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ABSTRACT. This article studies the following singular semilinear parabolic first initial-boundary
value problem having a concentrated nonlinear source,
Up — Ugy — Uy = ad(x — D) fu(z,t)) for0<az<1,0<t<T,
u(z,0) = (z) for0 <z <1,
u(0,t) =0 =wu(1,t) for 0 <t <T,
where 7, a, b and T are real numbers such that r <1, >0,0<b < 1and T > 0, () is the Dirac
delta function, and f and ¢ are given functions. A criterion for u to blow up in a finite time ¢, and
an upper bound of ; are given. It is established the blow-up set consists of a single point if u blows

up. A computational method is devised to compute tp.
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1. INTRODUCTION

Let r, a, b and T be real numbers such that » < 1, a > 0, 0 < b < 1, and
T >0, D = (0,1), D be the closure of D, 2 = D x (0, T], and Lu = s — Upy — 7 Uy /.
Let us consider the following singular semilinear parabolic first initial-boundary value

problem,
Lu = ad(x —b)f(u(x,t)) in Q,
(1.1) u(x,0) = () on D,
u(0,t) =0 =wu(1,t) for0 <t <T,
where §(z) is the Dirac delta function, and f and 1 are given functions such that
f(0) > 0, and f(u) and its derivatives f’(u) and f”(u) are positive for v > 0, and
¥ (z) is a nontrivial, nonnegative and continuous function such that ¢ (b) > 0, 1(0) =

0=1(1), and
(1.2) W+ %W +ad(z —b)f(¥) > 0in D.
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The condition (1.2) is used to show that before u blows up, u is a nondecreasing
function of t. Without loss of generality, we assume that the function ¢ is not a
solution of the problem (1.1).

Since u(z,t) is not differentiable at b, we say that a solution of the problem (1.1)
is a continuous function on 2 satisfying (1.1). A solution u of the problem (1.1) is
said to blow up at the point (Z,t,), where € D if there exists a sequence of points
{(zn,tn)} in Q such that

W( T, t) — 00 as (T, t,) — (T, 1, ).

If v and t are interpreted, respectively, as the temperature and the time, then ¢, is

the blow-up time, and 7 is called the blow-up point.

Green’s function (cf. Chan and Carrillo Escobar [1]) corresponding to the problem

(1.1) is given by
G, t;6,7) =D _ & ¢il€)pilw)e 7,
i=1
where \; (i = 1,2,...) are the eigenvalues of the singular Sturm-Liouville problem,
(1.3) (2"¢' () +Aa"d(x) =0, $(0) =0 = ¢(1),
with the corresponding eigenfunctions given by
21/247 ], (Ai/ 2:5)
(1.4) di(a) = =
o ()]

Here, J, denotes the Bessel function of the first kind of order v.

We convert the problem (1.1) (cf. Chan and Carrillo Escobar [1]) into the non-

linear integral equation

(1.5) u(z,t) = a/OtG(x,t; b, ) f(u(b, T))dT+/DG(x,t;§,O)1p(§)d§.

For ease of reference, let us summarize some results of Chan and Carrillo Escobar [1]

in the following two theorems.

Theorem 1.1. There exists some t, (< o0) such that in D x [0,t,), the integral
equation (1.5) has a unique continuous solution u > ¥(z), and u is a nondecreasing
function of t. If ty, is finite, then u is unbounded in [0,t;).

By showing that the solution of the integral equation (1.5) is the solution of the
problem (1.1)), they obtained the following result.

Theorem 1.2. The problem (1.1) has a unique solution u for 0 <t < t,.
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In Section 2, a criterion for u to blow-up in a finite time is given. If u blows up,
it is shown that the blow-up set consists of the single point b, where the concentrated
source is situated. Also, an upper bound for the finite blow-up time %, is given. In

Section 3, a computational method for finding ¢, is provided.

2. SINGLE BLOW-UP POINT

We modify the proof of Theorem 2.6 of Chan and Tian [2] to obtain the following

result.

Theorem 2.1. If v attains its maximum at x = b, then the solution u of the prob-
lem (1.1) attains its mazimum at x = b. If in addition, t, is finite, then u(b,t) is
unbounded in [0, tp).

Proof. Let Qq, = (0,b) x (0,15), and €1 = (b, 1) x (0,%,). Since u(b,t) is known, let us
denote it by w(t), and rewrite the problem (1.1) as the following two initial-boundary

value problems:

Lu=20 in Q()b,
(2.1) u(z,0) = (x) for 0 <z <,
( u(0,t) =0 and u(b,t) = w(t) for 0 <t <ty,

p

Lu=20 in le,
(2.2) u(z,0) = (x) for b <z <1,
[ u(b,t) = w(t) and u(l,t) =0 for 0 <t <t

By Theorems 1.1 and 1.2, u is a nondecreasing function of t. Since v attains its
maximum at x = b, it follows from the strong maximum principle (cf. Friedman |3,
p. 34]) that the solution of the problem (2.1) attains its (absolute) maximum on the
closure of (0,b) x (0,t) at u (b—,t), where t < t,. Similarly, the solution of the problem
(2.2) attains its (absolute) maximum on the closure of (b, 1) x (0,¢) at u (b*,¢), where
t < tp. Thus, if u blows up, it blows up at x = b. If in addition, ¢, is finite, then by
Theorem 1.1, u(b,t) is unbounded in [0, ;). O

We would like to show that b is the only blow-up point.

Theorem 2.2. If ¢ attains its maximum at x = b, and u blows up, then b is the

single blow-up point.

Proof. By Theorem 2.1, if u blows up, then it blows up at b. To show that b is the
only blow-up point, it is sufficient to show that for any arbitrarily fixed ¢ € (0,t), u
is concave up for 0 < z < b~ and for b < x < 1.

Let us consider the problem (2.1). By Corollary 2 of Friedman [3, p. 74|, u

is infinitely differentiable. Hence, Lu; = 0 in €g,. From Theorem 1.1, u; > 0 in
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D x (0,t). If uy = 0 somewhere, say at (x4,%4), in Qqp, then by the strong maximum
principle, u; = 0 in (0, b) x (0, t4], and hence, u = 1) in (0,b) x (0, t4]. This contradicts
the assumption that 1 is not a solution of the problem (1.1). Thus, u; > 0 in Qqy.
Hence for any arbitrarily fixed ¢t € (0,¢;), u does not have a relative maximum. By
the parabolic version of the Hopf Lemma (cf. Friedman [3, p. 49]), u,(0,¢t) > 0. If
Uy < 0 for z € (0,b), then

0> [ el e = (o 6) ~ 00,0,
which gives :
(2.3) Uz (0,8) > ug(z,t).
We claim that for any ¢ € (0,1,),
(2.4) ug(0,t) < o0.

Suppose for some t5 € (0,%), u.(0,t5) = oo. If uu,(0,t5) > —cy4 for some positive

constant ¢y, then there exists some x5 € (0,b) such that

/ Uge (T, t5)d > —04/ dx,
0 0

which gives u, (s, t5) + caxs > u, (0,15), and hence, u,(0,t5) is bounded. This gives

a contradiction unless

(2.5) i Uy, t5) = —oc.

Suppose (2.5) is true. Since u; > 0, we have

r r

—Ugy — — Uy < Up — Uy — — Uz = 0.

x x

This gives
r

2.6 —Uge < — Ug.
(2.6) "

As © — 0, we have a contradiction unless r > 0. For r > 0, it follows from (2.6) that

1 Uy
— lim g, (z,t5) < r lim — lim —
z—0t z—0t L% z—0t T~
. 1 . Uxx(l’,t5)
=7 lim — lim —
z—0t L% z—0* —Tr~

= —r mhj& Uz (T, t5).

This contradiction shows that (2.4) holds. From (2.3), we now have for any ¢ < t,,

there exists some constant c¢; such that ¢; > u,(0,t) > u,(x,t) for any x € (0,b).

Thus for any x € (0,0),
05/ do > / ug (o, t)do.
0 0

Hence for any = € (0,b), csx > u(x,t), which implies u is bounded for any ¢ < t.
This contradicts the assumption that v blows up. Thus, u,, > 0 for z € (0,b), and
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hence u is concave up. It remains to show that if there exists a neighborhood (zg, b)
(where zg > 0) such that u,, < 0, then u is bounded for z € (xg,b). The proof of

this is similar to the above, and hence u is concave up in (zg, b).

A proof analogous to the above shows that for the problem (2.2), u is concave

up. Thus, if v blows up, then b is the single blow up point. O

Let i () be the kth eigenfunction of the problem (1.3) normalized in such a way
that fol x"or(z)dr = 1. A direct computation gives

1/2
(2.7) oulz) = A TW) 0, ().

1/2

€3l D)

Let
(2.8) w(t) = /D:Ercp(x)u(:v,t)dx,
where (z) denotes ().

Theorem 2.3. If v attains its mazimum at x = b,

29) (ﬂ) <o,

(2.10) / ds < oo for any positive number k,
ko f(s)
(2.11) Aw(0) < ab”p(b) f(w(0)),
then the solution u of the problem (1.1) blows up in a finite time. Furthermore,
f(w(0)) > dn
(2.12) 0<t< - / el
"7 b p(0) £ (w(0)) = Mw(0) Jugo) f(n)
Proof. By using
d
o (z"J,(x)) = 2" J,_1(x)
x

(cf. McLachlan [4, p. 192]), a direct calculation shows that z"¢'(x) is bounded at
x =0 and z = 1. To show that lim, o+ (2 u,(z,t)) is bounded, let us consider the

problem (2.1). Since u; > 0 in Qg,, we have
r r
gy — = Uy < Up — Uggy — — Uy = 0,
x x

which gives —u,, < ru,/x for 0 < z < b. From Theorem 2.2, u is concave up. We
have u, (z,t) > 0 for t € (0,¢,). Then,

U
—ﬂ<—f0r0<x<b
Uy T
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For any points x7 and xg between 0 and b with z7; < xg,

T8 U (0, t oy
—/ (z.1) dr < / —dx,
ey Ug(T,1) oy T

which gives 0 < zhu,(x7,t) < zfu,(xs,t). Therefore, lim, .o+ 2"u,(z,t) is bounded.

Similarly, by considering the problem (2.2), we obtain lim, ;- 2"u,(x,t) is bounded.

Multiplying the differential equation in (1.1) by "¢ (z) and integrating over D,

we obtain
waw1£¢WXﬂ%uw»wx:wwwﬁwww»

Using integration by parts and the above properties of "¢'(x) and x"u,(x,t) at x = 0

and x = 1, we have

[ et 0)e =
Thus,
(2.13) w'(t) + Aw(t) = ab"o(b) f (u(b, 1)) for 0 < t <t

Since w attains its maximum at x = b, it follows from (2.8) that

(2.14) w(t) < ( /D xnp(x)dx) maxu(,1) = u(b, ).
Since f is increasing, it follows from (2.13) and (2.14) that
! —Aw ab” w(t)) = f(w ab” _ dwl)
215) wl0) = A (o) + @ el0)(wlt) = Flu) (o) - 540 )
By Theorem 1.1, u(z,t) > ¢ (x) = u(x,0). This gives w(t) > w(0). From (2.9),
w(t) w(0)
Flw(®) = Tw©)

From (2.11) and (2.15),

dw . Aw(0)
(2.16) iﬁﬂz<“¢”‘fW@Q
From (2.16),

w®  dw . ~ Aw(0)
(2.17) AM@%M@NW%

It follows from (2.10) that there exists some t;, (< 0o) such that lim, ., w () = oo.
By (2.14), u blows up in a finite time.

From (2.17), we obtain (2.12). O
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3. BLOW-UP TIME

As an illustration, let

x? for 0 < x < b,
w(x) = b \2 1 2 £ b <1
(&) (1—2)? forb<z<l
Then,
2"t for 0 < x <0,
x?‘w/(x) — ) 9 .
—2() 2"(1—2) forb<z<1
is differentiable, except at x = b, where there is a jump of —2b" "'/ (1 — ). We have
ot 2(r+1)z” for 0 <z <D,
(2" (2)) = 1 b5(x —b)+< 0 at x = b,
2 (%)Qz”_l (r+ 1)z —7r] forb<z<l,

(cf. Stakgold [5, pp. 38-39]). Let us obtain the conditions for (1.2) to hold. For
0<z<b,
(2"’ (2))" + ad(z — b)a" f(y(x)) = 2(r + 1)a" 2 0

holds if
(3.1) 1<
Atz =b,
(@) + ad(e — 0" f(0(a) =0 (f 1) - 125 ) =) 20
holds if
(3.2) af(b?) > 12—_6
Forb <z <1,
@) + aote 0 g0 =2 (125) e - o).
A sufficient condition for (1.2) to hold is
(3.3) (147)b>r>0,

since for r < 0, (1.2) holds automatically.

Let f(u) = u? where p is any number greater than 1, and r = 1/2. Since r/ (1 + 1)
attains its maximum 1/3 for 0 < r < 1/2, the sufficient conditions (3.1) to (3.3) for
(1.2) to hold become

2b 1
3.4 > ——— b> —.
(34) “=a-0" 73
Since v = 1/4, we have J; 4 ()\1/2) = 0. To compute the first 10 eigenvalues to double
precision, we use the subroutine gsl_sf_bessel from the GNU Scientific Library (GSL,
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version 1.8, April 10, 2006, stable release) for C++. We obtain the results given in
the following table:

k Ve k Ve

1 2.7808877239949794100 6 18.461927245689263799
2 5.9061426988424940990 7 21.602784448913070037
3 9.0423836635832621770 8 24.743827796127696672
4 12.181341528954993336 9 27.884994603411197289
5 15.321369826012286808 10 31.026247476113038459

Table 3.1. Solutions to Ji 4 (A}/?) — 0, for k=1,2,3,....10.

By using the eigenvalues, the subroutines gsl_gamma (to evaluate the gamma function
of a double precision argument) and gsl_sf_bessel (to compute, to double precision,
Bessel functions of the first kind of nonnegative real order for real positive arguments),
(2.7) and (1.4), we can obtain the functions ¢x(z) and ¢ () respectively. An upper
bound for the blow-up time ¢, can be obtained from (2.12).

From Theorem 2.3, u blows up in a finite time if
- A
a/ —_—
brp(b)wr=1(0)”

and an upper bound t, for the blow-up time ¢, is given by

_ w?(0) R
(3.6) "= S o (Bywr(0) — Xu(0) /w@” -

As a numerical example, let b = 1/2 and p = 2. From (3.4), a > 32. Since \ =
7.733336533465930, we can compute

w(0) = /0 () de 4 <1%b)2 /b L1 — o))

We use an adaptive numerical integration, the gsl_integration (to compute, to dou-

(3.5)

ble precision, the numerical integration based on the 61-point Gauss-Kronrod rule
with an absolute error and a relative error of order 107*) to compute w(0), which
is 0.115265524027041. Since ¢(b) = 2.20858575387531, it follows from (3.5) that
a > 42.9603896936577, which is larger than that obtained from (3.4). Since

/OO n Pdn = lim t n~2dn = L,

w(0) =00 Ju(0) w(0)
it follows from (3.6) that
1

ab"o(b)w(0) — A
For any given a > 42.9603896936577, we use the following bisection procedure to

(3.7) ty =

determine the blow-up time ¢, by taking initially its lower bound tl(o) to be 0 and its
upper bound t{ to be that obtained from (3.7):
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Step 1. Let tl ) and ¥ be our initial estimates of a lower bound t; and an upper
bound t,. Then, the first estimate of ¢, is

o _ (0 440
b 2 :

Step 2. For Step k, k =0,1,2,..., if

P tl(k)‘ < € (a given tolerance), then

oo _ 47+ 8

b 2
is accepted as the final estimate of ¢;, and we stop; otherwise, we go to the next step.
Step 3. Let

() 4 4
tyy = L,
2

where m denotes the number of subintervals of equal length h = t,,/m that the
interval [0, ,,,] is divided. Also, let

G(z,t;€,7) ZST@ Voi(x ™ fort > T

be an approximation to G(z,t;§, 7).
Step 4. For £k =0,1,2,..., we use the following iteration procedure to refine the es-

timate tl()k) for the blow-up time. We subdivide the interval [0, ¢,,] into m subintervals

[0, jh], where 7 = 1,2,3,...m. We use the following iterative process:
@ (b, t) = (b) = b7,

a® (b,0) = () =b*, k=1,2,3,...,

Jjh
®(b, jh) = a / G(b, jh;b,7) f(@* =V (b, 7))dr
0

_l_/ G(b7‘7h;€70)¢(€)d§’ k:1?2’3?"‘?j:1?2’3?""m
D

where ¥ (b,t) is the interpolation of the m + 1 points, (jh, ﬂ(k)(b,jh)) for j =
0,...,m, by using the subroutine gsl_spline (cubic spline interpolation in double
precision). We use the same adaptive numerical integration procedure mentioned

above to calculate each integral.

Step 5. We stop the calculations as follows: if [a® (b, t,,) — a*~V(b,,,)| < 6 (a given
tolerance), then t(kH) =t t¥TD =t or else if ‘u (b, tm) — @*F=D (0, tm)‘ >C (a
given positive number), then tl(kH) = tl( ), ) — ¢ We stop the iterative process

and go to Step 2.

Table 3.2 is obtained by taking e = 1077, § = 107*, C = 10°, N = 10, m = 40,
b=1/2, and f(u) = u?
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a ty
50 0.0187088608
55 0.0157128877
60 0.0134982987
65 0.0118034160
70 0.0104694221
75 0.0093949892
80 0.0085129417
85 0.0077769411
90 0.0071542688
95 0.0066212177
100 0.0061599318

Table 3.2. Blow-up time.
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