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ABSTRACT. In this paper, we study the controllability of the impulsive finite delay differential

equations of fractional order with nonlocal conditions in a Banach spaces. The results are obtained

by using convex condensing operator and Sadovskii’s fixed point theorem via measures of noncom-

pactness and semigroup theory. We do not assume the compactness of the semigroup. An example

is presented to illustrate the main result.
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1. Introduction

The fractional differential equations have recently been proved to be valuable

tool in modelling of many phenomena in various fields of science and engineering.

Indeed, we can find numerous applications in electrochemistry, control, porous media,

electromagnetic, etc. (see [1–6]). So the research on fractional differential equations

has become an object of extensively study during the past decades.

In 1960, Kalman first introduced the concept of controllability which leads to

some very important conclusion regarding the behaviour of linear and nonlinear dy-

namical systems. The problem of controllability is to show the existence of a control

function, which steers the solution of the system from its initial state to final state,

where initial and final state may vary over the entire space. In recent years, the vari-

ous work of controllability of the system represented by differential equations, intgro

differential equations, differential inclusions, neutral functional differential equations

and impulsive differential inclusions in Banach spaces have been studied by many

authors (see [7–14]and references therein). In [15–17], the authors have discussed the

controllability of impulsive delay differential equations in abstract spaces. Wang and

Zhou [18] have investigated the complete controllability of fractional evolution system

without assuming compact semigroup.
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In this paper, we will study the sufficient conditions for the controllability of the

impulsive finite delay differential equations of fractional order with nonlocal condi-

tions of the form

(1.1)























cDαx(t) = Ax(t) + f(t, xt,
∫ t

0
h(t, s, xs)ds)

+(Bu)(t), t ∈ J = [0, b], t 6= ti,

∆x|t=ti = Ii(xti), i = 1, 2, . . . , m,

x0 = φ+ g(x), t ∈ [−a, 0],

where state x(·) takes values in the real Banach space X endowed with norm ‖ · ‖;
cDα is the Caputo fractional derivative of order α, 1

2
< α < 1; A : D(A) ⊂ X → X is

a linear closed densely defined operator; A is an infinitesimal generator of a strongly

continuous semigroup T (t) (t ≥ 0) on X. The control function u(·) is given in

L2(J, U), a Banach space of admissible control function with U as a Banach space; B

is a bounded linear operator from U into X. The non linear operator h : Σ×D → X,

f : J ×D×X → X are given continuous functions, here Σ = {(t, s) | 0 ≤ s ≤ t ≤ T}

and D = {ψ : [−a, 0] → X | ψ(t) is continuous everywhere except for a finite number

of points ti at which ψ(t+i ) and ψ(t−i ) exist and ψ(ti) = ψ(t−i )}. Ii : D → X,

i = 1, 2, . . . , m are impulsive functions, 0 = t0 < t1 < · · · < tm < tm+1 = b, ∆ξ(ti) is

the jump of a function ξ at ti defined by ∆ξ(ti) = ξ(t+i ) − ξ(t−k ).

For any function x ∈ PC([−a, b], X) and any t ∈ J , xt denotes the function in D

defined by

xt(θ) = x(t+ θ), θ ∈ [−a, 0],

where xt(·) represent the time history of the state from the time t−a up to the present

time t and PC([−a, b], X) = {x : [−a, b] → X | x(t) is continuous everywhere except

for a finite number of points ti, at which x(t+i ) and x(t−i ) exist and x(ti) = x(t−i )}.

The measure of noncompactness has been used to study differential equation in

Banach spaces. Xue [19] studied the existence integral solutions for nonlinear dif-

ferential equations with nonlocal initial conditions under noncompactness conditions.

Zhu et al. [20] have proved the existence results of mild solutions of first order semi-

linear differential equations with Hausdorff measure of noncompactness by using a

fixed point theorem. In these papers the authors has used the Sadovskii fixed point

theorem related with condensing operators.

This paper is motivated by recent works [17, 18, 21]. We will study the con-

trollability of the impulsive finite delay differential equation of fractional order with

nonlocal conditions by means of fractional calculus, Kurtauskii’s measure of noncon-

pactness and Sadovski fixed point theorem. For this we will convert the controllability

problem into a fixed point problem with assumption that the controllability operator

has an induced inverse on a quotient space. To the best of our knowledge, up to now,

no work has been reported on controllability of such type of the problem (1.1).
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The rest of paper is organized as follows: In the next section we give some

basic definitions and notations. In section 3, we establish the sufficient conditions of

controllability of the system (1.1). Finally, in section 4, we present an example to

illustrate our results.

2. Preliminaries

In this section, we introduce some basic definition and notation which are used

throughout this paper. We denote by X a Banach space with the norm ‖ · ‖ and

A : D(A) → X is the infinitesimal generator of a strongly continuous semigroup

{T (t), t ≥ 0}. This means that there exists M ≥ 1 such that supt≥0 ‖T (t)‖ ≤

M (see [22]). Let Lp([0, b], X), 1 ≤ p < ∞ be the space of X-valued Bochner

integrable functions on [0, b] with the norm ‖f‖Lp =
(

∫ b

0
‖f(t)‖p

)
1
p

dt. Also note that

PC([−a, b], X) is a Banach space with the norm

‖x‖PC = sup{‖x(t)‖ : t ∈ [−r, b]}.

Definition 2.1 (see [1]). The Riemann-Liouville fractional integral of order α > 0

for a function f is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

where Γ is the gamma function, and f ∈ L1([0, T ], X).

Definition 2.2 (see [1]). The fractional derivative of order 0 ≤ n− 1 < α < n in the

Caputo sense is defined as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, t > 0,

where f is an abstract n-times continuous differentiable function and Γ is a gamma

function.

If f is an abstract function with values in a Banach space X, then integral which

appear in Definition 2.1 and 2.2 are taken in Bochner’s sense.

Definition 2.3 (see [23]). A function x(·) ∈ PC([−a, b], X) is said to be a mild

solution of the system (1.1) if x(t) = φ(t) + g(x)(t) on [−a, 0], ∆x|t=ti = Ii(xti),

i = 1, 2, . . . , m, the restriction of x(·) to the interval Ji (i = 1, 2, . . . , m) is continuous

and the following fractional integral equation is satisfied:

x(t) = U(t)(φ(0) + gx(0)) +

∫ t

0

(t− s)α−1V (t− s)

[

f

(

s, xs,

∫ t

0

h(s, τ, xτ )dτ

)

+Bu(s)

]

ds+
∑

0<ti<t

U(t− ti)Ii(xti),(2.1)
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where

(2.2) U(t) =

∫ ∞

0

φα(θ)T (tαθ)dθ, V (t) = α

∫ ∞

0

θφα(θ)T (tαθ)dθ,

and

φα(θ) =
1

α
θ−1−1/αρα(θ−1/α),

note that φα(θ) satisfies the condition of a probability density function defined on

(0,∞), that is φα(θ) ≥ 0,
∫∞

0
φα(θ)dθ = 1 and

∫∞

0
θφα(θ) = 1

Γ(1+α)
. Also the term

ρα(θ) is defined as

ρα(θ) =
1

π

∞
∑

n=1

(−1)n−1θ−nα−1Γ(nα + 1)

n!
sin(nπα), θ ∈ (0,∞).

Lemma 2.4. The following properties are valid:

(i) for fixed t ≥ 0 and any x ∈ X, we have

‖U(t)x‖ ≤M‖x‖, ‖V (t)x‖ ≤
αM

Γ(1 + α)
‖x‖ =

M

Γ(α)
‖x‖.

(ii) The operators are U(t) and V (t) are strongly continuous for all t ≥ 0.

(iii) If S(t)(t ≥ 0) is a compact semigroup in X, then U(t) and V (t) are norm-

continuous in X for t > 0.

(iv) If S(t)(t ≥ 0) is a compact semigroup in X, then U(t) and V (t) are compact

operators in X for t > 0.

Now we recall the definition of Kuratowski’s measure of noncompactness, which

will be used in the next section to study the controllability of the impulsive fractional

differential equation.

Definition 2.5 (see [24, 25]). Let X be a Banach space and B(X) be family of

bounded subset of X. Then µ : B(X) → R
+, defined by

µ(S) = inf{δ > 0 : S admits a finite cover by sets of diameter ≤ δ},

where S ∈ B(X). Clearly 0 ≤ µ(S) < ∞. µ(S) is called the Kuratowski measure of

noncompactness.

We need to use the following basic properties of the µ measure and Sadovskii’s

fixed point theorem.

Lemma 2.6 (see [24, 25]). Let S, S1 and S2 be bounded sets of a Banach space X.

Then

(i) µ(S) = 0 if and only if S is relatively compact set in X.

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2.

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2).

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.
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Lemma 2.7 (see [24, 25]). If W ⊂ C([a, b], X) is bounded and equicontinuous on

[a, b], then µ(W (t)) is continuous for t ∈ [a, b] and

µ(W ) = sup{µ(W (t)), t ∈ [a, b]}, where W (t) = {x(t) : x ∈W} ⊆ X.

Remark 2.8 (see [24,25]). If B is a bounded set in C([a, b], X), then B(t) is bounded

in X, and µ(B(t)) ≤ µ(B).

Lemma 2.9 (see [24, 25]). Let B = {un} ⊂ C(I,X) (n = 1, 2, . . .) be a bounded and

countable set. Then µ(B(t)) is Lebesgue integrable on I, and

(2.3) µ

({
∫

I

un(t)dt | n = 1, 2, . . .

})

≤ 2

∫

I

µ(B(t))dt, here I = [a, b].

Lemma 2.10 (see [26]). (i.) If W ⊂ PC([a, b], X) is bounded, then W (t) is bounded

in X, and µ(W (t)) ≤ µ(W ) for any t ∈ [a, b].

(ii.) If W ⊂ PC([a, b], X) is bounded and piecewise equicontinuous on [a, b], then

µ(W (t)) is piecewise continuous for t ∈ [a, b] and

µ(W ) = sup{µ(W (t)), t ∈ [a, b]}.

Lemma 2.11 (see [17]). Let {fn}
∞
n=1 be a sequence of functions in L1([0, b],R+).

Assume that there exist ϕ, η ∈ L1([0, b],R+) satisfying supn≥1 ‖fn(t)‖ ≤ ϕ(t) and

µ({fn}
∞
n=1) ≤ η(t) a.e. t ∈ [0, b], then for all t ∈ [0, b], we have

µ

({
∫ t

0

fn(s)ds : n ≥ 1

})

≤ 2

∫ t

0

η(s)ds.

Lemma 2.12 (see [27]). Let S ⊂ X be bounded. Then There exists a countable set

S0 ⊂ S such that µ(S) ≤ 2µ(S0).

Lemma 2.13. Let X and Y be two Banach spaces. A map F : Ω ⊂ X → Y is said

to be a condensing map if F is continuous and takes the bounded sets into bounded

sets, and µ(F (S)) < F (S) for all bounded sets S ⊂ Ω with µ(S) 6= 0.

Lemma 2.14 (Sadovskii’s fixed point theorem). Let X be a Banach space and Ω be

closed convex bounded subset in X. If F : Ω → Ω is a condensing map. Then F has

a fixed point in Ω.

3. Main result

In this section, we prove the result of controllability of problem (1.1). First we

take the following assumptions:

(H1) The function f : J ×D ×X → X satisfies the following:

(i) For t ∈ J , the function f(t, ·, ·) : D × X → X is continuous and for all

(ϕ, x) ∈ D ×X, the function f(·, ϕ, x) is strongly measurable.
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(ii) For t ∈ J and r > 0, there exist ar(·)
(t−·)1−α ∈ L1([0, t],R+) such that

sup
‖ϕ‖D≤r

‖f(·, ϕ)‖ ≤ ar(t) for a.e. t ∈ J,

and

lim
r→∞

inf
1

r

∫ t

0

ar(s)

(t− s)1−α
= σ < +∞.

(iii) There exists a function η ∈ L2([0, b],R+) such that

µ(f(t, E, S)) ≤ η(t)

[

sup
−a≤θ≤0

µ(E(θ)) + µ(S)

]

,

for a.e. t ∈ J and E ⊂ D, S ⊂ X, where E(θ) = {φ(θ) : φ ∈ E}.

(H2) The function h : Σ ×D → X satisfies the following:

(i) For each (t, s) ∈ Σ, the function h(t, s, ·) : D → X is continuous, and for

each x ∈ D, the function h(·, ·, x) : Σ → X is strongly measurable.

(ii) There exists a function m ∈ L1(Σ,R+) such that

‖h(t, s, xs)‖ ≤ m(t, s)‖xs‖D.

(iii) There exists a integrable function ζ : Σ → [0,∞) such that

µ(h(t, s,H)) ≤ ζ(t, s) sup
−a≤θ≤0

µ(H(θ)) a.e. t ∈ J

and H ⊂ D, where H(θ) = {φ(θ) : φ ∈ H}.

For convenience, we write L0 = max
∫ t

0
m(t, s)ds and ζ∗ = max

∫ t

0
ζ(t, s)ds.

(H3) g : PC([0, b], X) → X is a continuous compact operator such that

lim
‖y‖PC→∞

‖g(y)‖

‖y‖PC
= 0.

(H4) The linear operator W : L2(J, U) → X defined by

Wu =

∫ b

0

(b− s)α−1V (t− s)Bu(s)ds

has an inverse operator W−1 which takes values in L2(J, U)/ kerW and there

exist two constants M2,M3 > 0 such that

‖B‖ ≤M2, ‖W−1‖ ≤ M3

and also there is Kw ∈ L2(J,R) such that for every bounded set Q ⊂ X,

µ(W−1Q)(t) ≤ Kw(t)µ(Q).

(H5) The function Ii : D → X, i = 1, 2 . . . , m, is a continuous operator and there

exist nondecreasing functions Li : R
+ → R

+ such that

‖Ii(x)‖ ≤ Li(‖x‖D), i = 1, 2, . . . , m, x ∈ D,

lim
ρ→∞

inf
Li(ρ)

ρ
= λi <∞, i = 1, 2, . . .m
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and also there exists constant ki ≥ 0 such that

µ(Ii(S)) ≤ ki sup
−a≤θ≤0

µ(S(θ)), i = 1, 2, . . . , m.

(H6) Take

N =

[

(2ζ∗ + 1)

(

2M

Γ(α)
+

4M2M2

(Γ(α))2

√

b2α−1

2α− 1
‖KW‖L2

)

‖η‖L2

√

b2α−1

2α− 1

+

(

M +
2M2M2

Γ(α)

√

b2α−1

2α− 1
‖KW‖L2

)

m
∑

i=1

ki

]

<
1

2
,

and for convenience, we write

M∗ = M3

[

‖x1‖ +M‖φ̂(0)‖ +
M

Γ(α)

∫ b

0

(b− s)α−1ar∗(s)ds+M
m
∑

i=1

Li(r
′)

]

.

Theorem 3.1. Assume that the hypothesis (H1)–(H6) hold. Then the impulsive fi-

nite delay differential equations of fractional order (1.1) is controllable on J if the

condition

M

(

1 +
MM2M3

Γ(α)

√

b2α−1

2α− 1

)[

σ(1 + L0)

Γ(α)
+

m
∑

i=1

λi

]

< 1(3.1)

is satisfied.

Proof. Using hypothesis (H4), for every x ∈ PC([−a, b], X), we define the control

ux(t) =W−1

[

x1 − U(b)(φ(0) + gx(0)) −

∫ b

0

(b− s)α−1V (b− s)

×f

(

s, xs,

∫ s

0

h(s, τ, xτ )dτ

)

ds−
∑

0<ti<b

U(b− ti)Ii(xti)

]

(t).

By using this control, we define the operator

(3.2) (Fx)(t) =























φ(t) + (g(x))(t), t ∈ [−a, 0],

U(t) [φ(0) + (g(x))(0)] +
∫ t

0
(t− s)α−1V (t− s)

×
[

f
(

s, xs,
∫ s

0
h(s, τ, xτ )dτ

)

+Bux(s)
]

ds

+
∑

0<ti<t U(t− ti)Ii(xti), t ∈ J.

Clearly any fixed point of F is a solution of (1.1) and also note that x(b) = (Fx)(b) =

x1. We rewrite the problem (1.1) as follows. For φ ∈ D, we define φ̂ ∈ PC by

φ̂(t) =







φ(t) + (g(x))(t), t ∈ [−a, 0],

U(t)[φ(0) + (g(x))(0)], t ∈ J = [0, b].

So φ̂ ∈ PC. Let x(t) = y(t) + φ̂(t), t ∈ [−a, b]. Clearly we see that y satisfies y0 = 0

and for t ∈ J ,

y(t) =

∫ t

0

(t− s)α−1V (t− s)

[

f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

+Buy(s)

]

ds
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+
∑

0<ti<t

U(t− ti)Ii(yti + φ̂ti),

where

uy(s) = W−1[x1 − U(b)(φ(0) + gx(0)) −

∫ b

0

(b− s)α−1V (b− s)×

× f(s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ)ds−
∑

0<ti<t

U(t− ti)Ii(yti + φ̂ti)](s)

if and only if x satisfies

x(t) = U(t)[φ(0) + gx(0)] +

∫ t

0

(t− s)α−1V (t− s)[f(s, xs,

∫ s

0

h(s, τ, xτ )dτ)

+Bux(s)]ds+
∑

0<ti<t

U(t− ti)Ii(xti), t ∈ J,

and x(t) = φ(t) + gx(t), t ∈ [−a, 0]. Define PC0 = {y ∈ PC | y0 = 0}. Let

Q : PC0 → PC0 be an operator defined by

(3.3)

Qy(t) =















0, t ∈ [−a, 0],
∫ t

0
(t− s)α−1V (t− s)

[

f
(

s, ys + φ̂s,
∫ s

0
h(s, τ, yτ + φ̂τ )dτ

)

+Buy(s)
]

ds

+
∑

0<ti<t U(t− ti)Ii(yti + φ̂ti), t ∈ J.

Obviously, the operator F has a fixed point if and only if Q has a fixed point. So we

are going to prove that Q has a fixed point.

Firstly we show that there exists a number r ≥ 1 such that QBr ⊆ Br, where

Br = {y ∈ PC0 : ‖y‖PC ≤ r}.

If this is not true, then for each positive integer r, there exists yr ∈ Br such that

‖Qyr‖ > r for some t ∈ J .

‖Qyr(t)‖ ≤
M

Γ(α)

∫ t

0

(t− s)α−1‖f

(

s, yr
s + φ̂s,

∫ s

0

h(s, τ, yr
τ + φ̂τ)dτ

)

+Buyr(s)‖ds

+M
∑

0<ti<t

‖Ii(y
r
ti

+ φ̂ti)‖

≤
M

Γ(α)

∫ t

0

(t− s)α−1‖f

(

s, yr
s + φ̂s,

∫ s

0

h(s, τ, yr
τ + φ̂τ)dτ

)

‖ds

+
MM2

Γ(α)

∫ t

0

(t− s)α−1‖uyr(s)‖ds+M

m
∑

i=1

Li(‖y
r
ti

+ φ̂ti‖D)‖,(3.4)

where

∫ t

0

(t− s)α−1‖f

(

s, yr
s + φ̂s,

∫ s

0

h(s, τ, yr
τ + φ̂τ )dτ

)

‖ds ≤

∫ t

0

(t− s)α−1ar∗(s)ds,

(3.5)
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here r∗ = (1 + L0)r
′, r′ = r + ‖φ̂‖PC , and
∫ t

0

(t− s)α−1‖uyr(s)‖ds ≤

√

b2α−1

2α− 1
‖uyr‖L2,(3.6)

here

‖uyr‖L2 ≤M3

[

‖x1‖ +M(‖φ(0)‖ + ‖gx(0)‖) +
M

Γ(α)

∫ b

0

(b− s)α−1ar∗(s)ds

+M
m
∑

i=1

Li(‖xti‖D)

]

≤M3

[

‖x1‖ +M‖φ̂(0)‖ +
M

Γ(α)

∫ b

0

(b− s)α−1ar∗(s)ds+M
m
∑

i=1

Li(r
′)

]

= M∗.(3.7)

Thus in view of (3.4) to (3.7), we have that

r <
M

Γ(α)

∫ t

0

(t− s)α−1ar∗(s)ds+
MM2

Γ(α)

√

b2α−1

2α− 1
‖uyr‖L2 +M

m
∑

i=1

Li(r
′)

≤
M

Γ(α)

∫ t

0

(t− s)α−1ar∗(s)ds+
MM2M3

Γ(α)

√

b2α−1

2α− 1

[

‖x1‖ +M‖φ̂(0)‖

+
M

Γ(α)

∫ b

0

(b− s)α−1ar∗(s)ds+M

m
∑

i=1

Li(r
′)

]

+M

m
∑

i=1

Li(r
′).(3.8)

Since r′ = r+ ‖φ̂‖PC → ∞ and r∗ = (1 +L0)r
′ → ∞ as r → ∞ and by (H1) and

(H5), we get

lim
r→∞

inf

∫ t

0
(t− s)α−1ar∗(s)ds

r
= lim

r→∞
inf

∫ t

0
(t− s)α−1ar∗(s)ds

r∗
r∗

r
= σ(1 + L0),(3.9)

lim
r→∞

inf

∑m
i=1 Li(r

′)

r
= lim

r→∞
inf

∑m
i=1 Li(r

′)

r′
r′

r
=

m
∑

i=1

λi.(3.10)

Dividing both side of (3.8) by r and taking r → ∞, then in view of (3.9) and (3.10),

we get

1 < M

(

1 +
MM2M3

Γ(α)

√

b2α−1

2α− 1

)[

σ(1 + L0)

Γ(α)
+

m
∑

i=1

λi

]

.

This contradicts (3.1). Hence, for some r > 0, QBr ⊆ Br. Now we shall prove that

Q is continuous on Br. Let {y(n)} ⊂ Br with y(n) → y ∈ Br as n→ ∞. Then for any

t ∈ J = [0, b], and by assumptions (H1), (H2) and (H5), we have

(I) h(t, τ, y
(n)
τ + φ̂τ ) → h(t, τ, yτ + φ̂τ ).

(II) f(t, y
(n)
t + φ̂t,

∫ t

0
h(t, τ, y

(n)
τ + φ̂τ )dτ) → f(t, yt + φ̂t,

∫ t

0
h(t, τ, yτ + φ̂τ)dτ).

(III) Ii(y
(n)
ti + φ̂ti) → Ii(yti + φ̂ti), i = 1, 2, . . . , as n→ ∞.

(IV) ‖f(t, y
(n)
t +φ̂t,

∫ t

0
h(t, τ, y

(n)
τ +φ̂τ )dτ)−f(t, yt+φ̂t,

∫ t

0
h(t, τ, yτ +φ̂τ )dτ)‖ ≤ 2αr∗(t).
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These together with Lebesgue dominated convergence theorem, we have

‖Qy(n)(t) −Qy(t)‖ ≤
M

Γ(α)

∫ t

0

(t− s)α−1‖f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)

− f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

‖ds

+
M

Γ(α)

∫ t

0

(t− s)α−1‖Buy(n)(s) − Buy(s)‖ds

+M

m
∑

i=1

‖Ii(y
(n)
ti + φ̂ti) − Ii(yti + φ̂ti)‖

≤
M

Γ(α)

∫ t

0

(t− s)α−1‖f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)

− f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

‖ds

+
MM2

Γ(α)

∫ t

0

(t− s)α−1‖uy(n) − uy‖L2ds

+M

m
∑

i=1

‖Ii(y
(n)
ti + φ̂ti) − Ii(yti + φ̂ti)‖,(3.11)

where

‖uy(n) − uy‖L2 ≤M3

[

M

Γ(α)

∫ b

0

(b− s)α−1‖f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)

− f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

‖ds

+M
m
∑

i=1

‖Ii(y
(n)
ti + φ̂ti) − Ii(yti + φ̂ti)‖

]

→ 0 as n→ ∞.

So ‖Qy(n)(t) −Qy(t)‖ → 0 as n → ∞. Hence ‖Qy(n) −Qy‖PC → 0 as n → ∞. This

mean that Q is continuous on Br.

Next we shall prove that Q(Br) is equicontinuous on every Ji, i = 1, 2, . . . , m, i.e.

Q(Br) is piecewise equicontinuous on J . For t1, t2 ∈ Ji with t1 < t2 and y ∈ Br and

in view of (3.7), we have that

‖Qy(t2) −Qy(t1)‖ ≤ ‖

∫ t1

0

(t2 − s)α−1[V (t1 − s) − V (t2 − s)]

×

[

f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

+Buy(s)

]

ds‖

+ ‖

∫ t1

0

[

(t1 − s)α−1 − (t2 − s)α−1
]

V (t1 − s)

×

[

f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

+Buy(s)

]

ds‖
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+ ‖

∫ t2

t1

(t2 − s)α−1V (t2 − s)

×

[

f

(

s, ys + φ̂s,

∫ s

0

h(s, τ, yτ + φ̂τ )dτ

)

+Buy(s)

]

ds‖

+ ‖
m
∑

i=1

[U(t1 − ti) − U(t2 − ti)]Ii(yti + φ̂ti)‖

≤

∫ t1

0

(t2 − s)α−1‖V (t1 − s) − V (t2 − s)‖[αr∗(s) +M∗M2]ds

+
M

Γ(α)

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|[αr∗(s) +M∗M2]ds

+
M

Γ(α)

∫ t2

t1

(t2 − s)α−1[αr∗(s) +M∗M2]ds

+

m
∑

i=1

‖U(t1 − ti) − U(t2 − ti)‖Li(r)

= I1 + I2 + I3 + I4,(3.12)

where

I1 =

∫ t1

0

(t2 − s)α−1‖V (t1 − s) − V (t2 − s)‖[αr∗(s) +M∗M2]ds,

I2 =
M

Γ(α)

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|[αr∗(s) +M∗M2]ds,

I3 =
M

Γ(α)

∫ t2

t1

(t2 − s)α−1[αr∗(s) +M∗M2]ds,

I4 =
m
∑

i=1

‖U(t1 − ti) − U(t2 − ti)‖Li(r).

For any ǫ ∈ (0, t1), we have

I1 ≤

∫ t1−ǫ

0

(t2 − s)α−1‖V (t1 − s) − V (t2 − s)‖[αr∗(s) +M∗M2]ds

+

∫ t1

t1−ǫ

(t2 − s)α−1‖V (t1 − s) − V (t2 − s)‖[αr∗(s) +M∗M2]ds

≤

∫ t1−ǫ

0

(t2 − s)α−1[αr∗(s) +M∗M2]ds. sup
s∈[0,t1−ǫ]

‖V (t1 − s) − V (t2 − s)‖

+
2M

Γ(α)

∫ t1

t1−ǫ

(t2 − s)α−1[αr∗(s) +M∗M2]ds.(3.13)

By Lemma 2.4 we can see that I1 → 0 as t2 → t1 and ǫ → 0 independent of

y ∈ Br. From expression of I2, I3 and I4, we can easily see that I2 → 0, I3 → 0

and I4 → 0 t2 → t1 independent of y ∈ Br. Thus the Q(Br) is equicontinuous on Ji

(i = 1, 2, . . . , m).
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Let S ⊂ Br be any subset. By Lemma 2.12, there exists a countable set S1 =

{y(n)} ⊂ S such that

µ(Q(S)) ≤ 2µ(Q(S1)).(3.14)

Since Q(S1) ⊂ Q(Br) is equicontinuous, then, in view of Lemma 2.10, we have

µ(Q(S1)) = sup
t∈J

µ(Q(S1)(t)).(3.15)

At last, we are going to prove that Q is condensing mapping from Br → Br. Using

Lemma 2.11 and (H1)(iii), (H2)(iii), (H4) and (H5) , we have that

µ(Q(S1)(t)) ≤ µ

({
∫ t

0

(t− s)α−1V (t− s)f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)

ds

})

+ µ

({
∫ t

0

(t− s)α−1V (t− s)Buy(n)(s)ds

})

+ µ

({

∑

0<ti<t

U(t− ti)Ii(y
(n)
ti + φ̂ti)

})

= χ1 + χ2 + χ3,(3.16)

where

χ1 = µ

({
∫ t

0

(t− s)α−1V (t− s)f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)

ds

})

,

χ2 = µ

({
∫ t

0

(t− s)α−1V (t− s)Buy(n)(s)ds

})

,

χ3 = µ

({

∑

0<ti<t

U(t− ti)Ii(y
(n)
ti + φ̂ti)

})

.

χ1 ≤
2M

Γ(α)

∫ t

0

(t− s)α−1µ

({

f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

)})

ds

≤
2M

Γ(α)

∫ t

0

(t− s)α−1η(s)

[

sup
−a≤θ≤0

µ
({

y(n)(s+ θ) + φ̂(s+ θ)
})

+ µ

({
∫ s

0

h(s, τ, y(n)
τ + φ̂τ )dτ

})]

ds

≤
2M

Γ(α)

∫ t

0

(t− s)α−1η(s) sup
0≤τ≤s

µ
({

y(n)(τ)
})

ds

+
4M

Γ(α)

∫ t

0

(t− s)α−1η(s)

(
∫ s

0

ζ(s, τ) sup
0≤ν≤τ

µ
({

y(n)(ν)
})

dτ

)

ds

≤
2M

Γ(α)

∫ t

0

(t− s)α−1η(s) sup
0≤τ≤s

µ
({

y(n)(τ)
})

ds

+
4M

Γ(α)

∫ t

0

(t− s)α−1η(s)ζ∗ sup
0≤ν≤s

µ
({

y(n)(ν)
})

ds
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≤
2M

Γ(α)
(2ζ∗ + 1)

∫ t

0

(t− s)α−1η(s) sup
0≤ν≤s

µ
({

y(n)(ν)
})

ds

≤
2M

Γ(α)
(2ζ∗ + 1)‖η‖L2

√

t2α−1

2α− 1
µ
({

y(n)
})

≤
2M

Γ(α)
(2ζ∗ + 1)‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})

,(3.17)

χ3 ≤M

m
∑

i=1

ki sup
−a≤θ≤0

µ
({

y(n)(ti + θ) + φ̂(ti + θ)
})

≤M

m
∑

i=1

ki sup
0<τi<ti

µ
({

y(n)(τi)
})

,(3.18)

µ
({

uy(n)(s)
})

≤ Kw(s)

[

µ

({
∫ b

0

(b− s)α−1V (b− s)

× f

(

s, y(n)
s + φ̂s,

∫ s

0

h(s, τ, y(n)
τ + φ̂τ)dτ

)

ds

})

+µ

({

∑

0<ti<t

U(t− ti)Ii(y
(n)
ti + φ̂ti)

})]

≤ Kw(s)

[

2M

Γ(α)
(2ζ∗ + 1)‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})

+M
m
∑

i=1

ki sup
0<τi<ti

µ
({

y(n)(τi)
})

]

,(3.19)

and

χ2 ≤
2MM2

Γ(α)

∫ t

0

(t− s)α−1µ
({

uy(n)(s)
})

ds

≤

[

4M2M2

Γ(α)2
(2ζ∗ + 1)‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})

+
2M2M2

Γ(α)

(

m
∑

i=1

ki sup
0<τi<ti

µ
({

y(n)(τi)
})

)]

×

(
∫ t

0

(t− s)α−1Kw(s)ds

)

.(3.20)

From (3.16), (3.17), (3.18), (3.19) and (3.20), we get

µ(Q(S1)(t)) ≤
2M

Γ(α)
(2ζ∗ + 1)‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})

+

[

4M2M2

Γ(α)2
(2ζ∗ + 1)‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})
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+
2M2M2

Γ(α)

(

m
∑

i=1

ki sup
0<τi<ti

µ
({

y(n)(τi)
})

)]

(
∫ t

0

(t− s)α−1Kw(s)ds

)

+M

m
∑

i=1

ki sup
0<τi<ti

µ
({

y(n)(τi)
})

≤ (2ζ∗ + 1)

[

2M

Γ(α)
+

4M2M2

Γ(α)2
‖Kw‖L2

√

b2α−1

2α− 1

]

‖η‖L2

√

b2α−1

2α− 1
µ
({

y(n)
})

+

[

M +
2M2M2

Γ(α)2
‖Kw‖L2

√

b2α−1

2α− 1

](

m
∑

i=1

ki

)

µ
({

y(n)
})

≤

[

(2ζ∗ + 1)

(

2M

Γ(α)
+

4M2M2

Γ(α)2
‖Kw‖L2

√

b2α−1

2α− 1

)

‖η‖L2

√

b2α−1

2α− 1

+

(

M +
2M2M2

Γ(α)2
‖Kw‖L2

√

b2α−1

2α− 1

)(

m
∑

i=1

ki

)]

µ (S) .(3.21)

This implies µ(Q(S1)) ≤ Nµ(S) and hence

µ(Q(S)) ≤ 2Nµ(S).

Thus, In view of (H6), Q is a condensing mapping from Br to Br. Hence, using

Sadovskii’s fixed point theorem (Lemma 2.14), Q has a fixed point on Br. we can

easily see that x = y+ φ̂ is a fixed point of F in PC. Hence x becomes a mild solution

of the system (1.1) satisfying x(b) = x1, i.e. system (1.1) is nonlocally controllable.

The proof is completed.

4. An example

Let X = L2([0, π],R). Consider the following impulsive fractional partial differ-

ential equations with finite delay and nonlocal conditions.

(4.1)























cDα
t z(t, y) = ∂

∂y
z(t, y) + ρω(t, y) + F

(

t, zt(ν, y),
∫ t

0
h(t, s, zs(ν, y))ds

)

,

z(t, 0) = z(t, π) = 0, t ∈ [0, b],

∆z(t, y)|t=ti = Ii(z(ti, y)), i = 1, 2, . . . , m,

z(ν, y) = φ(ν, y) +
∫ b

0
K(s, y) sin(z(s, y))ds, ν ∈ [−a, 0],

where cDα is a Caputo fractional partial derivative of order α, 1/2 < α < 1, y ∈

[0, π], φ ∈ D = {ψ : [−a, b] × [0, π] → R, ψ(·, y) is continuous everywhere except

for a countable number of points at which ψ(t−, y), ψ(t+, y) exist with ψ(t−, y) =

ψ(t, y)}, 0 = t0 < t1 < . . . < tm+1 = b, ∆z(t, y)|t=ti = z(t+i , y) − z(t−i , y), z(t
+
i , y) =

limh→0+ z(ti + h, y), z(t−i , y) = limh→0− z(ti + h, y) represent the right and left limits

of z(t, y) at t = ti respectively, for i = 1, 2, . . . , m and zt(ν, y) = z(t+ ν, y), t ∈ [0, b],

ν ∈ [−a, 0]. The operator K(s, y) is continuous on compact square [0, b] × [0, π].
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We define an operator A : X → X by Av = v′ with domain

D(A) = {v ∈ X : v is absolutely continuous v′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is infinitesimal generator of a semigroup {T (t), t ≥ 0}

in X and is given by T (t)v(t) = v(t + s), for v ∈ X, T (t) is not a compact

semigroup on X. Now we define x(t)(y) = z(t, y), f(t, xt,
∫ t

0
h(t, s, xs)ds)(y) =

F
(

t, zt(ν, y),
∫ t

0
h(t, s, zs(ν, y))ds

)

, I(x(ti))(y) = I(z(ti, y)) and x(ν)(y) = φ(ν)(y) +

g(x)(y) = φ(ν, y) +
∫ b

0
K(s, y) sin(z(s, y))ds, ν ∈ [−a, 0] and g(x)(y) =

∫ b

0
K(s, y)

× sin(z(s, y))ds. The bounded linear control operator B : X → X is defined by

(Bu)(t)(y) = ρω(t, y) for a.e. y ∈ [0, π]. Therefore, the above impulsive fractional

differential equation (4.1) can be written as the abstract form (1.1).

We can take f
(

t, xt,
∫ t

0
h(t, s, xs)ds

)

= Ct1/3xt. Then f is Lipschitz continuous

for the second variable and we can find φr(t) = Crt1/3 ∈ L1([0, t],R) for each r > 0

such that assumption (H1)(ii) is satisfied. Also f satisfies the assumptions H(1) and

H(2).

The function Ii : X → X can be taken as

Ii(x)(y) =

∫ π

0

γi(s, y)
1

1 + (x(s))2
ds,

where γi ∈ C([0, π] × [0, π],R), for each i = 1, 2, . . . , m. Then Ii is compact, hence

satisfies the assumption (H5).

Since the function g : PC([0, b], X) → X given by

g(x)(y) =

∫ b

0

K(s, y) sin(x(s)(y))ds, where x(s)(y) = z(s, y),

is a continuous and compact. Also g satisfies the assumption (H3). The linear oper-

ator W : L2(J, U) → X is given by

(Wu)(y) =

∫ b

0

(b− s)α−1V (t− s)ρω(s, y)ds.

Assuming that W defined by above satisfies the assumption (H4). Then the abstract

form of problem 4.1 satisfies all the conditions of the Theorem 3.1. Thus the system

4.1 is nonlocally controllable on the interval J .
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