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ABSTRACT. The purpose of this paper is to establish some new a priori error estimates in finite

element method with quadrature for parabolic interface problems. Due to low global regularity of

the solutions, the error analysis of the standard finite element methods for parabolic problems is

difficult to adopt for parabolic interface problems. In this paper, we fill a theoretical gap between

standard error analysis technique of finite element method for non interface problems and parabolic

interface problems. Optimal L
∞(H1) and L

∞(L2) norms error estimates have been derived for the

semidiscrete case under practical regularity assumptions of the true solution for fitted finite element

method with straight interface triangles. Further, the fully discrete backward Euler scheme is also

considered and optimal L
∞(L2) norm error estimate is established. The interface is assumed to be

smooth for our purpose.
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schemes, optimal, point-wise error estimates
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1. INTRODUCTION

Let Ω be a convex polygonal domain in R
2 with boundary ∂Ω and Ω1 ⊂ Ω be

an open domain with C2 smooth boundary Γ = ∂Ω1. Let Ω2 = Ω\Ω1 be an another

open domain contained in Ω with boundary Γ∪∂Ω (see Figure 1). In Ω = Ω1∪Γ∪Ω2,

we consider the following parabolic interface problem

(1.1) ut −∇ · (β(x)∇u) = f(x, t) in Ω × (0, T ]

with initial and boundary conditions

(1.2) u(x, 0) = u0 in Ω; u(x, t) = 0 on ∂Ω × (0, T ]
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Figure 1. Domain Ω and its sub domains Ω1, Ω2 with interface Γ.

and jump conditions on the interface

(1.3) [u] = 0,
[

β
∂u

∂n

]

= g(x, t) along Γ,

where the symbol [v] is a jump of a quantity v across the interface Γ and n is the

unit outward normal to the boundary ∂Ω1. The coefficient function β is positive and

piecewise constant, i.e.

β(x) = βi for x ∈ Ωi, i = 1, 2.

Many physical phenomena can be modeled by partial differential equations with

singularities and interfaces. Interface problems are generally those problems or differ-

ential equations in which the input data are non smooth or discontinuous or singular

across one or more interfaces in the solution domain. Parabolic equations (1.1) with

discontinuous coefficients occur in many applications such as in material sciences and

fluid dynamics. As a model, we consider non-stationary heat conduction problems in

two dimensions with a conduction coefficient β which is discontinuous across a smooth

interface. For a detailed references on models for interface problems, see [6, 7, 11, 15].

The standard finite difference and finite element methods may not be successful

in giving satisfactory numerical results for such problems. Hence, many new methods

have been developed. Some of them are developed with the modifications in the

standard methods, so that they can deal with the discontinuities and the singularities.

For the literature on the recent developments of the numerical methods for such

problems, we refer to [2, 14] which includes extensive list of relevant literatures.

Although a good number of articles is devoted to the finite element approximation

of elliptic interface problems, the literature seems to lack concerning the convergence

of finite element solutions to the true solutions of parabolic interface problems (1.1)–

(1.3). For the backward Euler time discretization, Chen and Zou [4] have studied the

convergence of fully discrete solution to the exact solution using fitted finite element

method. They have proved almost optimal error estimates in L2(L2) and L2(H1)

norms when global regularity of the solution is low. Then an essential improvement

was made in [16]. The authors of [16] have used a finite element discretization where

interface triangles are assumed to be curved triangles instead of straight triangles
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like classical finite element methods. Optimal order error estimates in L2(L2) and

L2(H1) norms are shown to hold for both semi discrete and fully discrete scheme

in [16]. More recently, for similar triangulation, Deka and Sinha ([9]) have studied

the pointwise-in-time convergence in finite element method for parabolic interface

problems. They have shown optimal error estimates in L∞(H1) and L∞(L2) norms

under the assumption that grid line exactly follow the actual interface. This may

causes some technical difficulties in practice for the evaluation of the integrals over

those curved elements near the interface. In fact, in practice, the integrals appearing

in finite element approximation are evaluated numerically by using some well known

quadrature schemes. Therefore, quadrature based finite element method has been

proposed and analyzed in this work. Quadrature based finite element method for

elliptic interface problems can be found in [8, 12].

In this work, we are able to show that the standard error analysis technique

of finite element method can be extended to parabolic interface problems. Optimal

order pointwise-in-time error estimates in the L2 and H1 norms are established for the

semidiscrete scheme. In addition, a fully discrete method based on backward Euler

time-stepping scheme is analyzed and related optimal pointwise-in-time error bounds

are derived. To the best of our knowledge, optimal point-wise in time error estimates

for a finite element discretization based on [4] have not been established earlier for the

parabolic interface problem. The achieved estimates are analogous to the case with a

regular solution, however, due to low regularity, the proof requires a careful technical

work coupled with a approximation result for the linear interpolant. Other technical

tools used in this paper are Sobolev embedding inequality, approximation properties

for elliptic projection, duality arguments and some known results on elliptic interface

problems.

A brief outline of this paper is as follows. In Section 2, we introduce some

notation, recall some basic results from the literature and obtain the a priori estimate

for the solution. In Section 3, we describe a finite element discretization for the

problem (1.1)–(1.3) and prove some approximation properties related to the auxiliary

projection used in our analysis. While Section 4 is devoted to the error analysis for

the semidiscrete finite element approximation, error estimates for the fully discrete

backward Euler time stepping scheme are derived in Section 5. Finally, a numerical

example is presented in Section 6 for the completeness of this work.

2. NOTATIONS AND PRELIMINARIES

In this section, we shall introduce the standard notation for Sobolev spaces and

norms to be used in this paper.

For m ≥ 0 and real p with 1 ≤ p ≤ ∞, we use Wm,p(Ω) to denote Sobolev space

of order m with norm ‖.‖Hm and in particular for p = 2, we write Wm,2 = Hm.
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Hm
0 (Ω) is a closed subspace of Hm(Ω), which is also closure of C∞

0 (Ω) (the set of all

C∞ functions with compact support) with respect to the norm of Hm(Ω) (c.f. [1]).

We shall also need the following spaces:

X = H1(Ω) ∩H2(Ω1) ∩H
2(Ω2) and Y = L2(Ω) ∩H1(Ω1) ∩H

1(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2)

‖v‖Y = ‖v‖L2(Ω) + ‖v‖H1(Ω1) + ‖v‖H1(Ω2),

respectively. For a given Banach space B, we define, for m = 0, 1,

Hm(0, T ;B) =

{

u(t) ∈ B for a.e. t ∈ (0, T ) and

m
∑

j=0

∫ T

0

∥

∥

∥

∂ju(t)

∂tj

∥

∥

∥

2

B
dt <∞

}

equipped with the norm

‖u‖Hm(0,T ;B) =

(

m
∑

j=0

∫ T

0

∥

∥

∥

∂ju(t)

∂tj

∥

∥

∥

2

B
dt

)
1
2

.

We write L2(0, T ;B) = H0(0, T ;B). Throughout this paper, C denotes a generic

positive constant which is independent of the mesh parameters h and k.

In order to introduce the weak formulation of the problem, we now define the

local bilinear form Al(., .) : H1(Ωl) ×H1(Ωl) → R by

Al(w, v) =

∫

Ωl

βl∇w · ∇vdx, l = 1, 2.

Then the global bilinear map A(·, ·) : H1
0 (Ω) ×H1

0(Ω) → R is defined by

A(w, v) =

∫

Ω

β(x)∇w · ∇vdx

= A1(w, v) + A2(w, v) ∀ w, v ∈ H1
0 (Ω).(2.1)

The weak form for the problem (1.1)–(1.3) is defined as follows: Find u : (0, T ] →

H1
0 (Ω) such that

(2.2) (ut, v) + A(u, v) = (f, v) + 〈g, v〉Γ ∀v ∈ H1
0 (Ω), a.e. t ∈ (0, T ]

with u(x, 0) = u0(x). Here, (·, ·) and 〈·, ·〉Γ are used to denote the inner products of

L2(Ω) and L2(Γ) spaces, respectively.

Regarding the regularity for the solution of the interface problem (1.1)–(1.3), we

have the following result.

Theorem 2.1. Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H
1
2 (Γ)) and u0 ∈ H1

0 (Ω). Then

the problem (1.1)–(1.3) has a unique solution u ∈ L2(0, T ;X)∩H1(0, T ;Y ). Further,
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for u0 ∈ H3(Ω) ∩H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), f(x, 0) ∈ H1(Ω) and g = 0, solution

u satisfies the following a priori estimate
∫ t

0

{‖ut‖
2
H2(Ω1) + ‖ut‖

2
H2(Ω2)}ds ≤ C

{

‖ut(0)‖2
H1(Ω) +

∫ t

0

‖ft‖
2
L2(Ω)ds

}

.

Proof. The existence of unique solution can be found in [4, 15].

Next, to obtain the a priori estimate we first transform the problem (1.1)–(1.3)

to the following equivalent problem:

For a.e. t ∈ (0, T ], ut(x, t) ∈ H2(Ω1) ∩ H2(Ω2) satisfies the following elliptic

interface problem

(2.3) −∇ · (β(x)∇ut) = ft − utt in Ωi, i = 1, 2

along with boundary condition

(2.4) ut(x, t) = 0 on ∂Ω × (0, T ]

and jump conditions (cf. [13])

(2.5) [ut] = 0 and

[

β
∂ut

∂n

]

= 0 along Γ.

From the a priori estimate for elliptic interface problem (cf. [4]), it follows that

(2.6) ‖ut‖H2(Ω1) + ‖ut‖H2(Ω2) ≤ C{‖utt‖L2(Ω) + ‖ft‖L2(Ω)}.

For any

v ∈ Y ∩ {ψ : ψ = 0 on ∂Ω} & [v] = 0 along Γ,

we obtain

−

∫

Ω1

∇ · (β1∇u)vdx−

∫

Ω2

∇ · (β2∇u)vdx

= −

∫

Γ

β1
∂u

∂n
vds+

∫

Ω1

β1∇u · ∇vdx

+

∫

Γ

β2
∂u

∂n
vds+

∫

Ω2

β2∇u · ∇vdx

=

∫

Ω1

β1∇u · ∇vdx+

∫

Ω2

β2∇u · ∇vdx+

∫

Γ

[

β
∂u

∂n
v

]

ds

= A1(u, v) + A2(u, v).(2.7)

Since [v] = 0 and [β∂u/∂n] = 0 along Γ. Then multiplying (2.3) by such v and

integrating over Ω, we have

(ut, v) + A1(u, v) + A2(u, v) = (f, v).(2.8)

Again it follows from the arguments of [13] that [utt] = 0 along Γ and utt = 0 on ∂Ω,

and hence equation (2.8) leads to

(utt, utt) + A1(ut, utt) + A2(ut, utt) = (ft, utt)(2.9)
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so that
∫ t

0

‖utt‖
2
L2(Ω)ds+

1

2
A1(ut, ut) +

1

2
A2(ut, ut)

≤
1

2
A1(ut(0), ut(0)) +

1

2
A2(ut(0), ut(0)) + C

∫ t

0

‖ft‖
2
L2(Ω)ds.

Under the assumption that u0 ∈ H3(Ω) and f(x, 0) ∈ H1(Ω), we have ut(0) ∈ H1(Ω).

Therefore utt satisfies the following a priori estimate
∫ t

0

‖utt‖
2
L2(Ω)ds ≤ C

{

‖ut(0)‖2
H1(Ω) +

∫ t

0

‖ft‖
2
L2(Ω)ds

}

.

Finally, using above estimate in (2.6) we obtain
∫ t

0

{‖ut‖
2
H2(Ω1) + ‖ut‖

2
H2(Ω2)}ds ≤ C

{

‖ut(0)‖2
H1(Ω) +

∫ t

0

‖ft‖
2
L2(Ω)ds

}

.

Remark 2.2. Consider the following interface problems

ξt −∇ · (β(x)∇ξ) = f(x, t) in Ω × (0, T ]

ξ(x, 0) =
1

2
u0 in Ω; ξ(x, t) = 0 on ∂Ω × (0, T ]

[ξ] = 0,
[

β
∂ξ

∂n

]

= 0 along Γ,

and

ψt −∇ · (β(x)∇ψ) = 0 in Ω × (0, T ]

ψ(x, 0) =
1

2
u0 in Ω; ψ(x, t) = 0 on ∂Ω × (0, T ]

[ψ] = 0,
[

β
∂ψ

∂n

]

= g(x, t) along Γ.

Then, ξ + ψ satisfies the following weak formulation

(2.10) (ξt + ψt, v) + A(ξ + ψ, v) = (f, v) + 〈g, v〉Γ ∀v ∈ H1
0 (Ω).

Subtracting (2.10) from (2.2), we obtain

(2.11) (ut − ξt − ψt, v) + A(u− ξ − ψ, v) = 0.

Setting v = u− ξ − ψ in (2.11) and coercivity of A(·, ·) leads to

‖u− ξ − ψ‖2
L2(Ω) ≤ C‖u(0) − ξ(0) − ψ(0)‖2

L2(Ω).

Finally, use the fact u(0) = ξ(0) + ψ(0) to have u = ξ + ψ for a.e. (x, t) ∈ Ω× (0, T ].

For g ∈ H2(0, T ;H2(Γ)), we assume that

ψ ∈ L2(0, T ;X ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω) ∩H2(Ω1) ∩H

2(Ω2))

so that u ∈ H1(0, T ;L2(Ω) ∩H2(Ω1) ∩H
2(Ω2)).
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Figure 2. Interface triangles K and S along with interface Γ

Thus, under the assumptions u0 ∈ H3(Ω)∩H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), f(x, 0) ∈

H1(Ω) and g ∈ H2(0, T ;H2(Γ)), solution u for the interface problem (1.1)–(1.3) is

unique and u ∈ L2(0, T ;X ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω) ∩H2(Ω1) ∩H

2(Ω2)).

3. FINITE ELEMENT DISCRETIZATION AND

SOME AUXILIARY RESULTS

For the purpose of finite element approximation of the problem (1.1)–(1.3), we

now describe the triangulation Th of Ω. We first approximate the domain Ω1 by a

domain Ωh
1 with the polygonal boundary Γh whose vertices all lie on the interface Γ.

Let Ωh
2 be the approximation for the domain Ω2 with polygonal exterior and interior

boundaries as ∂Ω and Γh, respectively. The triangles with one or two vertices on Γ

are called the interface triangles, the set of all interface triangles is denoted by T ∗
Γ

and we write Ω∗
Γ = ∪K∈T ∗

Γ
K.

We assume that the triangulation Th of the domain Ω satisfy the following con-

ditions:

(A1): Ω = ∪K∈Th
K.

(A2): If K1, K2 ∈ Th and K1 6= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2 is a

common vertex or edge of both triangles.

(A3): Each triangle K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two vertices

lying on Γh.

(A4): For each triangle K ∈ Th, let rK , rK be the radii of its inscribed and

circumscribed circles, respectively. Let h = max{rK : K ∈ Th}.

Let Vh be a family of finite dimensional subspaces of H1
0 (Ω) defined on Th consisting

of piecewise linear functions vanishing on the boundary ∂Ω. Further, we assume the

following inverse inequality

(3.1) ‖vh‖H1(K) ≤ Ch−1‖vh‖L2(K) ∀K ∈ Th, vh ∈ Vh.

Examples of such finite element spaces can be found in [3] and [5].
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In order to approximate A(·, ·), we now introduce approximate bilinear map

Ah(·, ·) : H1(Ω) ×H1(Ω) → R defined as

Ah(w, v) =
∑

K∈Th

∫

K

βK(x)∇w.∇vdx ∀w, v ∈ H1(Ω),

with βK(x) = βi if K ⊂ Ωh
i , i = 1, 2. To handle the L2 inner product, we define the

approximation on Vh and its induced norm by

(3.2) (w, v)h =
∑

K∈Th

{

1

3
meas(K)

3
∑

j=1

w(PK
j )v(PK

j )

}

,

and ‖φ‖h = (φ, φ)
1
2
h , where PK

j are the vertices for the triangle K.

We now recall some existing results on the approximation Ah and the inner

product which will be frequently used in our analysis. For a proof, we refer to [5] and

[7].

Lemma 3.1. For all vh, wh ∈ Vh, we have

|A(vh, wh) − Ah(vh, wh)| ≤ Ch
∑

K∈T ∗

Γ

‖∇vh‖L2(K)‖∇wh‖L2(K).

Lemma 3.2. On Vh the norms ‖.‖L2(Ω) and ‖.‖h are equivalent. Further, for w, v ∈ Vh

and f ∈ H2(Ω), we have

|(w, v)− (w, v)h| ≤ Ch2‖w‖H1(Ω)‖v‖H1(Ω),

|(f, v)h − (f, v)| ≤ Ch2‖f‖H2(Ω)‖v‖H1(Ω).

Let X⋆ be the collection of all v ∈ L2(Ω) with the property that v ∈ H2(Ω1) ∩

H2(Ω2)∩{ψ : ψ = 0 on ∂Ω} and [v] = 0 along Γ. Since Γ is of class C2, thus vi = v|Ωi
,

i = 1, 2 can be extended to ṽi ∈ H2(Ω) such that

‖ṽi‖H2(Ω) ≤ C‖vi‖H2(Ωi).

For the existence of such extensions, we refer to Stein [17]. Further, we have a C2

function φ in [C,B] such that (c.f. [10])

(3.3) |φ(x)| ≤ Ch2

and hence

meas(K2) =

∫ B

C

|φ(x)|dx ≤ Ch2

∫ B

C

dx ≤ Ch3.

Let Πh : C(Ω) → Vh be the Lagrange interpolation operator corresponding to the

space Vh. Then, for K ∈ Th and v ∈ X⋆, we now define

vI =
{ Πhṽ1 if K ⊆ Ωh

1

Πhṽ2 if K ⊆ Ωh
2 .

(3.4)

Regarding vI , we have the following approximation result
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Lemma 3.3. For any v ∈ X⋆, we have

‖v − vI‖H1(Ω1) + ‖v − vI‖H1(Ω2) ≤ Ch(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).

Proof. For H1 norm estimate, we have

‖v − vI‖H1(Ω1) + ‖v − vI‖H1(Ω2)

≤
∑

K∈Th\T
∗

Γ

‖v − vI‖H1(K) +
∑

K∈T ∗

Γ

{‖v − vI‖H1(K1) + ‖v − vI‖H1(K2)}

≤ Ch{‖v‖H2(Ω1) + ‖v‖H2(Ω2)}

+
∑

K∈T ∗

Γ

{‖v − vI‖H1(K1) + ‖v − vI‖H1(K2)}.(3.5)

Here, K1 = K ∩ Ω1 and K2 = K ∩ Ω2. Again, for any K ∈ Th either K ⊆ Ωh
1 or

K ⊆ Ωh
2 . Let K ⊆ Ωh

1 , then vI = Πhṽ1 and hence, we have

‖v − vI‖H1(K1) = ‖ṽ1 − Πhṽ1‖H1(K1) ≤ ‖ṽ1 − Πhṽ1‖H1(K)

≤ Ch‖ṽ1‖H2(K) ≤ Ch‖v1‖H2(Ω1).(3.6)

Again, since v ∈ H2(Ω2) and K2 ⊆ Ω2 with meas(K2) ≤ Ch3, we have

‖v − vI‖H1(K2) ≤ Ch
3(p−2)

2p ‖v − vI‖W 1,p(K2) ∀p > 2

= Ch‖v − vI‖W 1,6(K2) = Ch‖v2 − Πhṽ1‖W 1,6(K2)

≤ Ch‖ṽ2 − ṽ1‖W 1,6(K2) + Ch‖ṽ1 − Πhṽ1‖W 1,6(K2)

≤ Ch‖ṽ2 − ṽ1‖W 1,6(K) + Ch‖ṽ1 − Πhṽ1‖W 1,6(K)

≤ Ch‖ṽ2 − ṽ1‖H2(Ω) + Ch‖ṽ1‖H2(K)

≤ Ch‖ṽ1‖H2(Ω) + Ch‖ṽ2‖H2(Ω)

≤ Ch(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).(3.7)

Then Lemma 3.3 follows immediately from the estimates (3.5)–(3.7).

Let Y ⋆ be the collection of all w ∈ L2(Ω) such that w ∈ H1(Ω1) ∩ H1(Ω2) ∩

{ψ : ψ = 0 on ∂Ω} with [w] = 0 along Γ. We now recall the elliptic projection

Rh : Y ⋆ → Vh given by

(3.8) Ah(Rhv, vh) = A1(v, vh) + A2(v, vh) ∀vh ∈ Vh.

Regarding the approximation properties of Rh operator defined by (3.8), we have the

following results

Lemma 3.4. Let Rh be defined by (3.8), then for any v ∈ X⋆ there is a positive

constant C independent of the mesh parameter h such that

‖Rhv − v‖H1(Ω1) + ‖Rhv − v‖H1(Ω2) ≤ Ch(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).
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Proof. Coercivity of each local bilinear map and the definition of Rh projection leads

to

‖v −Rhv‖
2
H1(Ω1) + ‖v − Rhv‖

2
H1(Ω2)

≤ C{A1(v − Rhv, v − vh) + A2(v −Rhv, v − vh)}

+CA1(v, vh − Rhv) − CA1(Rhv, vh − Rhv)

+CA2(v, vh − Rhv) − CA2(Rhv, vh − Rhv)

= C{A1(v −Rhv, v − vh) + A2(v − Rhv, v − vh)}

+C{A1
h(Rhv, vh − Rhv) −A1(Rhv, vh −Rhv)}

+C{A2
h(Rhv, vh − Rhv) −A2(Rhv, vh −Rhv)}

= C{A1(v −Rhv, v − vh) + A2(v − Rhv, v − vh)}

+C{Ah(Rhv, vh − Rhv) −A(Rhv, vh − Rhv)}.

Then it follows from Lemma 3.1 and Young’s inequality that

‖v −Rhv‖
2
H1(Ω1) + ‖v − Rhv‖

2
H1(Ω2)

≤ C‖v −Rhv‖H1(Ω1)‖v − vh‖H1(Ω1) + C‖v − Rhv‖H1(Ω2)‖v − vh‖H1(Ω2)

+Ch‖Rhv‖H1(Ω)‖vh −Rhv‖H1(Ω)

≤ ǫ‖v − Rhv‖
2
H1(Ω1) +

C

ǫ
‖v − vh‖

2
H1(Ω1) + ǫ‖v − Rhv‖

2
H1(Ω2)

+
C

ǫ
‖v − vh‖

2
H1(Ω2) +

Ch2

ǫ
‖Rhv‖

2
H1(Ω) + ǫ‖vh − Rhv‖

2
H1(Ω).

Again applying the fact ‖Rhv‖H1(Ω) ≤ C(‖v‖H1(Ω1)+‖v‖H1(Ω2)) and for suitable ǫ > 0,

we have

‖v − Rhv‖
2
H1(Ω1) + ‖v −Rhv‖

2
H1(Ω2) ≤ C‖v − vh‖

2
H1(Ω1) + C‖v − vh‖

2
H1(Ω2)

+Ch2{‖v‖2
H1(Ω1) + ‖v‖2

H1(Ω2)}.

Now, setting vh = vI and then using Lemma 3.3, we have

‖v − Rhv‖H1(Ω1) + ‖v −Rhv‖H1(Ω2) ≤ Ch(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).

This completes the proof of Lemma 3.4.

Corollary 3.5. Let u be the exact solution of the interface problem (1.1)–(1.3), then

‖u−Rhu‖H1(Ω1) + ‖u−Rhu‖H1(Ω2) ≤ Ch(‖u‖H2(Ω1) + ‖u‖H2(Ω2)),

‖ut − Rhut‖H1(Ω1) + ‖ut −Rhut‖H1(Ω2) ≤ Ch(‖ut‖H2(Ω1) + ‖ut‖H2(Ω2)).

Proof. As u, ut ∈ X⋆, the result follows immediately from the previous result.
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Lemma 3.6. Let Rh be defined by (3.8), then for any v ∈ X⋆ there is a positive

constant C independent of the mesh size parameter h such that

‖Rhv − v‖L2(Ω) ≤ Ch2(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).

Proof. For L2 norm error estimate, we will use the duality argument. For this purpose,

we consider the following interface problem

−∇ · (β∇φ) = v − Rhv

with the boundary condition φ = 0 on ∂Ω and interface conditions [φ] = 0, [β ∂φ
∂n

] = 0

along Γ.

Now multiply the above equation by w ∈ Y ⋆ and then integrate over Ω to have

(3.9) A1(φ, w) + A2(φ, w) = (v − Rhv, w).

Let φh ∈ Vh be the finite element approximation to φ defined as: Find φh ∈ Vh such

that

(3.10) Ah(φh, wh) = (v −Rhv, wh) ∀wh ∈ Vh.

Arguing as deriving Lemma 3.4, it can be concluded that

‖φ− φh‖H1(Ω1) + ‖φ− φh‖H1(Ω2)

≤ C(‖φ− wh‖H1(Ω1) + ‖φ− wh‖H1(Ω2))

+Ch(‖φ‖H2(Ω1) + ‖φ‖H2(Ω2)) ∀wh ∈ Vh.

Let φI be defined as in (3.4) and then set wh = φI to have

‖φ− φh‖H1(Ω1) + ‖φ− φh‖H1(Ω2) ≤ Ch(‖φ‖H2(Ω1) + ‖φ‖H2(Ω2))

≤ Ch‖v − Rhv‖L2(Ω).

In the last inequality, we used the elliptic regularity estimate ‖φ‖X ≤ C‖v−Rhv‖L2(Ω)

(cf. [4]). Thus, we have

(3.11) ‖φ− φh‖H1(Ω) ≤ Ch‖v −Rhv‖L2(Ω).

Since [v − Rhv] = 0 along Γ and v − Rhv ∈ L2(Ω) ∩ H1(Ω1) ∩ H1(Ω2) ∩ {ψ : ψ =

0 on ∂Ω}, therefore we can set w = v − Rhv in (3.9) to have

‖v − Rhv‖
2
L2(Ω) = A1(φ, v − Rhv) + A2(φ, v −Rhv)

= A1(φ− φh, v −Rhv) + A2(φ− φh, v − Rhv)

+{A1(φh, v −Rhv) + A2(φh, v − Rhv)}

≤ C‖φ− φh‖H1(Ω1)‖v − Rhv‖H1(Ω1)

+C‖φ− φh‖H1(Ω2)‖v − Rhv‖H1(Ω2)

+{A1(φh, v) + A2(φh, v)} − {A1(φh, Rhv) + A2(φh, Rhv)}
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≤ Ch‖v − Rhv‖L2(Ω) · Ch(‖v‖H2(Ω1) + ‖v‖H2(Ω2))

+Ah(Rhv, φh) − A(Rhv, φh)

= Ch2‖v −Rhv‖L2(Ω)(‖v‖H2(Ω1) + ‖v‖H2(Ω2))

+{Ah(Rhv, φh) − A(Rhv, φh)}

= Ch2‖v −Rhv‖L2(Ω)(‖v‖H2(Ω1) + ‖v‖H2(Ω2)) + (J).(3.12)

Now, we apply Lemma 3.1 to have

|(J)| ≤ Ch
∑

K∈T ∗

Γ

‖Rhv‖H1(K)‖φh‖H1(K)

≤ Ch
∑

K∈T ∗

Γ

‖Rhv‖H1(K1)‖φh‖H1(K1)

+Ch
∑

K∈T ∗

Γ

‖Rhv‖H1(K2)‖φh‖H1(K2)

= (J)1 + (J)2.(3.13)

Again, using Corollary 3.5 and estimate (3.11), we have

‖Rhv‖H1(K2)‖φh‖H1(K2)

≤ {‖Rhv − v‖H1(K2) + ‖v‖H1(K2)}{‖φh − φ‖H1(K2) + ‖φ‖H1(K2)}

≤ {‖Rhv − v‖H1(Ω2) + ‖ṽ2‖H1(K2)}{‖φh − φ‖H1(Ω2) + ‖φ‖H1(K2)}

≤ C{h‖v‖H2(Ω1) + h‖v‖H2(Ω2) + ‖ṽ2‖H1(K)}

×{h‖v −Rhv‖L2(Ω) + ‖φ‖H1(K)}.(3.14)

Setting p = 4 in the Sobolev embedding inequality (cf. [17, 18])

(3.15) ‖v‖Lp(K2) ≤ Cp
1
2‖v‖H1(K2) ∀v ∈ H1(K2), p > 2

and further, using Hölder’s inequality, we obtain

‖ṽ2‖H1(K) = ‖ṽ2‖L2(K) + ‖∇ṽ2‖L2(K)

≤ Ch
1
2‖ṽ2‖L4(K) + Ch

1
2‖∇ṽ2‖L4(K)

≤ Ch
1
2‖ṽ2‖H1(K) + Ch

1
2‖∇ṽ2‖H1(K)

≤ Ch
1
2‖ṽ2‖H2(K) ≤ Ch

1
2‖v2‖H2(Ω2),(3.16)

where we have used the fact that meas(K) ≤ Ch2. Similarly, for ‖φ‖H1(K), we have

‖φ‖H1(K) ≤ Ch
1
2‖φ‖X ≤ Ch

1
2‖v −Rhv‖L2(Ω).(3.17)

Combining (3.14)–(3.17), we have

‖Rhv‖H1(K2)‖φh‖H1(K2)

≤ Ch{‖v‖H2(Ω1) + ‖v‖H2(Ω2)}‖v − Rhv‖L2(Ω).
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Therefore, for (J)2, we have

(3.18) (J)2 ≤ Ch2{‖v‖H2(Ω1) + ‖v‖H2(Ω2)}‖v − Rhv‖L2(Ω).

Similarly, for (J)1, we have

(3.19) (J)1 ≤ Ch2{‖v‖H2(Ω1) + ‖v‖H2(Ω2)}‖v − Rhv‖L2(Ω).

Then, using the estimates (3.18) and (3.19) in (3.13), we have

(3.20) |(J)| ≤ Ch2‖v − Rhv‖L2(Ω)(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).

Finally, (3.12) and (3.20) leads to the following optimal L2 norm estimate

‖v −Rhv‖L2(Ω) ≤ Ch2(‖v‖H2(Ω1) + ‖v‖H2(Ω2)).

This completes the rest of the proof.

Corollary 3.7. Let u be the exact solution of the interface problem (1.1)–(1.3), then

‖u− Rhu‖L2(Ω) ≤ Ch2‖u‖X,

‖ut − Rhut‖L2(Ω) ≤ Ch2(‖ut‖H2(Ω1) + ‖ut‖H2(Ω2)).

Let gh ∈ Vh be the linear interpolant of g given by

gh =

mh
∑

j=1

g(Pj)Φ
h
j ,

where {Φh
j }

mh

j=1 is the set of standard nodal basis functions corresponding to the nodes

{Pj}
mh

j=1 on the interface Γ. Following the argument of [4] it is possible to obtain the

following approximation property of gh to the interface function g.

Lemma 3.8. Let g ∈ H2(Γ). If Ω∗
Γ is the union of all interface triangles then we

have
∣

∣

∣

∣

∣

∫

Γ

gvhds−

∫

Γh

ghvhds

∣

∣

∣

∣

∣

≤ Ch2‖g‖H2(Γ)‖vh‖H1(Ω∗

Γ) ∀vh ∈ Vh.

Proof. It follows from [4, page 186] that
∣

∣

∣

∣

∣

∫

Γ

gvhds−

∫

Γh

ghvhds

∣

∣

∣

∣

∣

≤ Ch2‖g‖H2(Γ)‖vh‖H1(Ω∗

Γ) + Ch3/2‖g‖H2(Γ)‖vh‖L2(Ω∗

Γ) ∀vh ∈ Vh.

Arguing as in (3.16), we obtain

‖vh‖L2(Ω∗

Γ) =
∑

K∈T ∗

Γ

‖vh‖L2(K)

≤ Ch1/2
∑

K∈T ∗

Γ

‖vh‖L4(K) ≤ Ch1/2‖vh‖H1(Ω∗

Γ).
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The desire result follows immediately from the above two estimates. This completes

the proof.

4. ERROR ANALYSIS FOR THE SEMIDISCRETE SCHEME

In this section, we discuss the semidiscrete finite element method for the problem

(1.1)–(1.3) and derive optimal error estimates in L2 and H1 norms.

The continuous-time Galerkin finite element approximation to (2.2) is stated as

follows: Find uh : [0, T ] → Vh such that uh(0) = Rhu0 and

(4.1) (uht, vh)h + Ah(uh, vh) = (f, vh)h + 〈gh, vh〉Γh
∀vh ∈ Vh, t ∈ (0, T ].

Write the error e(t) = u− uh = u− Rhu+Rhu− uh = ρ+ θ, with ρ = u− Rhu

and θ = Rhu−uh. Again, using (3.8) for v = u ∈ X⋆ and further differentiating with

respect to t, we have

Ah((Rhu)t, vh) = A1(ut, vh) + A2(ut, vh).

Also,

Ah(Rhut, vh) = A1(ut, vh) + A2(ut, vh).

From the above two equations, we have

Ah((Rhu)t −Rhut, vh) = 0 ∀vh ∈ Vh.

Setting vh = (Rhu)t − Rhut in the above equation, we obtain (Rhu)t = Rhut.

Now, by the definition Rh operator, (2.2) and (4.1), we obtain

(θt, vh)h + Ah(θ, vh) = ((Rhu)t − uht, vh)h + Ah(Rhu− uh, vh)

= (Rhut, vh)h + Ah(Rhu, vh) − (uht, vh)h − Ah(uh, vh)

= (Rhut, vh)h + A(u, vh) − (f, vh)h − 〈gh, vh〉Γh

= {(Rhut, vh)h − (Rhut, vh)} + {(f, vh) − (f, vh)h}

+{〈g, vh〉Γ − 〈gh, vh〉Γh
} + (−ρt, vh).

For vh = θ, we have

(θt, θ)h + C‖θ‖2
H1(Ω) ≤ Ch2‖Rhut‖H1(Ω)‖θ‖H1(Ω) + Ch2‖f‖H2(Ω)‖θ‖H1(Ω)

+Ch2‖g‖H2(Γ)‖θ‖H1(Ω⋆
Γ) + C‖ρt‖L2(Ω)‖θ‖L2(Ω)

≤ Cǫ

(

‖ρt‖
2
L2(Ω) + h4{‖Rhut‖

2
H1(Ω) + ‖f‖2

H2(Ω)

+‖g‖2
H2(Γ)}

)

+ C(ǫ)‖θ‖2
H1(Ω).
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Here, we have used Lemma 3.1 and Lemma 3.8. Integrating the above equation from

0 to t and using Corollary 3.7, we obtain

‖θ(t)‖2
L2(Ω) ≤ Ch4

∫ t

0

( 2
∑

i=1

‖ut‖
2
H2(Ωi)

+ ‖f‖2
H2(Ω) + ‖g‖2

H2(Γ)

)

ds.(4.2)

Now, combining Corollary 3.7 and (4.2), we have the following optimal pointwise-in-

time L2-norm error estimates.

Theorem 4.1. Let u and uh be the solutions of the problem (1.1)–(1.3) and (4.1),

respectively. Assume that uh(0) = Rhu0. Then there exists a constant C independent

of h such that

‖e(t)‖L2(Ω) ≤ Ch2

[

‖u‖X +
(

∫ t

0

{ 2
∑

i=1

‖ut‖
2
H2(Ωi)

+‖f‖2
H2(Ω) + ‖g‖2

H2(Γ)

}

ds
)

1
2

]

.

For H1-norm estimate, we first use Corollary 3.5 to have

(4.3)

2
∑

i=1

‖ρ(t)‖H1(Ωi) ≤ Ch

2
∑

i=1

‖u‖H2(Ωi).

Applying inverse estimate (3.1), we obtain

‖θ(t)‖H1(Ω) ≤ Ch−1‖θ(t)‖L2(Ω)

≤ Ch−1h2

[

∫ t

0

( 2
∑

i=1

‖ut‖
2
H2(Ωi)

+ ‖f‖2
H2(Ω) + ‖g‖2

H2(Γ)

)

ds

]
1
2

= Ch

[

∫ t

0

( 2
∑

i=1

‖ut‖
2
H2(Ωi)

+ ‖f‖2
H2(Ω) + ‖g‖2

H2(Γ)

)

ds

]
1
2

.(4.4)

Combining (4.3) and (4.4), we have the following optimal pointwise-in-time H1-norm

error estimates.

Theorem 4.2. Let u and uh be the solutions of the problem (1.1)–(1.3) and (4.1),

respectively. Assume that uh(0) = Rhu0. Then there exists a constant C independent

of h such that

‖e(t)‖H1(Ω) ≤ Ch

[

‖u‖X +
(

∫ t

0

{

2
∑

i=1

‖ut‖
2
H2(Ωi)

+‖f‖2
H2(Ω) + ‖g‖2

H2(Γ)

}

ds
)

1
2

]

.
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5. ERROR ANALYSIS FOR THE FULLY DISCRETE SCHEME

A fully discrete scheme based on backward Euler method is proposed and ana-

lyzed in this section. Optimal L2 norm error estimate is obtained for fully discrete

scheme.

We first partition the interval [0, T ] into M equally spaced subintervals by the

following points

0 = t0 < t1 < · · · < tM = T

with tn = nk, where k = T
M

be the time step. Let In = (tn−1, tn] be the n-th

subinterval and φn = φ(tn). For a given sequence {φn}M
n=0 ⊂ L2(Ω), we now introduce

the backward difference quotient as

∆kφ
n =

φn − φn−1

k
.

The fully discrete finite element approximation to the problem (2.2) is defined as

follows: For n = 1, . . . ,M, find Un ∈ Vh such that

(5.1) (∆kU
n, vh)h + Ah(U

n, vh) = (fn, vh) + 〈gn
h , vh〉Γh

∀vh ∈ Vh

with U0 = Rhu0. For each n = 1, . . . ,M, the existence of a unique solution to (5.1)

can be found in [4]. We then define the fully discrete solution to be a piecewise

constant function Uh(x, t) in time and is given by

Uh(x, t) = Un(x) ∀t ∈ In, 1 ≤ n ≤M.

We now prove the main result of this section in the following theorem.

Theorem 5.1. Let u and U be the solutions of the problem (1.1)–(1.3) and (5.1),

respectively. Assume that U0 = Rhu0. Then there exists a constant C independent of

h and k such that

‖U(tn) − u(tn)‖L2(Ω)

≤ C(h2 + k)
{

‖u0‖H2(Ω) + |||gn||| + ‖utt‖L2(0,T ;L2(Ω)) +

2
∑

i=1

‖ut‖L2(0,T ;H2(Ωi))

}

.

Proof. We write the error Un − un at time tn as

Un − un = (Un −Rhu
n) + (Rhu

n − un) ≡: θn + ρn

where θn = Un − Rhu
n and ρn = Rhu

n − un.

For θn, we have the following error equation

(∆kθ
n, vh)h + Ah(θ

n, vh)

= (−∆kRhu
n + ∆kU

n, vh)h + Ah(−Rhu
n + Un, vh)

= (∆kU
n, vh)h + Ah(U

n, vh) − (∆kRhu
n, vh)h − Ah(Rhu

n, vh)
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= (fn, vh) + 〈gn
h , vh〉Γh

− (∆kRhu
n, vh)h − A(un, vh)

= (fn, vh) + 〈gn
h , vh〉Γh

− (∆kRhu
n, vh)h

+(un
t , vh) − (fn, vh) − 〈gn, vh〉Γ

≡: −(wn, vh) + {(∆kRhu
n, vh) − (∆kRhu

n, vh)h}

+{〈gn
h , vh〉Γh

− 〈gn, vh〉Γ},(5.2)

where wn = ∆kRhu
n − un

t . For simplicity of the exposition, we write wn = wn
1 + wn

2 ,

where wn
1 = Rh∆ku

n − ∆ku
n and wn

2 = ∆ku
n − un

t .

Now, setting vh = θn in (5.2), we have

(∆kθ
n, θn)h + Ah(θ

n, θn) = −(wn, θn) + {(∆kRhu
n, θn) − (∆kRhu

n, θn)h}

+{〈gn
h , θ

n〉Γh
− 〈gn, θn〉Γ}.(5.3)

Since Ah(θ
n, θn) ≥ C‖θn‖2

H1(Ω), we have

‖θn‖L2(Ω) ≤ k‖wn‖L2(Ω) + ‖θn−1‖L2(Ω) + Ch2k
1
2‖Rh∆ku

n‖H1(Ω)

+Ch2k
1
2‖gn‖H2(Γ)

≤ ‖θ0‖L2(Ω) + k

n
∑

j=1

‖wj
1‖L2(Ω) + k

n
∑

j=1

‖wj
2‖L2(Ω)

+Ch2k
1
2

n
∑

j=1

‖wj
1‖H1(Ω) + Ch2k

1
2

n
∑

j=1

‖∆ku
j‖H1(Ω)

+Ch2k
1
2 |||gn|||,(5.4)

with |||gn||| = max1≤j≤n |||g
j|||H2(Γ).

In Ω1, the term wj
1 can be expressed as

wj
1 = Rh∆ku

j
1 − ∆ku

j
1 = (Rh − I)(∆ku

j
1)

= (Rh − I)
1

k

∫ tj

tj−1

u1,tdt =
1

k

∫ tj

tj−1

(Rhu1,t − u1,t)dt,

where ui, i = 1, 2 is the restriction of u in Ωi and ui,t = ∂ui

∂t
.

An application of Corollary 3.7 leads to

k‖wj
1‖L2(Ω1) ≤ Ch2

∫ tj

tj−1

{

2
∑

i=1

‖ut‖H2(Ωi)

}

dt.

Similarly, we obtain

k‖wj
1‖L2(Ω2) ≤ Ch2

∫ tj

tj−1

{

2
∑

i=1

‖ut‖H2(Ωi)

}

dt.
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Using above two estimates, we have

(5.5) k
n
∑

j=1

‖wj
1‖L2(Ω) ≤ Ch2

∫ tn

0

{

2
∑

i=1

‖ut‖H2(Ωi)

}

dt.

Similarly, for the term wn
2 , we have

kwj
2 = uj − uj−1 − kuj

t = −

∫ tj

tj−1

(s− tj−1)uttds

and hence

k‖wj
2‖L2(Ωi) ≤ k

∫ tj

tj−1

‖utt‖L2(Ωi)ds.

Summing over j from j = 1 to j = n, we obtain

(5.6) k
n
∑

j=1

‖wj
2‖L2(Ω) ≤ Ck

∫ tn

0

{

2
∑

i=1

‖utt‖L2(Ωi)

}

dt.

Arguing as in (5.5), we obtain

(5.7) k

n
∑

j=1

‖wj
1‖H1(Ω) ≤ Ch

∫ tn

0

{

2
∑

i=1

‖ut‖H2(Ωi)

}

dt.

Combining (5.4)–(5.7) and using the fact that

k
n
∑

j=1

‖∆ku
j‖2

H1(Ω) ≤ C

∫ tn

0

{

2
∑

i=1

‖ut‖
2
H1(Ωi)

}

dt,

we obtain

‖θn‖L2(Ω) ≤ C(h2 + k)

×

[

2
∑

i=1

{

‖ut‖L2(0,T ;H2(Ωi)) + ‖utt‖L2(0,T ;L2(Ωi))

}

+ |||gn|||

]

.(5.8)

An application of Corollary 3.7 for ρn yields

‖ρn‖L2(Ω) ≤ Ch2

2
∑

i=1

‖un‖H2(Ωi).

Again, it is easy to verify that

‖un‖H2(Ωi) ≤ ‖u0‖H2(Ωi) +

∫ tn

0

‖ut‖H2(Ωi)dt.

Thus, we have

(5.9) ‖ρn‖L2(Ω) ≤ Ch2
{

‖u0‖H2(Ω) +

2
∑

i=1

‖ut‖L2(0,T ;H2(Ωi))

}

.

Combining (5.8) and (5.9) the desired estimate is easily obtained. This completes the

proof.
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Table 6.1. Numerical results for the test problem (6.1)–(6.3).

h ‖u− Uh‖L2(Ω)

1/8 2.06247 × 10−3

1/16 5.28838 × 10−4

1/32 1.36298 × 10−4

1/64 3.47701 × 10−5

6. NUMERICAL RESULTS

In this section, a numerical example is considered for the completeness of this

work. We take for the domain the rectangle Ω = (0, 2) × (0, 1). The interface occurs

at x = 1 so that Ω1 = (0, 1)× (0, 1), Ω2 = (1, 2)× (0, 1) and the interface Γ = Ω̄1∩ Ω̄2.

Consider the following parabolic boundary value problem in Ω:

ut −∇ · (β∇u) = f in Ω × (0, 1], i = 1, 2,(6.1)

u(x, y, 0) = u0(x, y) in Ω, u(x, y, t) = 0 on ∂Ω × (0, 1](6.2)

u1|Γ = u2|Γ, (β1∇u1 · n1)|Γ + (β2∇u2 · n2)|Γ = 0,(6.3)

where ni denotes the unit outer normal vector on Ωi, i = 1, 2. For the exact solution,

we choose

u1(x, y) = esin t sin(πx) sin(πy) in Ω1 × (0, 1]

and

u2(x, y) = −esin t sin(2πx) sin(πy) in Ω2 × (0, 1].

Then the source function f and the initial data u0 are determined from the choice for

u1 and u2 with β1 = 1 and β2 = 1
2
.

For our numerical results, globally continuous piecewise linear finite element func-

tions based on the triangulations of Ω as stated in section 3 were used. The L2-norm

and H1-norm errors at t = 1/130 for various step size h are presented in Table 6.1

for the fully discrete solution. The convergence rates are found to be within our

expectation.
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