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ABSTRACT. This article studies the following singular semilinear parabolic first initial-boundary

value problem having a concentrated nonlinear source,

ut − uxx − r

x
ux = aδ(x− b)f(u(x, t)) for 0 < x < 1, 0 < t ≤ T,

u(x, 0) = ψ(x) for 0 ≤ x ≤ 1,

u(0, t) = 0 = u(1, t) for 0 < t ≤ T,

where r, a, b and T are real numbers such that r < 1, a > 0, 0 < b < 1 and T > 0, δ(x) is the Dirac

delta function, and f and ψ are given functions. A criterion for u to blow up in a finite time tb and

an upper bound of tb are given. It is established the blow-up set consists of a single point if u blows

up. A computational method is devised to compute tb.
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1. INTRODUCTION

Let r, a, b and T be real numbers such that r < 1, a > 0, 0 < b < 1, and

T > 0, D = (0, 1), D̄ be the closure of D, Ω = D× (0, T ], and Lu = ut−uxx−r ux/x.

Let us consider the following singular semilinear parabolic first initial-boundary value

problem,

(1.1)





Lu = aδ(x− b)f(u(x, t)) in Ω,

u(x, 0) = ψ(x) on D̄,

u(0, t) = 0 = u(1, t) for 0 < t ≤ T,

where δ(x) is the Dirac delta function, and f and ψ are given functions such that

f(0) ≥ 0, and f(u) and its derivatives f ′(u) and f ′′(u) are positive for u > 0, and

ψ(x) is a nontrivial, nonnegative and continuous function such that ψ(b) > 0, ψ(0) =

0 = ψ(1), and

(1.2) ψ′′ +
r

x
ψ′ + aδ(x− b)f(ψ) ≥ 0 in D.
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The condition (1.2) is used to show that before u blows up, u is a nondecreasing

function of t. Without loss of generality, we assume that the function ψ is not a

solution of the problem (1.1).

Since u(x, t) is not differentiable at b, we say that a solution of the problem (1.1)

is a continuous function on Ω̄ satisfying (1.1). A solution u of the problem (1.1) is

said to blow up at the point (x̃, tb), where x̃ ∈ D if there exists a sequence of points

{(xn, tn)} in Ω such that

u(xn, tn) → ∞ as (xn, tn) → (x̃, t−b ).

If u and t are interpreted, respectively, as the temperature and the time, then tb is

the blow-up time, and x̃ is called the blow-up point.

Green’s function (cf. Chan and Carrillo Escobar [1]) corresponding to the problem

(1.1) is given by

G(x, t; ξ, τ) =
∞∑

i=1

ξrφi(ξ)φi(x)e
−λi(t−τ),

where λi (i = 1, 2, . . .) are the eigenvalues of the singular Sturm-Liouville problem,

(1.3) (xrφ′(x))′+λxrφ(x) = 0, φ(0) = 0 = φ(1),

with the corresponding eigenfunctions given by

(1.4) φi(x) =
21/2xνJν

(
λ

1/2
i x

)

∣∣∣Jν+1

(
λ

1/2
i

)∣∣∣
.

Here, Jν denotes the Bessel function of the first kind of order ν.

We convert the problem (1.1) (cf. Chan and Carrillo Escobar [1]) into the non-

linear integral equation

(1.5) u(x, t) = a

∫ t

0

G(x, t; b, τ)f(u(b, τ))dτ +

∫

D

G(x, t; ξ, 0)ψ(ξ)dξ.

For ease of reference, let us summarize some results of Chan and Carrillo Escobar [1]

in the following two theorems.

Theorem 1.1. There exists some tb (≤ ∞) such that in D̄ × [0, tb), the integral

equation (1.5) has a unique continuous solution u ≥ ψ(x), and u is a nondecreasing

function of t. If tb is finite, then u is unbounded in [0, tb).

By showing that the solution of the integral equation (1.5) is the solution of the

problem (1.1)), they obtained the following result.

Theorem 1.2. The problem (1.1) has a unique solution u for 0 ≤ t < tb.
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In Section 2, a criterion for u to blow-up in a finite time is given. If u blows up,

it is shown that the blow-up set consists of the single point b, where the concentrated

source is situated. Also, an upper bound for the finite blow-up time tb is given. In

Section 3, a computational method for finding tb is provided.

2. SINGLE BLOW-UP POINT

We modify the proof of Theorem 2.6 of Chan and Tian [2] to obtain the following

result.

Theorem 2.1. If ψ attains its maximum at x = b, then the solution u of the prob-

lem (1.1) attains its maximum at x = b. If in addition, tb is finite, then u(b, t) is

unbounded in [0, tb).

Proof. Let Ω0b = (0, b)× (0, tb), and Ωb1 = (b, 1)× (0, tb). Since u(b, t) is known, let us

denote it by ω(t), and rewrite the problem (1.1) as the following two initial-boundary

value problems:

(2.1)





Lu = 0 in Ω0b,

u(x, 0) = ψ(x) for 0 ≤ x ≤ b,

u(0, t) = 0 and u(b, t) = ω(t) for 0 < t < tb,

(2.2)





Lu = 0 in Ωb1,

u(x, 0) = ψ(x) for b ≤ x ≤ 1,

u(b, t) = ω(t) and u(1, t) = 0 for 0 < t < tb.

By Theorems 1.1 and 1.2, u is a nondecreasing function of t. Since ψ attains its

maximum at x = b, it follows from the strong maximum principle (cf. Friedman [3,

p. 34]) that the solution of the problem (2.1) attains its (absolute) maximum on the

closure of (0, b)×(0, t) at u (b−, t), where t < tb. Similarly, the solution of the problem

(2.2) attains its (absolute) maximum on the closure of (b, 1)× (0, t) at u (b+, t), where

t < tb. Thus, if u blows up, it blows up at x = b. If in addition, tb is finite, then by

Theorem 1.1, u(b, t) is unbounded in [0, tb).

We would like to show that b is the only blow-up point.

Theorem 2.2. If ψ attains its maximum at x = b, and u blows up, then b is the

single blow-up point.

Proof. By Theorem 2.1, if u blows up, then it blows up at b. To show that b is the

only blow-up point, it is sufficient to show that for any arbitrarily fixed t ∈ (0, tb), u

is concave up for 0 ≤ x ≤ b− and for b+ ≤ x ≤ 1.

Let us consider the problem (2.1). By Corollary 2 of Friedman [3, p. 74], u

is infinitely differentiable. Hence, Lut = 0 in Ω0b. From Theorem 1.1, ut ≥ 0 in
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D× (0, tb). If ut = 0 somewhere, say at (x4, t4), in Ω0b, then by the strong maximum

principle, ut = 0 in (0, b)× (0, t4], and hence, u = ψ in (0, b)× (0, t4]. This contradicts

the assumption that ψ is not a solution of the problem (1.1). Thus, ut > 0 in Ω0b.

Hence for any arbitrarily fixed t ∈ (0, tb), u does not have a relative maximum. By

the parabolic version of the Hopf Lemma (cf. Friedman [3, p. 49]), ux(0, t) > 0. If

uxx < 0 for x ∈ (0, b), then

0 >

∫ x

0

uξξ(ξ, t)dξ = ux(x, t) − ux(0, t),

which gives

(2.3) ux(0, t) > ux(x, t).

We claim that for any t ∈ (0, tb),

(2.4) ux(0, t) <∞.

Suppose for some t5 ∈ (0, tb), ux(0, t5) = ∞. If uxx(0, t5) ≥ −c4 for some positive

constant c4, then there exists some x5 ∈ (0, b) such that
∫ x5

0

uxx(x, t5)dx ≥ −c4

∫ x5

0

dx,

which gives ux(x5, t5) + c4x5 ≥ ux (0, t5), and hence, ux(0, t5) is bounded. This gives

a contradiction unless

(2.5) lim
x→0+

uxx(x, t5) = −∞.

Suppose (2.5) is true. Since ut > 0, we have

−uxx −
r

x
ux < ut − uxx −

r

x
ux = 0.

This gives

(2.6) −uxx <
r

x
ux.

As x→ 0, we have a contradiction unless r > 0. For r > 0, it follows from (2.6) that

− lim
x→0+

uxx(x, t5) ≤ r lim
x→0+

1

x2
lim

x→0+

ux

x−1

= r lim
x→0+

1

x2
lim

x→0+

uxx(x, t5)

−x−2

= −r lim
x→0+

uxx(x, t5).

This contradiction shows that (2.4) holds. From (2.3), we now have for any t < tb,

there exists some constant c5 such that c5 ≥ ux(0, t) > ux(x, t) for any x ∈ (0, b).

Thus for any x ∈ (0, b),

c5

∫ x

0

dσ >

∫ x

0

uσ(σ, t)dσ.

Hence for any x ∈ (0, b), c5x > u(x, t), which implies u is bounded for any t < tb.

This contradicts the assumption that u blows up. Thus, uxx ≥ 0 for x ∈ (0, b), and
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hence u is concave up. It remains to show that if there exists a neighborhood (x6, b)

(where x6 > 0) such that uxx < 0, then u is bounded for x ∈ (x6, b). The proof of

this is similar to the above, and hence u is concave up in (x6, b).

A proof analogous to the above shows that for the problem (2.2), u is concave

up. Thus, if u blows up, then b is the single blow up point.

Let ϕk(x) be the kth eigenfunction of the problem (1.3) normalized in such a way

that
∫ 1

0
xrϕk(x)dx = 1. A direct computation gives

(2.7) ϕk(x) =
λ

1/2
k Γ(ν)

(
λ
1/2

k

2

)ν−1

+ Γ(ν)Jν+1(λ
1/2
k )

xνJν(λ
1/2
k x).

Let

(2.8) w(t) =

∫

D

xrϕ(x)u(x, t)dx,

where ϕ(x) denotes ϕ1(x).

Theorem 2.3. If ψ attains its maximum at x = b,

(2.9)

(
s

f(s)

)
′

≤ 0,

(2.10)

∫
∞

k

ds

f (s)
<∞ for any positive number k,

(2.11) λw(0) < abrϕ(b)f(w(0)),

then the solution u of the problem (1.1) blows up in a finite time. Furthermore,

(2.12) 0 < tb ≤
f(w(0))

abrϕ(b)f(w(0)) − λw(0)

∫
∞

w(0)

dη

f(η)
.

Proof. By using
d

dx
(zxJν(x)) = xνJν−1(x)

(cf. McLachlan [4, p. 192]), a direct calculation shows that xrϕ′(x) is bounded at

x = 0 and x = 1. To show that limx→0+ (xrux(x, t)) is bounded, let us consider the

problem (2.1). Since ut > 0 in Ω0b, we have

−uxx −
r

x
ux < ut − uxx −

r

x
ux = 0,

which gives −uxx < rux/x for 0 < x < b. From Theorem 2.2, u is concave up. We

have ux (x, t) > 0 for t ∈ (0, tb). Then,

−
uxx

ux

<
r

x
for 0 < x < b.
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For any points x7 and x8 between 0 and b with x7 < x8,

−

∫ x8

x7

uxx(x, t)

ux(x, t)
dx <

∫ x8

x7

r

x
dx,

which gives 0 ≤ xr
7ux(x7, t) < xr

8ux(x8, t). Therefore, limx→0+ xrux(x, t) is bounded.

Similarly, by considering the problem (2.2), we obtain limx→1− x
rux(x, t) is bounded.

Multiplying the differential equation in (1.1) by xrϕ(x) and integrating over D,

we obtain

w′ (t) −

∫

D

ϕ(x)(xrux(x, t))xdx = abrϕ(b)f(u(b, t)).

Using integration by parts and the above properties of xrϕ′(x) and xrux(x, t) at x = 0

and x = 1, we have
∫

D

ϕ(x)(xrux(x, t))xdx = −λw.

Thus,

(2.13) w′(t) + λw(t) = abrϕ(b)f(u(b, t)) for 0 < t < tb.

Since u attains its maximum at x = b, it follows from (2.8) that

(2.14) w(t) ≤

(∫

D

xrϕ(x)dx

)
max
x∈D̄

u(x, t) = u(b, t).

Since f is increasing, it follows from (2.13) and (2.14) that

(2.15) w′(t) ≥ −λw (t) + abrϕ(b)f(w(t)) = f(w(t))

(
abrϕ(b) −

λw(t)

f(w(t))

)
.

By Theorem 1.1, u(x, t) ≥ ψ(x) = u(x, 0). This gives w(t) ≥ w(0). From (2.9),

w(t)

f(w(t))
≤

w(0)

f(w(0))
.

From (2.11) and (2.15),

(2.16)
dw

f (w)
≥

(
abrϕ(b) −

λw(0)

f(w(0))

)
dt.

From (2.16),

(2.17)

∫ w(t)

w(0)

dw

f (w)
≥

(
abrϕ(b) −

λw(0)

f(w(0))

)
t.

It follows from (2.10) that there exists some tb (<∞) such that limt→tb w (t) = ∞.

By (2.14), u blows up in a finite time.

From (2.17), we obtain (2.12).
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3. BLOW-UP TIME

As an illustration, let

ψ(x) =

{
x2 for 0 ≤ x ≤ b,(

b
1−b

)2
(1 − x)2 for b < x ≤ 1.

Then,

xrψ′(x) =

{
2xr+1 for 0 ≤ x < b,

−2
(

b
1−b

)2
xr(1 − x) for b < x ≤ 1

is differentiable, except at x = b, where there is a jump of −2br+1/ (1 − b). We have

(xrψ′(x))′ = −
2br+1

1 − b
δ(x− b) +





2(r + 1)xr for 0 < x < b,

0 at x = b,

2
(

b
1−b

)2
xr−1 [(r + 1)x− r] for b < x < 1,

(cf. Stakgold [5, pp. 38–39]). Let us obtain the conditions for (1.2) to hold. For

0 < x < b,

(xrψ′(x))′ + aδ(x− b)xrf(ψ(x)) = 2(r + 1)xr ≥ 0

holds if

(3.1) −1 ≤ r.

At x = b,

(xrψ′(x))′ + aδ(x− b)xrf(ψ(x)) = br
(
af(b2) −

2b

1 − b

)
δ(x− b) ≥ 0

holds if

(3.2) af(b2) ≥
2b

1 − b
.

For b < x < 1,

(xrψ′(x))′ + aδ(x− b)xrf(ψ(x)) = 2

(
b

1 − b

)2

xr−1 [x− r (1 − x)] .

A sufficient condition for (1.2) to hold is

(3.3) (1 + r) b > r > 0,

since for r ≤ 0, (1.2) holds automatically.

Let f(u) = up where p is any number greater than 1, and r = 1/2. Since r/ (1 + r)

attains its maximum 1/3 for 0 < r ≤ 1/2, the sufficient conditions (3.1) to (3.3) for

(1.2) to hold become

(3.4) a ≥
2b

b2p(1 − b)
, b >

1

3
.

Since ν = 1/4, we have J1/4

(
λ

1/2
1

)
= 0. To compute the first 10 eigenvalues to double

precision, we use the subroutine gsl sf bessel from the GNU Scientific Library (GSL,
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version 1.8, April 10, 2006, stable release) for C++. We obtain the results given in

the following table:

k λ
1/2
k

1 2.7808877239949794100

2 5.9061426988424940990

3 9.0423836635832621770

4 12.181341528954993336

5 15.321369826012286808

k λ
1/2
k

6 18.461927245689263799

7 21.602784448913070037

8 24.743827796127696672

9 27.884994603411197289

10 31.026247476113038459

Table 3.1. Solutions to J1/4

(
λ

1/2
k

)
= 0, for k = 1, 2, 3, . . . , 10.

By using the eigenvalues, the subroutines gsl gamma (to evaluate the gamma function

of a double precision argument) and gsl sf bessel (to compute, to double precision,

Bessel functions of the first kind of nonnegative real order for real positive arguments),

(2.7) and (1.4), we can obtain the functions ϕk(x) and φk(x) respectively. An upper

bound for the blow-up time tb can be obtained from (2.12).

From Theorem 2.3, u blows up in a finite time if

(3.5) a >
λ

brϕ(b)wp−1(0)
,

and an upper bound tu for the blow-up time tb is given by

(3.6) tu =
wp(0)

abrϕ(b)wp(0) − λw(0)

∫
∞

w(0)

η−p dη.

As a numerical example, let b = 1/2 and p = 2. From (3.4), a ≥ 32. Since λ =

7.733336533465930, we can compute

w(0) =

∫ b

0

xr+2ϕ(x)dx+

(
b

1 − b

)2 ∫ 1

b

xr(1 − x)2ϕ(x)dx.

We use an adaptive numerical integration, the gsl integration (to compute, to dou-

ble precision, the numerical integration based on the 61-point Gauss-Kronrod rule

with an absolute error and a relative error of order 10−4) to compute w(0), which

is 0.115265524027041. Since ϕ(b) = 2.20858575387531, it follows from (3.5) that

a > 42.9603896936577, which is larger than that obtained from (3.4). Since
∫

∞

w(0)

η−p dη = lim
t→∞

∫ t

w(0)

η−2dη =
1

w(0)
,

it follows from (3.6) that

(3.7) tu =
1

abrϕ(b)w(0) − λ
.

For any given a > 42.9603896936577, we use the following bisection procedure to

determine the blow-up time tb by taking initially its lower bound t
(0)
l to be 0 and its

upper bound t
(0)
u to be that obtained from (3.7):
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Step 1. Let t
(0)
l and t

(0)
u be our initial estimates of a lower bound tl and an upper

bound tu. Then, the first estimate of tb is

t
(0)
b =

t
(0)
l + t

(0)
u

2
.

Step 2. For Step k, k = 0, 1, 2, . . ., if
∣∣∣t(k)

u − t
(k)
l

∣∣∣ < ǫ (a given tolerance), then

t
(k)
b =

t
(k)
l + t

(k)
u

2

is accepted as the final estimate of tb, and we stop; otherwise, we go to the next step.

Step 3. Let

tm =
t
(k)
l + t

(k)
u

2
,

where m denotes the number of subintervals of equal length h = tm/m that the

interval [0, tm] is divided. Also, let

G̃(x, t; ξ, τ) =
N∑

i=1

ξrφi(ξ)φi(x)e
−λi(t−τ) for t > τ

be an approximation to G(x, t; ξ, τ).

Step 4. For k = 0, 1, 2, . . ., we use the following iteration procedure to refine the es-

timate t
(k)
b for the blow-up time. We subdivide the interval [0, tm] into m subintervals

[0, jh], where j = 1, 2, 3, . . .m. We use the following iterative process:

ũ(0)(b, t) = ψ(b) = b2,

ũ(k)(b, 0) = ψ(b) = b2, k = 1, 2, 3, . . . ,

ũ(k)(b, jh) = a

∫ jh

0

G̃(b, jh; b, τ)f(ũ(k−1)(b, τ))dτ

+

∫

D

G̃(b, jh; ξ, 0)ψ(ξ)dξ, k = 1, 2, 3, . . . , j = 1, 2, 3, . . . , m,

where ũ(k)(b, t) is the interpolation of the m + 1 points,
(
jh, ũ(k)(b, jh)

)
for j =

0, . . . , m, by using the subroutine gsl spline (cubic spline interpolation in double

precision). We use the same adaptive numerical integration procedure mentioned

above to calculate each integral.

Step 5. We stop the calculations as follows: if
∣∣ũ(k)(b, tm) − ũ(k−1)(b, tm)

∣∣ < δ (a given

tolerance), then t
(k+1)
l = tm, t

(k+1)
u = t

(k)
u , or else if

∣∣ũ(k)(b, tm) − ũ(k−1)(b, tm)
∣∣ > C (a

given positive number), then t
(k+1)
l = t

(k)
l , t

(k+1)
u = tm. We stop the iterative process

and go to Step 2.

Table 3.2 is obtained by taking ǫ = 10−7, δ = 10−4, C = 105, N = 10, m = 40,

b = 1/2, and f(u) = u2.
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a tb

50 0.0187088608

55 0.0157128877

60 0.0134982987

65 0.0118034160

70 0.0104694221

75 0.0093949892

80 0.0085129417

85 0.0077769411

90 0.0071542688

95 0.0066212177

100 0.0061599318

Table 3.2. Blow-up time.
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