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ABSTRACT. This paper is concerned with the problem of model reduction for the large-scale

switched linear system, which is characterized by high order mathematical models. Two model

reduction algorithms are present. We present at first the rational Arnodli for Switched linear systems

(RASLS) method. It is based on generation of orthonormal basis by the use of the Krylov subspace

technique for each sub-system. In the second part we present the adaptive order rational arnoldi for

switched linear systems (AORASLS). Is Also an improvement of the RASLS method, but it is based

on automatic choice of matching moment. A simulation example is considered in order to take a

performance study of the proposed approaches.
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1. Introduction

Control systems are now increasingly complex. Including many corresponding

application has called embedded systems, with applications in several fields aeronau-

tics, the automobile industry, metallurgical industry, and the management of energy.

These types of structure can be assembled and modeled by the generic category of dy-

namic hybrid systems. these systems have an interaction between dynamic processes

in continuous or discrete time and logical process. A dynamic switched system is an

association of a finite set of differential sub-systems or differences and a switching

law that says each time the active system. Also the modeling is an important tool in

the description and the characterization of Large-scale switched systems. However,

these high order models are difficult to manipulate, the resolution of such models

is indeed very demanding in computational resources, storage space, and mainely in

CPU time, especially when applying a control strategy which become very difficult

to determine. Model order reduction presents a good solution in the analysis and

simulation of large switched system, the reduced model capture the main advantages

of the original complex one. Hence, the use of model order reduction techniques

generate reduced order systems that capture the essential dynamic behavior of the
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original systems (stability, passivity, balanced) and increase the performance during

the numerical simulation procedure. In the last decade, several approaches exist in

the literature are studied the problem of linear and linear switched switched sys-

tems(Antoulas et al. in Approximation of large-scale Dynamical systems, Huijun et

al. in the Model simplification for switched hybrid systems, Domgmei et al. in the

LMI approach to H2 Reduction Model of Switched Systems, Nima et al. in A Si-

multaneous Balanced Truncation Approach to Model Reduction of Switched Linear

Systems, Klaus and al. in the Guard-based Model Order Reduction for Switched

Linear Systems). However, these methods have remained very limited on systems of

medium order, for this reason, we present in this paper the rational Arnoldi approach

and the adaptive order rational Arnoldi approach applicable in the linear switched

linear systems. these new approaches presents better results than other approach,

which guaranteeing stability and minimizing the error between the original system

and reduced one. The model reduction problem we are interested in can be stated as

follows.

Given a linear Switched dynamical system in state space form [1, 2, 3]:

(1) Σq =

{

Eqx(t+ 1) = Aqx(t) +Bqu(t)

y(t) = Cqx(t) +Dqu(t)

In which Eq and Aq ∈ Rn×n, Bq ∈ Rn×p, Cq ∈ Rp×n, Dq ∈ Rp×p, u(t) ∈ Rn×p,

y(t) ∈ Rp×n and q(t) is a function piecewise constant over time called a switching

signal, for simplicity we write q. we assume that evaluate to q(t) is unknown, but its

instantaneous value is available in real time.

The transfer function of the original system for each sub-system is given by [3, 4]:

(2) fq(s) = Cq(sEq − Aq)
−1Bq +Dq

The problem consist in approximating the matrices of each sub-system of order k ≪ n

In which Êq and Âq ∈ Rk×k, B̂q ∈ Rk×p, Ĉq ∈ Rp×k, D̂q ∈ Rk×k and ŷ(t) ∈ Rp×k.

Then, the state space of the reduced sub-system is as follow [5, 6, 7]:

(3) Σ̂q =

{

Êqx̂(t+ 1) = Âqx̂(t) + B̂qu(t)

ŷ(t) = Ĉqx̂(t) + D̂qu(t)

The transfer function of the reduced system for each sub-system is given by:

(4) f̂q(s) = Ĉq(sÊq − Âq)
−1B̂q + D̂q

This paper is organized as follows: in section 2, the Krylov subspace for linear switched

system are given. Section 3, the Rational Arnoldi method for switched linear system,

will be presented with application on the numerical example (composed of two sub-

system). In section 4, we present the Adaptive Rational Arnodli method for switched



SWITCHED LINEAR SYSTEMS 77

linear systems and we give a numerical example(composed of two sub-system) to

evaluate this approach. The last section is dedicated to conclude this paper.

2. Krylov Subspace for Switched Linear System

Given a linear switched system in the states space form (1), [3, 4, 8]. Applying

the Laplace transform of equation (1), we obtain the transfer functions under the

form (2) of state variables and those of the outputs are Xq(s) = (sEq −Aq)
−1Bq and

Y (s) = CqX(s) +Dqu(s), respectively.

Let us define two matrices ψiq = −(siqEq −Aq)
−1Eq and ξiq = (siqEq −Aq)

−1Bq,

where (siqEq−Aq) is assumed to be nonsingular and an expansion frequency siq ∈ Sq,

for iq = 1, 2, . . . , îq. Applying the Taylor expansion of Xq(s) at expansion points siq ,

we obtain [4, 9, 8]:

(5) Xq(s) =

∞
∑

j=0

Xjq

q (siq)(s− siq)
i

where X
jq
q (siq) = ψj

i q
ξiq and Y

jq
q (siq) = CqX

jq
q (siq) are the jth order system moment

and the jth order output moment at siq , respectively, for jq = 0, 1, ĵq. We use the

modified Gram-Schmidt orthogonalization technique to generate the Krylov subspace

[4, 9, 10, 11, 12, 13] Krq
(ψq, ξq) = {ξiq , ψiqξiq , . . . , ψ

j−1
iq

ξiq}. Let Vrq
∈ Krq

be the

orthonormal basis.

3. Rational Arnoldi for Linear Switched Systems

In this section, we present a Rational Arnoldi model order reduction for Switched

Linear System. This method is a generalization of the shifted-and-inverted Arnoldi

method for each sub-systems. This method is based on the determination of the

frequency range and the number of matched moments at each expansion point for each

sub-system. Let Sq = {s1q
, s2q

, . . . , sîq
} represent the range of expansion frequencies

and fixed the number of matched moments at each corresponding frequency, then Jq =

{ĵ1q
, ĵ1q

, . . . , ĵ̂iq}. During the a iteration process of the Rational Arnoldi Algorithm

for switched linear system, a Krylov sub-space can be generate Vrq
and an upper-

Hessenberg matrixHrq
for each sub-system, that are satisfies the recursive relationship

[13, 14]:

(6) ψqVrq
= Vrq

Hrq
+ h(r+1,r)q

v(r+1)q
eT

rq

and

(7) vrq
= ξq/‖ξq‖

where erq
∈ Rn is the rth unit vector. The vector v(r+1)q

satisfies a (r+1)q term recur-

rence relation, involving itself and the preceding Krylov vectors for each sub systems.
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The reduced-order system transfer function Ŷrq
for each sub-system is obtained by

the use of the orthogonal projection x(t) = Vrq
x̂rq

(t). From this relationship, the

reduced system parameters in (2) can be defined by the congruence transformation

[3, 15, 16]:

Êrq
= V T

rq
EqVrq

, Ârq
= V T

rq
AqVrq

, B̂q = V T
rq
Bq, Ĉq = V T

rq
Cq,

and

(8) D̂q = Dq.

The order of each sub-system is equal to rq =
∑îq

iq=1 ĵiq , and the moments number of

the original system and reduced one for each sub-system is matched for each expansion

point [3, 13, 8]:

(9) Y j
q (siq) = Ŷ j

q (siq), for jq = 0, 1, . . . , rq − 1

The details of the Rational Arnoldi Algorithm for Switched Linear Systems can be

found in Table 1 [4, 17, 8]:

The principle of the Rational Algorithm for the Switched linear systems is based

on implementation of the Arnoldi Algorithm around single frequency siq for each Ĵiq .

During the iteration process an orthonormal basis Vrq
is generate from the a union

krylov subspace at various expansion points:

(10) Krq
= [X(0)

q (s1q
), . . . , X

(ĵ1q−1)
q (s1q

), . . . , X(0)
q (sîq

), . . . , X
(ĵ

îq
−1)

q (sîq
)]

The main steps of this method are:

Step 1: In the first step we set the expansion point use the criteria of the dominant

pole, the number of moments matched for each frequency and initialize the first vector

of residue z0q for each sub-system.

Step 1: Determine the orthonormal basis Vrq
, where satisfied the condition of the

orthogonal projection x(t) = Vrq
x̂rq

(t) and for each expansion point update the residue

vector rkq
, also an upper-Hessenberg matrix is generate and satisfied the recursive

relationship in (6). Theorem 1 summarizes this result.

Theorem 1 ([4, 9]). Take an initial matrix ψiq = −(siqEq − Aq)
−1Eq and an initial

vector ξiq = (siqE−A)−1B, and let S1 = [s1, s2, . . . , sî1
] ∈ C and S2 = [s1, s2, . . . , sî1

] ∈

C, which the expansion point are distinct of two sets, also give the two set of mo-

ment matching for each expansion point range, J1 = [j1, j2, . . . , ĵi1 ] ∈ R and J2 =

[j1, j2, . . . , ĵi2 ] ∈ R. Generate the orthonormal basis Vrq
for each sub-system with rq =

∑

Jq iteration from the Krylov subspace Kjq
(ψiq , ξiq) = span{ξiq , ψiqξiq , . . . , ψ

j−1
iq

ξiq}.

Since Xj
q (siq) ∈ colspan{Vrq

} for jq = 0, 1, . . . , ĵiq and iq = 1, 2, . . . , îq, we obtain

(11) Xj
q (siq) = Vrq

X̂j
q (siq) and Y j

q (siq) = Ŷ j
q (siq)
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Table 1. RASLS Algorithm

RASLS Algorithm:(input : Eq, Aq, Bq, Cq, Dq, Sq, Jq; output : Vrq
)

Switch q

1/*Initialization of the first Residue Vector for Each Sub-system*/

z0q
:= (s1q

Eq − Aq)
−1Bq

2/*Construction of the Matrix Vrq
*/

for iq = 1, 2, . . . , îq do

for jq = 1, 2, . . . , ĵiq do

kq := (iq − 1)ĵiq + jq

(2.1):/*Generate the New Orthonormal Vector vkq
*/

h(k,k−1)q
:= ‖z(k−1)q

‖

v(k)q
:= z(k−1)q

/h(k,k−1)q

(2.2):/*Update the Residue zkq
for the Next Iteration*/

if jq = ĵiq and iq <= îq then

zkq
:= (s(i+1)q

Eq − Aq)
−1Bq

else zkq
:= −(si−qEq −Aq)

−1Eqvkq

end if

for tq = 1, 2, . . . , kq

h(t,k)q
:= vH

tq
, zkq

:= zkq
− h(t,k)q

vtq

end for

end for

end for

end Switch

Numerical Example. To evaluate this approach, we present the largest singular

value of the frequency response, the poles and the absolute error for each sub-system.

For these we take a FOM model of order 1006, which parameters of states represen-

tation are as follows [18]:

A1 = diag(γ1, γ2, γ3, γ4) with,

γ1 =

(

−1 −100

−100 −1

)

,

γ2 =

(

−1 −200

−200 −1

)

,

γ3 =

(

−1 −400

−400 −1

)

,

γ4 = diag(−1, . . . ,−1000),

B1 = [10 ∗ ones(6, 1); ones(1000, 1)], C1 = BT
1 , D1 = 0.

A2 = A1 − 5 ∗ I, B2 = B1, C2 = C1, D2 = D1.
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S1 = [1 ± 400 ∗ i, 1 ± 200 ∗ i, 1 ± 100 ∗ i],

S2 = [6 ± 400 ∗ i, 6 ± 200 ∗ i, 6 ± 100 ∗ i].
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Figure 1. Largest singular value of the frequency response of the orig-

inal system (sub-system 1) of order 1006 and reduced one of order 10

to a frequency range with RASLS method

The figure 1 presents the largest singular value of the frequency response of the

original sub-systems (order 1006) and reduced one (order 10) to a frequency range.

We can see when a correlation over the entire frequency range shape with a low error

rate. The figure 2 shows the variation of the singular value of the absolute error

between the original sub-systems and the reduced one, we see that the error is small

over the entire frequency range. The distribution poles in the complex plane of each

sub-systems is depicts in figure 3, all poles are negative real part, then the system is

stable.

4. Adaptive Order Rational Arnoldi for Switched Linear Systems

The adaptive order rational arnoldi for switched linear systems method, is an

improvement of the arnoldi [19, 3, 13, 11] and rational arnoldi for switched linear sys-

tems method. AORASLS Algorithm generate a reduced model around a frequency

range with an automatic choice of matching moments of each sub-system. How-

ever, the expansion frequency siq and the number of matched moment ĵiq must be
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Figure 2. Absolute error system between original system of order

(1006) and the reduced one of order (10) with RASLS method

given. For simplicity, the expansion points siq for iq = 1, . . . , îq are determined in

advance using the technique of eigenvalues. Given a fixed set of expansion points

Sq = [s1q
, s2q

, . . . , srq
] and the number of matched moments for each sub-system

rq =
∑

ĵiq , where r presents the order of the reduced systems. The method can

generate an orthonormal matrix for each sub-system Vrq
from the successive Krylov

subspace Krq
(ψq, ξq) = span[V1q

, V2q
, . . . , Vrq

], where ψq(siq) = −(siqEq − Aq)
−1Eq

and ξq(siqEq − Aq)
−1Bq satisfying the following orthogonality relation [4, 14]:

(12) V T
rq
Vrq

= Irq

The transfer function error Erq
= Yrq

(s) − Ŷrq
(s) can be represented as:

Erq
(s) =

ĵ(i−1)q
∑

jq=0

(Y (j)
q (siq) − Ŷ (j)

rq
(siq)(s− siq)

j

+ (Y
ĵiq

q (siq) − Ŷ
ĵiq

q (siq(siq)))(s− siq)
ĵ + o(s− siq)

ĵ(i+1)q

=

ĵ(i−1)q
∑

jq=0

0.(s− siq)
j + (Y ĵ

q (siq) − Ŷ ĵ
rq

(siq))(s− siq)
ĵ

+ o(s− siq)
ĵ(i+1)q
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Figure 3. Pole Distribution of FOM reduced system (order 10) with

RASLS method

= E ĵi

q (siq)(s− siq)
ĵij + o(s− siq)

ĵ(i+1)q(13)

Theorem 2 [4, 9]. Let Sq = [s1, s2, . . . , sîq
] and rq present the order of model reduction

of each sub-system. Suppose that the Vrq
the orthonormal basis for each sub-system

generate automatically by the use of the moments matching for each expansion point,

which are matched with that of the original system. That is Y
jq

q (siq) = Ŷ
jq

q (siq) for

jq = 0, 1, 2, . . . , ĵiq − 1 and iq = 1, 2, . . . , îq. then the expression of error between

the jiqth-order moments Y ĵiq (siq) and Ŷ ĵiq (siq) at each expansion point siq and each

sub-system can be expressed as follows:

(14) |E ĵi

rq
| = |Y ĵiq (siq) − Ŷ ĵiq (siq)| = |CT

q hΠq
(siq)z

r
q(siq)|

The details of the Adaptive Order Rational Arnoldi for Switched Linear Systems Al-

gorithm is found in table 2.

The Adaptive Order Rational Arnodli for Switched Linear Systems Algorithm

includes the following main steps:

Step 1: Initialize of the two vectors k
(0)
q (siq) and z

(0)
q (siq) of the Krylov sequence

for each expansion point siq where iq = 1, . . . , îq, knowing that k
(0)
q (siq) = z

(0)
q (siq).

Initialization of the normalization coefficient hΠq
(siq) for all siq of each sub-system.
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Table 2. AORASLS Algorithm

AORASLS Algorithm:(input : Eq, Aq, Bq, Cq, Dq, Sq, rq; output : Vrq
)

Switch q

(1)/*Initialization of the Expansion Frequencies, Matched Moment and the Initial

Residue Vector for Each Sub-system*/

for each siq ∈ S do

k
(0)
q (siq) := (siqEq −Aq)

−1Bq,

z
(0)
q := k

(0)
q (siq),

hΠq
(siq) := 1/*the normalization coefficient*/

end for

(2):/*Begin AORASLS Iterations*/

forj=1,2,. . . ,q do

(2.1):/*select the expansion frequency with the maximum output moment error*/

Choose siq ∈ Sq as the iq giving maxiq(|hΠq
(siqC

T
q z

j−1
q (siq)|)

Set si∗
jq

be the expansion frequency in the jth iteration

(2.2):/*Generate the orthonormal vector at si∗
jq

*/

h(j,j−1)q
(si∗

jq
) := ‖zj−1

q (si∗
jq

)‖

vjq
= zj−1

q (si∗
jq

)/h(j,j−1)q
(si∗

jq
)

hΠq
(si∗

jq
) := hΠq

(si∗
jq

)h(j,j−1)q
(si∗

jq
)

(2.3):*/Update the residue zj
q(siq) for the next iteration*/

for each siq ∈ Sq do

if (siq == si∗
jq

) then

kj
q(si∗

jq
) := −(siqEq − Aq)

−1Eqvjq

else

k
(j)
q (siq) = k

(j−1)
q (siq)

end if

z(jq)(siq) := k
(j)
q (siq)

for tq = 1, 2, . . . , jq do

h(t,j)q
(siq) := vH

tq
z

jq
q (siq)

z
(j)q

q (siq) := z
(j)q

q (siq) − h(t,j)q
(siq)vtq .

end for

end for

end for

end Switch

Vrq
= [v1q

v2q
. . . vrq

]
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(3):/*Generate Real Vrq
for Complex Expansion points*/

if there exists any siq ∈ Sq such that siq is not a real number

then Vrealq := real(Vrq
),Vimagq

:= imag(Vrq
),

[Vrq
, rr] = qr([VrealqVimagq

]).

end if

Step 2: Choose the expansion frequency siq knowing that siq gives the greatest

difference between the jiqth-order moments of the ooriginal system Yq(s) and the

reduced one Ŷq, the chosen expansion frequency is called si∗
jq

from this criterion:

(15) max |Y ĵiq (siq) − Ŷ ĵiq (siq)| = max |hΠq
(siqC

T
q z

(j−1)q

q (siq))|

Step 2.1: Select the expansion point s∗ijq
, and apply the Arnoldi algorithm around

this point for each sub-system. The new orthonormal vector vjq
is incorporated into

the orthonormal matrix V(j−1)q
. The normalization coefficient hΠq

(siq), according to

s∗ijq
.

Step 2.2: Update the residue vector Z
(j)q
q (siq) and generate the Hessenberg matrix

H using the modified Gram-Schmidt orthogonalization technique.

Numerical Example. To evaluate the Algorithm, we take the model and the fre-

quencies range for each sub-systems used previously. We fix the largest singular value

of the frequency response of the original system and reduced one, we present the vari-

ation of absolute error between the original and reduced one and we give the poles

distribution of the reduced system.

The figure 4 shows the largest singular value of the frequency response of the

original sub-systems of order 1006 and the reduced one of order 12, we see a good

correlation between the two systems over the entire frequency range of the original

system, even when comparing these results with those obtained with RASLS algo-

rithm. The figure 5 presents the variation of the absolute error between the original

sub-systems and the reduced one. Note that the variation of error is low compared to

previous method. The figure 6 depicts the poles distribution of the reduced system

in the complex plane, we see that all poles are negative real part, which explains the

stability of the reduced system.

5. Conclusion

We have proposed a new two model reduction methods for large-scale switched

linear systems. The proposed methods are based on generation of Krylov subspaces

by the use of the moments matching technique for each sub-system. the two methods

is an extension of the Arnoldi Algorithm of the switched linear systems around a single

frequency. However, The RASLS is based on the fixing of the frequency range and the
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Figure 4. Largest singular value of the frequency response of the orig-

inal system (sub-system 1) of order 1006 and reduced one of order 10

to a frequency range with AORASLS method

moment matching for each frequency from the beginning. But the AORASLS is based

on automatically choice of the moment for each frequency. the advantages of these

methods are, the stability of the reduced systems is guaranteed and the minimizing of

absolute error is established. to evaluate and demonstrate the accuracy and efficient

of these methods. From simulation results we noted that the best results is obtained

by Adaptive Order Rational Arnoldi Algorithm for Switched Linear Systems.
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Figure 5. Absolute error system between original system of order

(1006) and the reduced one of order (10) with AORASLS method



SWITCHED LINEAR SYSTEMS 87

−500 −400 −300 −200 −100 0
−400

−200

0

200

400

Real Part

Im
ag

 P
ar

t

 

 

−600 −500 −400 −300 −200 −100 0
−400

−200

0

200

400

Real Part

Im
ag

 P
ar

t

 

 

Sub−system1

Sub−system2

Figure 6. Pole Distribution of FOM reduced system (order 10) with

AORASLS method
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