.4405e-3 8.0398e-4 4.4359e-4 2.4261e-4

2−7 7.7791e-3 4.5252e-3 2.5677e-3 1.4614e-3 8.1282e-4 4.4716e-4 2.4403e-4

2−8 7.8352e-3 4.5658e-3 2.5920e-3 1.4758e-3 8.2007e-4 4.5037e-4 2.4527e-4

2−9 7.8625e-3 4.5856e-3 2.6044e-3 1.4839e-3 8.2507e-4 4.5310e-4 2.4648e-4

2−10 7.8760e-3 4.5951e-3 2.6103e-3 1.4880e-3 8.2788e-4 4.5501e-4 2.4755e-4

2−11 7.8826e-3 4.5998e-3 2.6131e-3 1.4899e-3 8.2925e-4 4.5607e-4 2.4831e-4

2−12 7.8859e-3 4.6021e-3 2.6145e-3 1.4908e-3 8.2988e-4 4.5658e-4 2.4873e-4

2−13 7.8875e-3 4.6033e-3 2.6151e-3 1.4912e-3 8.3016e-4 4.5681e-4 2.4893e-4

2−14 7.8883e-3 4.6038e-3 2.6155e-3 1.4914e-3 8.3030e-4 4.5691e-4 2.4901e-4

2−15 7.8887e-3 4.6041e-3 2.6156e-3 1.4915e-3 8.3036e-4 4.5696e-4 2.4905e-4

2−16 7.8890e-3 4.6043e-3 2.6157e-3 1.4915e-3 8.3040e-4 4.5699e-4 2.4907e-4

2−17 7.8891e-3 4.6043e-3 2.6157e-3 1.4916e-3 8.3041e-4 4.5700e-4 2.4908e-4

2−18 7.8891e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3042e-4 4.5700e-4 2.4908e-4

2−19 7.8891e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3042e-4 4.5700e-4 2.4908e-4

2−20 7.8891e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3043e-4 4.5701e-4 2.4909e-4

2−21 7.8892e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3043e-4 4.5701e-4 2.4909e-4
...

...
...

...
...

...
...

...

2−25 7.8892e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3043e-4 4.5701e-4 2.4909e-4

DM 7.8892e-3 4.6044e-3 2.6158e-3 1.4916e-3 8.3043e-4 4.5701e-4 2.4909e-4

pM 7.7685e-1 8.1578e-1 8.1039e-1 8.4492e-1 8.6164e-1 8.7557e-1 -

9. Discussion

A BVP for a class of SPDDEs is considered. To obtain an approximate solution

for this type of problems, an asymptotic numerical method is presented. The method

is shown to be convergent of order O(ε + N−1 ln N). From the Tables 1-2, we see

that the convergent order is O(N−1 ln N). An application of the ANM to partial

differential equations is given in Section 7.
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Table 2. Numerical results for the Example 8.2

ε M (Number of mesh points)

↓ 64 128 256 512 1024 2048 4096

2−6 7.7509e-2 6.5711e-2 4.7100e-2 3.1385e-2 1.8340e-2 1.0657e-2 6.0429e-3

2−7 7.7559e-2 6.5749e-2 4.7124e-2 3.1399e-2 1.8348e-2 1.0662e-2 6.0455e-3

2−8 7.7584e-2 6.5768e-2 4.7136e-2 3.1407e-2 1.8352e-2 1.0664e-2 6.0468e-3

2−9 7.7597e-2 6.5778e-2 4.7142e-2 3.1410e-2 1.8354e-2 1.0665e-2 6.0474e-3

2−10 7.7603e-2 6.5783e-2 4.7145e-2 3.1412e-2 1.8355e-2 1.0666e-2 6.0478e-3

2−11 7.7606e-2 6.5785e-2 4.7146e-2 3.1413e-2 1.8356e-2 1.0666e-2 6.0479e-3

2−12 7.7608e-2 6.5787e-2 4.7147e-2 3.1414e-2 1.8356e-2 1.0666e-2 6.0480e-3

2−13 7.7608e-2 6.5787e-2 4.7147e-2 3.1414e-2 1.8356e-2 1.0667e-2 6.0481e-3

2−14 7.7609e-2 6.5788e-2 4.7148e-2 3.1414e-2 1.8356e-2 1.0667e-2 6.0481e-3
...

...
...

...
...

...
...

...

2−25 7.7609e-2 6.5788e-2 4.7148e-2 3.1414e-2 1.8356e-2 1.0667e-2 6.0481e-3

DM 7.7609e-2 6.5788e-2 4.7148e-2 3.1414e-2 1.8356e-2 1.0667e-2 6.0481e-3

pM 2.3841e-1 4.8063e-1 5.8578e-1 7.7515e-1 7.8315e-1 8.1855e-1 -

Table 3. Numerical results for the Example 8.3

ε M (Number of mesh points)

↓ 16 32 64 128 256

2−6 3.5276e-2 2.5136e-2 1.9006e-2 1.3578e-2 8.8928e-3

2−7 3.5631e-2 2.5426e-2 1.9308e-2 1.3841e-2 9.1276e-3

2−8 3.5809e-2 2.5573e-2 1.9464e-2 1.3985e-2 9.2834e-3

2−9 3.5899e-2 2.5647e-2 1.9543e-2 1.4061e-2 9.3718e-3

2−10 3.5943e-2 2.5685e-2 1.9584e-2 1.4100e-2 9.4186e-3

2−11 3.5965e-2 2.5703e-2 1.9604e-2 1.4119e-2 9.4428e-3

2−12 3.5977e-2 2.5713e-2 1.9614e-2 1.4129e-2 9.4550e-3

2−13 3.5982e-2 2.5717e-2 1.9619e-2 1.4134e-2 9.4612e-3

2−14 3.5985e-2 2.5720e-2 1.9621e-2 1.4137e-2 9.4643e-3

2−15 3.5986e-2 2.5721e-2 1.9623e-2 1.4138e-2 9.4658e-3

DM 3.5986e-2 2.5721e-2 1.9623e-2 1.4138e-2 9.4658e-3

pM 4.8451e-1 3.9040e-1 4.7295e-1 5.7878e-1 -
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