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ABSTRACT. There are many situations when both advection and diffusion terms are im-

portant and a transport equation needs to be solved as a whole. In the recent past, it has drawn

significant attention of civil engineers, hydrologists, mathematical modelers and many others in dif-

ferent branches. Nowadays, wavelet approach has become very popular in the field of numerical

approximations. Fascinated by their ability to accurately represent fairly general functions with a

small number of adaptively chosen wavelet coefficients, we apply haar wavelet collocation scheme

for the numerical simulation of advection-diffusion equation. Some test examples are studied to

evaluate the performance of the solution scheme.
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1. Introduction

In mathematical literature, wavelet analysis was developed in 1980’s and began

to be used commonly in geophysics in the 1990’s. In 1982 Jean Morlet a French geo-

physicist, introduced the concept of a ‘wavelet’. The wavelet means small wave and

the study of wavelet transform is a new tool for seismic signal analysis. Wavelet anal-

ysis was originally introduced in order to improve seismic signal analysis by switch-

ing from shortime Fourier analysis to new better algorithms to detect and analyze

abrupt changes in signals [1, 2]. Daubechies in 1988 presented a method to construct

wavelets with compact support and scale functions [3]. With the advancements in

new computational schemes, wavelets contributed a lot. With some specific features,

family of wavelets include different classes of wavelets as Haar, Franklin, Stetson hat,

Daubechies, Coiflets, Symlets, Meyer, DMeyer, Gaussian, Morlet, Complex Gauss-

ian, Mexican Hat etc. In general, Haar, Daubechies, Symlets and Coiflets are com-

pactly supported orthogonal wavelets. With a solid historical as well as practical

background, Haar wavelets are easy to handle from the mathematical aspect. Haar

functions have been used from 1910 when they were introduced by the Hungarian
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mathematician Alfred Haar [4]. Having properties to provide a local analysis of sig-

nals, the Haar functions appear very attractive in many applications as for example,

image coding, edge extraction and binary logic design. In the present study, we use

Haar wavelet method for solving the advection-diffusion equation model with given

initial and boundary conditions.

In 1980s Professor T. J. R. Hughes made an extraordinary effort at Stanford and

presented several interesting facts about advection-diffusion equation [5, 6]. It governs

several important phenomena in physics and engineering such as water transfer in

soils, the intrusion of salt water into fresh water aquifers, the spread of pollutants

in rivers and streams, the intrusion of salt water into fresh water aquifers etc. (see

e.g., [7, 8]). There are many situations when both advection and diffusion terms are

important and a transport equation needs to be solved as a whole. Advection-diffusion

equation also helps in studying the more advanced Navier-Stokes equations [9, 10].

These equations are characterized by non-dissipative (hyperbolic) advective transport

component and a dissipative (parabolic) diffusive component. All numerical profiles

go well when diffusion is the dominant factor. On the contrary, when advection

is dominant transport process, most numerical results exhibit some combination of

spurious oscillations and excessive numerical diffusion. These behaviours can be easily

explained using a general Fourier analysis.

Most existing analytical solutions for advection-diffusion transport problems in

[11, 12], including problems with growth and decay terms, are for semi-infinite or infi-

nite regions, with solutions for finite domains being mostly limited to one-dimensional

problems. Fascinated by the importance of advection-diffusion equation and impor-

tant properties of wavelets [13, 14], we focus on a developing numerical scheme for

the simulation of advection-diffusion model problem

(1.1)
∂u

∂t
+ ρ

∂u

∂x
= ε

∂2u

∂x2
, (x, t) ∈ [0, L] × [0, T ],

with the given initial and boundary conditions u(x, 0) = f(x), u(0, t) = g0(t), u(L, t) =

g1(t), t ∈ [0, T ], with the help of wavelets. Here, ρ, ε > 0 are positive constants rep-

resenting advection and diffusion processes respectively. We see that for ρ = 0, it

represents purely diffusion phenomenon. Some other useful readings are [15].

2. Construction of Haar wavelets

Haar wavelet is one of the oldest and simplest wavelet. Therefore, any discussion

of wavelets starts with the Haar wavelet. Due to the simplicity the Haar wavelets

are very effective for solving ordinary differential and differential equations. Some

definitions and properties of Haar functions are as [16]:
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Definition 1. Let f ∈ L2(R). For n ∈ Z, Tn : L2(R) → L2(R) be given by

(Tnf)(x) = f(x − n) and D : L2(R) → L2(R) be given by (Df)(x) =
√

2f(2x)

operators Tn and D are called translation and dilation operator.

Definition 2. A function φ ∈ L2(R) is called an orthonormal wavelet for L2(R) if

{DkTnφ : k, n ∈ Z} = {2k/2φ(2Kk − n) : k, n ∈ Z} is an orthonormal basis for L2(R).

Definition 3. A set of closed subspace {Vj : j ∈ Z} of L2(R) is called a Multireso-

lution Analysis (MRA) if the following properties hold.

• Vj ⊆ Vj+1, for all j ∈ Z;

• D(Vj) = D(Vj+1), for all j ∈ Z;

• ∪j∈ZVj = L2(R), and ∩j∈ZVj = 0;

• There is a scaling function φ for V0.

By a scaling function for V0 we mean that there exists a function φ ∈ V0 such that

{Tnφ : n ∈ Z} is an orthonormal basis for V0. If we think of the core subspaces

V0 as a specified level of resolution then moving to amounts to Zooming in and

increasing resolution by one level, on the other hand, V−1 represents one lower level

of resolution, resulting from Zooming out. The first curve h0(t) also known as scaling

function is defined as h0 = 1 for 0 ≤ x < 1 and 0 otherwise. The second curve h1 is

obtained after distributing the interval [0, 1] in [0, 0.5] and [0.5, 1]. Then, h1 = 1 for

0 ≤ x < 1
2
, −1 for 1

2
≤ x < 1 and 0 otherwise. This is also called mother wavelet. All

other subsequent curves are generated from h1(t). h2(t) is obtained from h1(t) with

dilation. Other way, we can express Haar functions in a more compact form as

hn(x) = h1(2
jx − k), n = 2j + k, j ≥ 0, 0 < k ≤ 2j(2.1)

Having benefits of the Haar wavelet approach for its simplicity and sparse matrices of

presentation, they are faster than others. Any function which is square integrable in

the interval [0, 1), can be expanded in a Haar series with an infinite number of terms

as

(2.2) u(x) =

∞
∑

i=0

αihi(x), i = 2j + k, j ≥ 0, 0 ≤ k ≤ 2j, x ∈ [0, 1)

where Haar coefficients αi = 2j
∫ 1

0
u(x)hi(x)dx are determined in such a way that the

integral square error

(2.3) E =

∫ 1

0

[u(x) −
m−1
∑

i=0

αihi(x)]2, m = 2j, j ∈ {0} ∪ N

is minimized by applying the orthogonal relationship

(2.4)

∫ 1

0

hi(x)hl(x)dx = 2−jδil =

{

2−j, i = l = 2j + k, j ≥ 0, 0 ≤ k < 2j;

0, i 6= l.
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In general, for the function u(x) to be smooth the series (2.1) contains an infinite

number of terms. If u(x) is a piecewise constant or may be approximated as piecewise

constants, then the sum in equation (2.2) will be terminated after m terms, that is

(2.5) u(x) =
m−1
∑

i=0

αihi(x)

where t ∈ [0, 1) and αm = [α0, α1, . . . , αm−1]
T . Identifying the collocation points as

xl = 2l−1
2m

; l = 1, 2, . . . , m, we have hm(x) = [h0(x), . . . , hm−1(x)]T and thus we obtain

the haar functions as

h0 = [1 1 1 1], h1 = [1 1 − 1 − 1], h2 = [1 − 1 0 0], h3 = [0 0 1 − 1].

In other way the coefficients matrix Hil = hi(xl) is introduced which is expanded into

Haar series with coefficient matrix P as

(2.6)

∫ 1

0

hm(x)dx ∼= Pm×mhm(x), t ∈ [0, 1).

where m×m square matrix P is called the operational matrix of integration and cam

be expressed as

Pm =
1

2m

(

2mPm/2 −Hm/2

H
−1
m/2 Om/2

)

in particular, we get P1×1 = [1/2]. The other elements of the matrices H, P can be

evaluated as

H2 =

(

1 1

1 −1

)

, P2 =
1

4

(

2 −1

1 0

)

, H4 =













1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1













P4 =
1

16













8 −4 −2 −2

4 0 −2 2

1 1 0 0

1 −1 0 0













, H8 =

































1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 −1

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 0 0 1 −1
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P8 =
1

64

































32 −16 −8 −8 −4 −4 −4 −4

16 0 −8 8 −4 −4 4 4

4 4 0 0 −4 4 0 0

4 4 0 0 −4 4 0 0

1 1 2 0 0 0 0 0

1 1 −2 0 0 0 0 0

1 −1 0 2 0 0 0 0

1 −1 0 −2 0 0 0 0

































In the next section, we use these haar matrices to approximate the solution to the

governing differential equation.

3. Solution Procedure

For the governing differential equation (1.1), x ∈ [a, b] , the interval is partitioned into

2M subintervals of equal length. Dividing the given interval into N equal parts of length

∆t = (0, 1]/N . We use the approximation

(3.1) u̇′′(x, t) =
m−1
∑

i=0

αihi(x),

where hi(x) are haar wavelet functions and αi are wavelet coefficients, from (3.1), we have

u′′(x, t) = (t − ts)

m−1
∑

i=0

αihi(x) + u′′(x, ts),(3.2)

u′(x, t) = (t − ts)

m−1
∑

i=0

αipi,1(x) + u′(x, ts) − u′(0, ts) + u′(0, t),(3.3)

u(x, t) = (t − ts)
m−1
∑

i=0

αipi,2(x) + u(x, ts) − u(0, ts)

−x[u′(0, ts) − u′(0, t)] + u(0, t),(3.4)

u̇′(x, t) =
m−1
∑

i=0

αipi,1(x) + u̇′(0, t),(3.5)

u̇(x, t) =

m−1
∑

i=0

αipi,2(x) + xu̇′(0, t) + u̇(0, t).(3.6)

Using boundary conditions, we have

u(0, t) = g0(t), u(0, ts) = g0(ts), u̇(0, ts) = g′0(ts),

u(0, t) = g0(t), u̇(0, t) = g′0(t), u(1, t) = g1(t),

u(1, ts) = g1(ts), u(1, ts) = g′1(ts), u̇(1, t) = g′1(t).(3.7)

Now, from (3.7), and taking x = 1,

g1(t) = (t − ts)αipi,2(1) + g1(ts) − g0(ts) − [u′(0, ts) − u′(0, t)] + g0(t),
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u′(0, ts) − u′(0, t) = −(t − ts)

m−1
∑

i=0

αipi,2(1) + g1(t) − g1(ts) + g0(ts) − g0(t).(3.8)

From (3.6) we obtain

(3.9) u̇(1, t) =

m−1
∑

i=0

αipi,2(1) + u̇′(0, t) + u̇(0, t).

Using the conditions (3.7)

u̇′(0, t) = −
m−1
∑

i=0

αipi,2(1) − u̇(0, t) − u̇(1, t)

= −
m−1
∑

i=0

αipi,2(1) − g′0(t) + g′1(t).(3.10)

Substituting (3.8–3.10) in (3.2–3.4), replacing x by xl , t by ts+1 and defining (ts+1 − ts) =

∆t, gives

u′′(xl, ts+1) = ∆t
m−1
∑

i=0

αih(xl) + u′′(xl, ts)(3.11)

u′(xl, ts+1) = ∆t
m−1
∑

i=0

αipi,1(xl) − ∆t
m−1
∑

i=0

αipi,2(1)

+ u(xl, ts) + g1(ts+1) − g1(ts) + g0(ts) − g0(ts+1)(3.12)

u(xl, ts+1) = ∆t

m−1
∑

i=0

αipi,2(xl) + u(xl, ts) − xl[∆t

m−1
∑

i=0

αipi,2(1)

− g1(ts+1) + g1(ts) − g0(ts) + g0(ts+1)] + g0(ts+1) − g0(ts)(3.13)

u̇(xl, ts+1) =

m−1
∑

i=0

αipi,2(xl) − xl[

m−1
∑

i=0

αipi,1(1) + g′0(ts+1) − g′1(ts+1)] + g′0(ts+1)

(3.14)

where

pi,2(1) =

{

0.5, if i = 1;
1

4m2 , if i > 1.

Thus, for the governing advection-diffusion model (1.1) in hand, we have

(3.15) u̇(xl, ts+1) + ρu′(xl, ts+1) − εu′′(xl, ts+1) = 0

substituting (3.11)–(3.13)

m−1
∑

i=0

αipi,2(xl) − xl

[m−1
∑

i=0

αipi,1(1) + g′0(ts+1) − g′1(ts+1)] + g′0(ts+1)

+ρ

[

∆t

m−1
∑

i=0

αipi,1(xl) − ∆t

m−1
∑

i=0

αipi,2(1) + u(xl, ts) + g1(ts+1)

−g1(ts) + g0(ts) − g0(ts+1)

]

− ε[∆t

m−1
∑

i=0

αih(xl) + u′′(xl, ts)

]

= 0(3.16)
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Finally, we get the system of equations for calculating the wavelet coefficients αis.

m−1
∑

i=0

αi

[

pi,2(xl) − xlpi,1(1)ρ∆tpi,1(xl) − ∆tpi,2(1) + ε∆thi(xl)

]

= xl

[

g′0(ts+1) − g′1(ts+1)] − g′0(ts+1)

−ρ

[

u′(xl, ts) + g1(ts+1) − g1(ts) + g0(ts) − g0(ts+1) + εu′′(xl, ts)

]

(3.17)

Taking into account the initial conditions, we start solving the system of equations for each

time step with ts+1 − ts = ∆t Experiments are carried out with some numerical examples

listed below.

4. Test Problems

In this section, we present some numerical examples to demonstrate the effectiveness

of proposed method of solution. Some numerical examples are described in this section.

The first example is for a simple linear advection-diffusion process. The second and third

examples demonstrate applications of time dependent Dirichlet boundary conditions. In

the literature review, these examples have been studied widely by [17, 18]. An important

non-dimensional parameter in numerical analysis is the Courant number Cr = ρ ∆t
∆x . It

is possible to show using a Fourier error analysis that the transport equation is stable for

Cr < 1. The Peclet number is another important non-dimensional term which compares the

characteristic time for dispersion and diffusion given a length scale with the characteristic

time for advection. In numerical analysis, one normally refers to a grid Peclet number

Pc = ρ∆x
ε , where ρ is generally the velocity of water flow and the characteristic length

scale is given by ∆x. It compares the rate of advection ε to diffusion ε/∆x. More details

regarding the effects of the Courant and Peclet numbers on the results can be found in

[19]. In the present case, numerical results are computed by extracting collocation points

for each level of resolution J = 2, 3, 4, 5, 6. Generated points are taken to define the hi and

corresponding integrations are carried out. The index i is calculated by i = m + k + 1 as

explained in Section 2 where we have h1 = 1 for i = 1. Accuracy of the given approach is

estimated by the error function

(4.1) eJ =
1

2m
‖u(x, t)app − u(x, t)ex‖

Example 1.

Initially we begin with the simple example of linear advection-diffusion equation to

demonstrate the working of scheme. For this, we consider the advection-diffusion problem

in one dimension on a domain of unit length with the following boundary conditions

(4.2) −εu′′ + ρu′ = 1, u(0) = u(1) = 0.

Assuming a constant advection speed, ρ, and diffusivity ε > 0. The onset of a boundary

layer can be seen in Fig 1 corresponding to ρ = 1 and several values of ε (ε = 0.01, 0.1, 1.0).

Simultaneously, solution profiles for the existing values of ε at a wider range can be seen

along with the behavior of solution profile in three dimensional view.
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Figure 1. Results obtained for ρ = 1.0, ε = 0.01, 0.1, 1.0 for Experi-

ment 1.

Table 1. Error estimation for Experiment 2 at different levels of resolution.

2M
eJ

∆t = 0.001 ∆t = 0.003 ∆t = 0.005

8 5.24E-3 3.28E-4 4.64E-5

16 3.13E-5 4.46E-3 5.34E-5

32 6.24E-6 5.34E-5 4.45E-3

64 4.43E-4 6.25E-4 6.55E-5

128 5.42E-3 4.11E-3 5.16E-5

Example 2.

In the second case, we have the one-dimensional advection-diffusion equation (1.1)

in the region bounded by 0 ≤ x ≤ 1, taking ρ = 1.0, ε = 0.01 with initial condition

f(x) = exp
(

− (x+0.5)2

(0.00125)

)

and boundary conditions g0 = 0.025√
0.000625+0.02t

exp
(

− (0.5−t)2

(0.00125+0.04t)

)

,
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g1 = 0.025√
0.000625+0.02t

exp
(

− (1.5−t)2

(0.00125+0.04t)

)

. Figure 2 represents the concentration distribution

at t = 0.6, 0.7, 0.8, 0.9 for ρ = 1.0, ε = 0.01. Varying time in the interval 0.6 ≤ t ≤ 0.9

variation of solution profile can be observed sidewise. Physical behavior of the solution

profile in 3D is also visible for this case. In all the results, a good agreement is observed

between the solutions. In addition to this, Error analysis for the resolution level J =

2, 3, 4, 5, 6 is made in Table 1 taking step sizes ∆t = 0.001, ∆t = 0.003, ∆t = 0.005

respectively.
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t = 0.8
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Figure 2. Results obtained for ρ = 1.0, ε = 0.01 at different times for

Experiment 2.

Example 3.

In the third test case, we have initial and boundary conditions as f(x) = 0, x > 0

and g0(t) = 1.0, x = 0 g1(t) = 0, x → ∞. Computations in this case are performed with

different values of ρ, ε. Steepening effects of concentration profile can be seen with the

change in time. In the first attempt, we have advection and diffusion coefficients ρ, ε as

ρ = 1.0, ε = 0.02 respectively. Fig 3 draws attention for this case where solution profile

is available at t = 0, 1.0, 1.5, 2.0 respectively. Impact of advection-diffusion process can be

observed likewise in generalised interfaces. Next attempts are made for ρ = 0.5, ε = 0.01

and ρ = 0.3, ε = 0.1 respectively. Graphical results are neatly plotted in Figs. 4 and 5.

In addition to this, error estimation for Experiment 3 at different levels of resolution can
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Table 2. Error estimation for Experiment 3 at different levels of resolution.

2M
eJ

∆t = 0.01 ∆t = 0.001 ∆t = 0.003

8 4.33E-4 3.14E-3 4.22E-4

16 3.26E-3 4.54E-3 5.54E-5

32 7.44E-3 5.22E-3 4.33E-4

64 5.25E-5 6.81E-4 6.34E-5

128 5.22E-3 4.33E-3 5.43E-4

Table 3. Computed numerical data at t = 0.7 for three test cases.

2M Experiment 1 Experiment 2 Experiment3

ε = 0.7 ρ = 1.0, ε = 0.01 ρ = 0.5, ε = 0.01

0.0313 0.01576042 0.07408752 0.9995043

0.0938 0.04758043 0.14053233 0.9944194

0.1563 0.07242575 0.19163535 0.9724752

0.2188 0.10212832 0.20225542 0.9094742

0.2813 0.12539452 0.16695834 0.7805394

0.3438 0.14290235 0.10299552 0.5871842

0.4063 0.15630122 0.04628211 0.3717254

0.4688 0.16820864 0.01649833 0.1919365

0.5313 0.17320332 0.00485521 0.0790671

0.5938 0.17282836 0.00103139 0.0255982

0.6563 0.16658125 0.00016774 0.0064473

0.7188 0.15391374 0.00002088 0.0012544

0.7813 0.13422536 1.99105 × 10−6 0.0001876

0.8438 0.10686246 1.45314 × 10−7 0.00002151

0.9063 0.07110525 8.11963 × 10−9 1.8848 × 10−6

0.9688 0.02617243 3.47348 × 10−10 1.2597 × 10−7
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Figure 3. Results obtained for ρ = 1.0, ε = 0.02 at different times for

Experiment 3.

be found in Table 2. For all the three cases, numerical results can be seen in Table 3 for

resolution level J = 3.

5. Conclusion

In the present work, numerical technique based on Haar wavelets is presented to solve

advection-diffusion model problem in a compact, clear and coherent way. Having benefits

of the Haar wavelet approach for its simplicity and sparse matrices of presentation, given

scheme is proved advantageous. Results are obtained for some test cases to check the

working of proposed method. Numerical procedure presented here is well suited for a

variety of mathematical models involving advection, diffusion phenomenon, heat transfer

and others with feasible boundary/initial conditions.
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Figure 4. Results obtained for ρ = 0.5, ε = 0.01 at different times for

Experiment 3.
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Figure 5. Results obtained for ρ = 0.3, ε = 0.1 at different times for

Experiment 3.
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