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CHANGE POINT ANALYSIS IN LINEAR REGRESSION MODELS
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ABSTRACT. This paper is concerned with the change point detection in the linear regression models.

Test procedures considered are the incomplete U-process and the quasi-Bayesian test procedures.

The asymptotic null distribution of test statistics are proposed in terms of supremum of the Guassian

process and the stochastic integral with respect to the Kiefer process.
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1. Introduction

Let X1, . . . , Xn be realizations of the following linear regression model

Xi = αγ

(
i

n

)
+ εi,

i = 1, 2, . . . , n where α, the regression coefficient, is an unknown parameter and

function γ(·) has known functional form with
∫ 1

0
γ2(t)dt = c ∈ (0,∞). Define function

λγ(t) as follows

λγ(t) =

∫ t

0

γ(u)du− t

∫ 1

0

γ(u)du.

It is assumed that the residuals ε1, . . . , εn are independent zero mean random variables

whose distribution functions are Fi(·), i = 1, 2, . . . , n. The null hypothesis of no

change point H0 specifies the assumption

H0 : F1 = · · · = Fn = F,

(F unknown) which under the local alternative hypothesis there exists an unknown

change point t0 ∈ (0, 1) such that

H1 : Fi =





F i = 1, 2, . . . , [nt0],

(1 − δ√
n
)F + δ√

n
G i = [nt0] + 1, . . . , n,

for some distribution function G such that F 6= G and δ ∈ (0, 1). That is, under

H1, the random variables εi, i ≥ [nt0] + 1 have a mixture distribution. Let σ2 =
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∫
x2dF (x) <∞. The least square estimate of α, α̂, is given by

α̂− α =

∑n
i=1 γ(

i
n
)εi∑n

i=1 γ
2( i

n
)
.

It can be shown that, under H0, as n→ ∞, then α̂− α = Op(n
−1/2), that is

v̂n =
√
n(α̂− α)

d→ U = c−1

∫ 1

0

γ(t)dW (t),

whereW (·) is the standard Brownian motion on [0, 1] and U is distributed asN(0, c−1).

During the last four decades, we have witnessed many exciting developments to

check the stability of a parametric models over a period of time. Chernoff and Zacks

(1964) introduced the quasi-Bayesian test statistics for detecting shifts in the mean

of normal observations. Their results were extended to the exponential family by

Kander and Zacks (1966). Haccou, Meelis and van de Geer (1988) considered the

likelihood ratio test for a change in a sequence of independent exponentially dis-

tributed random variables. Csörgő and Horváth (1986) proposed a test based on

supremum of U-statistics. The prototypical Kolmogorov-Smirnov test statistics can

be found in Carlstein (1988) and Csörgő and Horváth (1987). Einmahl and McK-

eague (2003) used empirical likelihood to introduce a test for a change in distribution

function. Zarepour and Habibi (2006) extended Kander and Zacks (1966) results in

exponential family to a general class of distributions. An excellent reference in the

change point analysis is Csörgő and Horváth (1997). The purpose of this paper is

to provide tools for the instability in linear regressions. This paper is organized as

follows. Section 2 contains the incomplete U-process test procedure. The test statis-

tic is represented and its asymptotic null distribution is proposed as supremum of a

Gaussian process. In section 3, the quasi-Bayesian test procedure is considered. It

is shown that the limiting null distribution of the quasi-Bayesian test statistic is a

stochastic integral with respect to Kiefer process.

2. U-Process Procedure

Csörgő and Horváth (1986) constructed a test procedure based on the supremum

of the following incomplete U-process

[nt]∑

i=1

n∑

j=[nt]+1

h(εi, εj),

where h(·, ·) is a symmetric kernel. They showed that, under H0, as n→ ∞, then

n−1/2 sup
0<t<1

[nt]∑

i=1

n∑

j=[nt]+1

{h(εi, εj) − θ} d→ sup
0<t<1

Γ(t),

where θ = EH0
(h(ε1, ε2)) and Γ(t) is a Guassian process. During this paper, it is

assumed that h(x, y) = ρ(x − y), for some even loss function ρ(·). Some selects for
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ρ(x) are |x| and I(x ≤ s) and x2. The residuals εi are unobservable in practice and

so they are replaced by estimated residuals ei = εi − n−1/2v̂nγ(
i
n
), and the estimated

U-process test statistic is given by

sup
0<t<1

[nt]∑

i=1

n∑

j=[nt]+1

{ρ(eij) − θ},

where eij = ei − ej . The difference stochastic process Λn(t) is defined by

Λn(t) =

[nt]∑

i=1

n∑

j=[nt]+1

{ρ(eij) − ρ(εij)} = Λn(t, v̂n),

where

Λn(t, v) =

[nt]∑

i=1

n∑

j=[nt]+1

ρ(εij − n−1/2γijv) − ρ(εij).

where εij = εi − εj and γij = γ( i
n
) − γ( j

n
). Sometimes, as n → ∞, under H0, it can

be shown that Λn(·, ·) d→ Λ(·, ·), for some two parameters convergent process Λ(t, v),

then the continuous mapping theorem can be applied to show that the U-process

test statistic and estimated U-process test statistic have the same asymptotic null

distributions. Suppose that the distribution function F admits a density function f

(f > 0) and let f ∗ = f ∗ f be the convulsion of f .

For more illustration, for example, suppose that ρ(x) = |x|. Using the identity

that for x 6= 0

|x− y| − |x| = −y sgn(x) + 2

∫ y

0

[I(x ≤ s) − I(x ≤ 0)]ds,

(see Knight (1998)) then

Λn(t, v) =

[nt]∑

i=1

n∑

j=[nt]+1

Γij(v),

where

Γij(v) = 2

∫ n−1/2γijv

0

[I(εij ≤ s) − I(εij ≤ 0)]ds− n−1/2γijsgn(εij)v.

It can be shown that the convergent process Λ(t, v) is given by

Λ(t, v) = 2f ∗(0)λγ(t)v −
∫ t

0

∫ 1

t

γ(x, y)W ∗(dx, dy)v,

with W ∗(x, y) = · · · and γ(x, y) = γ(x)− γ(y). Another example of the loss function

is ρ(x) = I(x ≤ s) for some s. It can be shown that Λ(t, v) = f ∗(s)λγ(t)v. Facing

with the smooth functions ρ(·), for example, when ρ(x) = x2 then the estimated U-

process statistic can be applied to detect the change in variance of εi. One can show
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that the convergent process Λ(t, v) can be expressed as
{∫ t

0

∫ 1

t

γ2(x, y)dx dy

}
v2 − 2σ

{∫ t

0

∫ 1

t

γ(x, y)dW ∗(x, y)

}
v.

As follows, we suppose that ρ(·) is a convex, differentiable loss function with

derivative function ψ(·) which satisfies the conditions

A1) E(ψ(ε1)) = 0.

A2) E(ψ2(ε1)) = σ2 <∞.

A3) ψ has Lipschitz-continuous derivative ψ′, i.e., there exists a nonnegative constant

k such that for all x and y,

|ψ′(x) − ψ′(y)| ≤ k|x− y|.

A4) 0 < |Eψ′(ε1)| = |η| <∞.

As follows, mimicking Knight (1989), we show that the Λ(t, v) is

η2

2

{∫ t

0

∫ 1

t

γ2(x, y)dx dy

}
v2 − σ

{∫ t

0

∫ 1

t

γ(x, y)dW ∗(x, y)

}
v.

3. Quasi-Bayesian Procedure

Here, based on the quasi-Bayesian method of Kander and Zacks (1966) in Bernoulli

distribution, we derive new version of weighted Kolmogorov-Smirnov type test statis-

tic to test the null hypothesis of no change point. To do so, for any fixed x, let

ζi = I(εi ≤ x), pi = Fi(x), i = 1, 2, . . . , n and assume that p = F (x) and p0 = G(x).

The ζis are independent Bernoulli random variables with parameter of success pi.

The hypothesis testing problem reduces to

H0 : p1 = · · · = pn = p,

(p unknown) against the local alternative

H1 : pi =





p i = 1, 2, . . . , [nt0],

(1 − δ√
n
)p+ δ√

n
p0 i = [nt0] + 1, . . . , n.

Consider t0 as a random variable with the prior density π(·) on (0, 1) and let Π(t) =
∫ t

0

π(x)dx with Π(0) = 0 and Π(1) = 1. As δ(p − p0) → 0, the quasi-Bayesian test

statistic (Zarepour and Habibi (2006)) is given by
∑n

i=1 Π( i−1
n

)(ζi − ζn), which is

n∑

i=1

Π

(
i− 1

n

)
{I(εi ≤ x) − Fn(x)}.

To remove the effect of x, the weighted Kolmogorov-Smirnov type test statistic is

given as follows

Tn = sup
x

n∑

i=1

Π

(
i− 1

n

)
{I(εi ≤ x) − Fn(x)}.
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To study the null limiting behavior of Tn, let

Kn(t, x) = n−1/2

[nt]∑

i=1

(I(εi ≤ x) − Fn(x)),

and notice that

n−1/2Tn = sup
x

∫ 1

0

Π(t)Kn(dt, x).

One can show that, as n→ ∞, under H0,

Kn(·, ·) d→ K(·, F (·)),

where K(t, x) is the Kiefer bridge defined based on the Kiefer process K(t, x) as

follows

K(t, x) = K(t, x) − tK(1, x).

The continuous mapping theorem implies that

n−1/2Tn
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).

The Darling-Anderson type test statistic is given by
∫ ∞
−∞

∫ 1

0
Π(t)Kn(dt, x)dx, which

as n→ ∞ , converges to the
∫ ∞
−∞

∫ 1

0
Π(t)K(dt, F0(x))dx.

Remark 1. Test Procedures can be obtained under the random exchangeable weights

(Zarepour and Habibi (2006)). For example, for i = 1, . . . , n− 1 let

Π

(
i

n

)
− Π

(
i− 1

n

)
=

Gi(n−1)∑n
i=1Gi(n−1)

,

for a sequence of iid random variables {Gin} satisfying

nP (G1n ∈ dx)
v→ α

e−x

x
dx,

and then the test statistic is given by

Tn =

∑n
i=1(

∑i−1
j=1Gi(n−1)){I(εi ≤ x) − Fn(x)}

∑n
i=1Gi(n−1)

,

and as n→ ∞, then

n−1/2Tn
d→ sup

x

∫ 1

0

S(t)

S(1)
K(dt, F0(x)),

where S(t) is gamma process (Ferguson and Klass (1972)). On the other hand, let

{Gi} be a sequence of iid random variables such that there exists a sequence of

positive constants an such that

nP (a−1
n Gi ∈ dx)

v→ αx−α−1I(x > 0)dx,

and let Gin = Gi

an
, and n−1/2 times the test statistic converges to the

sup
x

∫ 1

0

S(t)

S(1)
K(dt, F0(x)),
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where S(t) is stable process (Resnick (1987)). Another choice for Π( i
n
) is

Π

(
i

n

)
= Ui:n,

where Ui:n are the order statistics of a size of n sample of iid uniform random variables

on (0, 1) with U0:n = 0 and Un:n = 1 (see Rubin (1981) and Lo (1987) and Shao (1995)

in the Bayesian bootstrap setting). Notice that

(U1:n, U2:n, . . . , Un−1:n)
d
=

(
S1

Sn
,
S2

Sn
, . . . ,

Sn−1

Sn

)
,

where Si =
∑i

j=1Ej for E1, . . . , En a sequence of iid random variables with exp(1)

distribution. It is easy to show that

n−1/2Tn
d→ sup

x

∫ 1

0

tK(dt, F0(x)),

which corresponds to the result when Π(t) = t.

Remark 2. Einmahal and Mckeague (2003) tested the change point using the em-

pirical likelihood. One can show that the quasi-Bayesian empirical likelihood test

statistic would reject the null hypothesis of no change point whenever

T ∗∗
n = −2

∫ ∞

−∞
Π(t) logR(t, x)dt,

is large (see Einmahal and Mckeague (2003)). It can be shown that under the null

hypothesis as n→ ∞,

T ∗∗
n

d→
∫ 1

0

∫ 1

0

Π(t)
W0(t, y)

t(1 − t)y(1 − y)
dy dt,

where

W0(t, y) = W (t, y) − tW (1, y)− yW (t, 1) + tyW (1, 1),

which W (·, ·) is a standard Bivariate Wienner process.

In practice, using the estimated residuals ei, the estimated quasi-Bayes test statis-

tic T̂n is given by

T̂n = sup
x

n∑

i=1

Π

(
i− 1

n

)
{I(ei ≤ x) − Fn(x)}.

It can be shown that under H0

n−1/2 sup
x,t

∣∣∣
[nt]∑

i=1

I(ei ≤ x) − I(εi ≤ x) − (α̂− α)γ

(
i

n

)
f(x)

∣∣∣ = op(1),

as n→ ∞. Then

n−1/2






0[nt]∑

i=1

I(ei ≤ x) − F0(x)





d→ U∗(t, x),
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where

U∗(t, x) = K(t, F0(x)) +

∫ 1

0
γ(t)dW (t)

∫ 1

0
γ2(t)dt

∫ t

0

γ(x)dx,

and let

V (t, x) = U∗(t, x) − tU∗(1, x).

One can show that

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)V (dt, x).

This event happens in the other statistical models. Let us consider the following

example.

Example. In the ARMA time series models, Bai (1994) proved that, under the some

mild conditions,

n−1/2 sup
x,s

∣∣∣
[ns]∑

i=1

I(ei ≤ x) − I(εi ≤ x)
∣∣∣ = op(1),

as n → ∞, where {ei} and {εi} are the estimated residuals and residuals of ARMA

models. The the limiting behavior of T̂n, obtained by substituting Xi by ei, is the

same as Tn, that is

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).

Ling (1998) proved that in the unit root models Xi = Xi−1 + εi, then

n−1/2 sup
x,t

∣∣∣
[nt]∑

i=1

I(ei ≤ x) − I(εi ≤ x) − (α̂− 1)Xi−1f(x)
∣∣∣ = op(1),

where f(x) is the density function of εi and α̂ is the least square estimation of α in

Xi = αXi−1 + εi, that is

α̂ =

∑n
i=2Xi−1Xi∑n

i=2X
2
i−1

.

Then

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)K∗(dt, x),

where

K∗(t, x) = K(t, F0(x)) + U(t, x),

with

U(t, x) =

∫ 1

0
W (t)dW (t)

∫ 1

0
W 2(t)dt

(∫ t

0

W (u)du− t

∫ 1

0

W (u)du

)
f(x).
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4. Application: Change detection in distribution

By applying the quasi-Bayesian method of Kander and Zacks (1966) in Bernoulli

distribution, we derive new version of weighted Kolmogorov-Smirnov type test statis-

tic to test the null hypothesis of no change point in distribution. To do so, for any

fixed x, let ζi = I(εi ≤ x), pi = Fi(x), i = 1, 2, . . . , n and assume that p = F (x) and

p0 = G(x). The ζis are independent Bernoulli random variables with parameter of

success pi. The hypothesis testing problem reduces to

H0 : p1 = · · · = pn = p,

(p unknown) against the local alternative

H1 : pi =





p i = 1, 2, . . . , [nt0],

(1 − δ√
n
)p+ δ√

n
p0 i = [nt0] + 1, . . . , n.

Consider t0 as a random variable with the prior density π(·) on (0, 1) and let Π(t) =
∫ t

0

π(x)dx with Π(0) = 0 and Π(1) = 1. As δ(p − p0) → 0, the quasi-Bayesian test

statistic (Zarepour and Habibi (2006)) is given by
∑n

i=1 Π( i−1
n

)(ζi − ζn), which is

n∑

i=1

Π

(
i− 1

n

)
{I(εi ≤ x) − Fn(x)}.

To remove the effect of x, the weighted Kolmogorov-Smirnov type test statistic is

given as follows

Tn = sup
x

n∑

i=1

Π

(
i− 1

n

)
{I(εi ≤ x) − Fn(x)}.

To study the null limiting behavior of Tn, let

Kn(t, x) = n−1/2

[nt]∑

i=1

(I(εi ≤ x) − Fn(x)),

and notice that

n−1/2Tn = sup
x

∫ 1

0

Π(t)Kn(dt, x).

One can show that, as n→ ∞, under H0,

Kn(·, ·) d→ K(·, F (·)),

where K(t, x) is the Kiefer bridge defined based on the Kiefer process K(t, x) as

follows

K(t, x) = K(t, x) − tK(1, x).

The continuous mapping theorem implies that

n−1/2Tn
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).
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The Darling-Anderson type test statistic is given by
∫ ∞
−∞

∫ 1

0
Π(t)Kn(dt, x)dx, which

as n→ ∞ , converges to the
∫ ∞
−∞

∫ 1

0
Π(t)K(dt, F0(x))dx.

Remark 3. Test Procedures can be obtained under the random exchangeable weights

(Zarepour and Habibi (2006)). For example, for i = 1, . . . , n− 1 let

Π

(
i

n

)
− Π

(
i− 1

n

)
=

Gi(n−1)∑n
i=1Gi(n−1)

,

for a sequence of iid random variables {Gin} satisfying

nP (G1n ∈ dx)
v→ α

e−x

x
dx,

and then the test statistic is given by

Tn =

∑n
i=1(

∑i−1
j=1Gi(n−1)){I(εi ≤ x) − Fn(x)}

∑n
i=1Gi(n−1)

,

and as n→ ∞, then

n−1/2Tn
d→ sup

x

∫ 1

0

S(t)

S(1)
K(dt, F0(x)),

where S(t) is gamma process (Ferguson and Klass (1972)). On the other hand, let

{Gi} be a sequence of iid random variables such that there exists a sequence of

positive constants an such that

nP (a−1
n Gi ∈ dx)

v→ αx−α−1I(x > 0)dx,

and let Gin = Gi

an
, and n−1/2 times the test statistic converges to the

sup
x

∫ 1

0

S(t)

S(1)
K(dt, F0(x)),

where S(t) is stable process (Resnick (1987)). Another choice for Π( i
n
) is

Π

(
i

n

)
= Ui:n,

where Ui:n are the order statistics of a size of n sample of iid uniform random variables

on (0, 1) with U0:n = 0 and Un:n = 1 (see Rubin (1981) and Lo (1987) and Shao (1995)

in the Bayesian bootstrap setting). Notice that

(U1:n, U2:n, . . . , Un−1:n)
d
=

(
S1

Sn
,
S2

Sn
, . . . ,

Sn−1

Sn

)
,

where Si =
∑i

j=1Ej for E1, . . . , En a sequence of iid random variables with exp(1)

distribution. It is easy to show that

n−1/2Tn
d→ sup

x

∫ 1

0

tK(dt, F0(x)),

which corresponds to the result when Π(t) = t.
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[6] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis Wiley. New

York.

[7] Einmahl, J. H. J. and McKeague, I. W. (2003). Empirical likelihood based hypothesis testing.

Bernoulli 9, No. 2. 267–290.

[8] Ferguson, T. S. and Klass, M, J. (1972). A representation of independent increment processes

without Guassian components. Annals of Mathematical Statististics 43. 1634–1643.

[9] Haccou, P. and Meelis, E. and van der Geer, S. (1988). Likelihood ratio tests for the change

point problem for exponentially distributed random variables. Stochastic Processes and their

Applications 27, 121–139.

[10] Kander, Z. and Zacks, S. (1966). Test procedures for possible changes in parameters of statis-

tical distributions occurring at unknown time points. Annals of Mathematical Statististics 37

1196–1210.

[11] Knight, K. (1989). Limit theory for autoregressive parameter estimates in an infinite variance

random walk. Canadian Journal of Statistics 17, 261–278.

[12] Knight, K. (1998). Limiting distributions for L1 regression estimators under general conditions.

Annals of Statistics 26 755–770.

[13] Ling, S. (1998). Weak convergence of the sequential empirical processes of residuals in nonsta-

tionary autoregressive models. Annals of Statistics 26, 741–754.

[14] Lo, A. Y. (1993). A Bayesian method for weighted sampling. Annals of Statistics 21, 2138–

2148.

[15] Resnick, S. I. (1987). Regular Variation, Extremes and Point processes. Springer.

[16] Rubin, D. B. (1981). The Bayesian bootstrap. Annals of Statistics 9, 130–134.

[17] Shao, J. (1995). The Jackknife and Bootstrap Springer.

[18] Zarepour, M. and Habibi, R. (2006). A quasi-Bayesian change point detection with exchange-

able weights. Submitted.


