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ABSTRACT. We consider various formulations of stochastic programming problems in a unified

way. The objective is to show how one can actually look at the problems in the same way as

deterministic mathematical programming problems and gain practical insights to the problems as

well as computational schemes. We also provide first and second order conditions, and infinite

dimensional analysis.
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1. Statement of Problem

We start by considering the following stochastic programming problem. Later on

we will consider various problems to give more comprehensive and practical views.

min{g(x) + Qµ(x) : xǫC}

subject to

Qµ(x) =

∫

Rl

Q̃(h(x, z))dµ(z)

Q̃(t) = min{qT y : Wy = t, y ≥ 0}(1)

Assumptions

(1): The function g is real valued and continuously differentiable on Rn.

(2): The set C is a nonempty convex and closed subset of Rn.

(3): µ is a Borel probability measure on Rm.

(4): W is a linear transformation from Rn1 to Rk.

(5): There exists functions Λ ∈ L2(Rm) and Θ such that

|hi(x2, z) − hi(x1, z)| ≤ Λ(z)|x2 − x1|

|∂αhi(x2, z) − ∂αhi(x1, z)| ≤ Λ(z)|x2 − x1|, |α| ≤ 2

hi(x, z) ≥ Θ(x)
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(6): Later we will add inequality constraint of the form f(x) ≤ 0. We assume that

f and g in the objective functional above are twice continuously differentiable.

We can relax this assumption. However, we can do more, as the reader will see,

if we impose this assumption. We also assume that there exists M > 0 such

that f(x) > 0 if x ≥ M , and hi ∈ L2.

(7):
∫
Rm ‖z‖2dµ(z) < ∞.

Virtually the same problem was studied by Romish and Schultz [5] and others.

To handle the constraint x ∈ C we may consider introducing the following function

IC(x) =

{
0 : x ∈ C

∞ : x /∈ C

For K > 0 let

PK(x) = inf

{
K

2
‖x − ζ‖ + IC(ζ) : ζ ∈ Rn

}
.

Instead of problem (1) we consider

(P0) min{g(x) + Qµ(x) : x ∈ C}

subject to

x ∈ C

Qµ(x) =

∫

Rl

Q̃(h(x, z))dµ(z)

Q̃(t) = min{qT y : Wy = t, y ≥ 0}
f(x) ≤ 0(2)

Let P2(Rm) be the set of all probability measures on Rm with finite quadratic

moments. We can endow P2(Rm) with the Wasserstein distance defined as follows:

(3) W 2
2 (µ1, µ2) = min

{∫

Rm×Rm

‖z1 − z2‖2dµ(z1, z2) : µ ∈ Γ(µ1, µ2)

}
,

where Γ(µ1, µ2) is the set of all probability measures for which µ1, µ2 are the marginals.

With the topology induced by the Wasserstein metric P2(Rm) is a complete separable

metric space.

We may rewrite problem (P0) as follows.

min{g(x) + Qµ(x)}

subject to

(4) x ∈ C, µ ∈ P2(Rl), f(x) ≤ 0

In (4) x and µ are decision variables.

We first consider the equation

(5) Wy = h(x, z)
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Without loss of generality assume that yi, i = k + 1, . . . , n1 in (5) are free variables

and

(6) yi = h̄i(x, z) + Ai · ȳ, i = 1, . . . , k

where

Ai, ȳ ∈ Rn1−k, ȳ = (yk+1, . . . , yn1
)T

and Ai · ȳ denotes the inner product of Ai and ȳ. We will sometimes write 〈Ai, ȳ〉. We

remark that, in (6), the functions h̄i(x, z) are linear combinations of the coordinates

of h(x, z) in (5).

Then,

Q̃(h(x, z)) =
k∑

l=1

qlh̄l(x, z)

+ min

{
k∑

l=1

ql〈Al, ȳ〉 +

n1∑

l=k+1

qlyl | yk+1 ≥ 0, . . . , yn1
≥ 0;

h̄i(x, z) + Ai · ȳ ≥ 0, i = 1, . . . , k

}

Instead of the constraint x ∈ C we consider {x : f(x) ≤ 0}. There is no problem

keeping the constraint x ∈ C. However, the constraint {x : f(x) ≤ 0} occurs more in

applications.

Let ω be a smooth real-valued function such that ω(t) = 0 if t ≤ 0 and ω(t) > 0 if

t > 0. Next, let ω̃ be such that ω̃(t) = ω(−t), and ω(t) ∼ t2. Let

(7) q̄ = (qk+1, . . . , qn1
)T

Assumption. We assume that

q1A1 + · · ·+ qkAk + q̄ ≥ 0.

This assumption insures that the yi values in ȳ cannot be arbitrarily large. Next,

for K > 0

min
x,ȳ

{
g(x) +

k∑

l=1

∫

Rm

qlh̄l(x, z)dµ(z) +

k∑

l

ql〈Al, ȳ〉 + 〈q̄, ȳ〉

+ Kω(f(x)) + K

k∑

i=1

∫

Rm

ω̃(h̄i(x, z) + 〈Ai, ȳ〉) exp(−|z|2)dz

}

= min
x

{
g(x) +

k∑

l=1

∫

Rm

qlh̄l(x, z)dµ(z) + Kω(f(x))

min
ȳ

{
k∑

l

ql〈Al, ȳ〉 + 〈q̄, ȳ〉 + K

k∑

i=1

∫

Rm

ω̃(h̄i(x, z) + 〈Ai, ȳ〉) exp(−|z|2)dz

}}
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≤ min
x,ȳ

{
g(x) +

k∑

l=1

∫

Rm

qlh̄l(x, z)dµ(z)

+

k∑

l=1

ql〈Al, ȳ〉 + 〈q̄, ȳ〉 | f(x) ≤ 0, h̄i(x, z) + 〈Ai, ȳ〉 ≥ 0, i = 1, . . . , k.

}

= min
x

{g(x) + Qµ(x) | f(x) ≤ 0}

The last “equality” allows us to consider our entire problem as a nonlinear program-

ming problem in the variables with the additional bonus to include the measure µ as

part of the set of decision variables.

Let

(8) F (x, ȳ, µ) = g(x) +

k∑

l=1

∫

Rm

qlh̄l(x, z)dµ(z) +

k∑

l=1

ql〈Al, ȳ〉 + 〈q̄, ȳ〉

Let (x∗, ȳ∗, µ∗), where µ∗ is a Gaussian measure, be a solution to the problem

(P00) min
x,ȳ,µ

F (x, ȳ, µ)

subject to

f(x) ≤ 0, ȳ ≥ 0, h̄i(x, z) + Ai · ȳ ≥ 0, i = 1, . . . , k.

Note that we are now allowing µ to be part of the decision variables.

Let

FK(x, ȳ, µ) = F (x, ȳ, µ) + Kω(f(x))

+ K
k∑

i=1

∫

Rm

ω̃(h̄i(x, z) + 〈Ai, ȳ〉) exp(−|z|2)dz

+ ‖x − x∗‖2 + W 2(µ, µ∗) + ǫ‖ȳ − ȳ∗‖(9)

where µ is a Gaussian measure. Then,

FK(x∗, ȳ∗, µ∗) ≤ F (x∗, ȳ∗, µ∗).

Lemma 1.1. For every 0 < ǫ < 1 there exists Kǫ such that FK(x, ȳ, µ) > 0 if any of

the following inequalities is an equality

‖x − x∗‖2 ≤ ǫ2, W 2(µ, µ∗) ≤ ǫ2, ‖ȳ − ȳ∗‖ ≤ ǫ.

Proof. If the lemma were false there would exist 1 > ǫ1 > ǫ1 > · · · > ǫn >

· · · −→ 0, K(ǫ1), K(ǫ1), . . . , K(ǫn) · · · −→ ∞, µ1, µ2, . . . , µn, . . . ; x1, x2, . . . , xn, . . . ;

ȳ1, ȳ2, . . . , ȳn, . . . ; such that one of the inequalities is an equality. There exists a sub-

sequence n1 < n2 < · · · ; xǫ
∗, µǫ

∗, ȳ∗
ǫ such that xni

−→ xǫ
∗, ȳni

−→ ȳ∗
ǫ , µni

−→ µǫ
∗

weakly, W (µni
, µǫ

∗) −→ 0. That is,

F (x∗
ǫ , ȳ

∗
ǫ , µǫ

∗) = g(x∗
ǫ) +

k∑

l=1

∫

Rm

qlh̄l(x
∗
ǫ , z)dµǫ

∗(z) +

k∑

l=1

ql〈Al, ȳ
∗〉 + 〈q̄, ȳ∗〉,
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f(x∗
ǫ ) ≤ 0, h̄i(x

∗
ǫ , z) + Ai · ȳ∗

ǫ ≥ 0, i = 1, . . . , k

giving F (x∗
ǫ , ȳ

∗
ǫ , µǫ

∗) < F (x∗, ȳ∗, µ∗). This is a contradiction.

Corollary 1.1. Let (xǫ, ȳǫ, µǫ) be such that

FKǫ
(xǫ, ȳǫ, µǫ) = min{FK(x, ȳ, µ) | ‖x − x∗‖ ≤ ǫ, ‖ȳ − ȳ∗‖ ≤ ǫ, W 2(µ, µ∗) ≤ ǫ2}

Then,

‖x − x∗‖ < ǫ, ‖ȳ − ȳ∗‖ < ǫ, W 2(µ, µ∗) < ǫ2

Next we have

Corollary 1.2. From Corollary 1.1 we obtain that

∂xFKǫ
(xǫ, ȳǫ, µǫ) = 0,

∂ȳFKǫ
(xǫ, ȳǫ, µǫ) ≥ 0.(10)

If µ and ν are probability measures on Euclidean space and mµ, mν are their ex-

pectations, and Cµ, Cν are their covariance matrices then we have [2]

(11) W 2(µ, ν) ≥ ‖mµ − mν‖2 + trace(Cµ + Cν − 2(C1/2
µ CνC

1/2
µ )1/2)

In (11), equality holds if µ and ν are Gaussian. We have

(12)
k∑

i=1

∫

Rm

qih̄i(x, z)dµ(z) =

k∑

i=1

∫

Rm

qih̄i(x, z)
1

(2π)m/2|C−1|1/2
exp

−1

2
(z−r)T C(z−r) dz

where r is the mean and C is the covariance of µ. In particular, in the case of µǫ we

write rǫ for the expectation and Cǫ for the covariance. Perturbing the mean of µǫ in

FKǫ
(xǫ, ȳǫ, µǫ) we get

∂

∂r
FKǫ

(xǫ, ȳǫ, µǫ)|r=rǫ
= −

k∑

i=1

∫

Rm

qih̄i(xǫ, z)Cǫ(z − rǫ)dµǫ(z)

+∂rW
2(µǫ, µ

∗)|r=rǫ

= 0(13)

Next we make a variation in the covariance of µǫ. Let D be a positive semidefinite

matrix. Let µǫθ, 0 < θ < 1, be such that

mean(µǫθ) = rǫ and cov(µǫθ) = Cǫ + θ(D − Cǫ)

Then,

(14)
d

dθ
FKǫ

(xǫ, ȳǫ, µǫθ)|θ=0+ ≥ 0.

That is,

−
k∑

i=1

∫

Rm

qih̄i(xǫ, z)dµǫ(z) · 1

(2π)m/22
trace(C−1

ǫ D)
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−1

2

k∑

i=1

∫

Rm

qih̄i(xǫ, z)〈z, Dz〉dµǫ(z) +
d

dθ
W 2(µǫθ, µ

∗)|θ=0+

≥ −
k∑

i=1

∫

Rm

qih̄i(xǫ, z)dµǫ(z) · 1

(2π)1/22
trace(C−1

ǫ Cǫ)

−1

2

k∑

i=1

∫

Rm

qih̄i(xǫ, z)〈z, Cǫz〉dµǫ(z)

Thus, for any positive semidefinite matrix R we have

− 1

(2π)m/22

k∑

i=1

∫

Rm

qih̄i(xǫ, z)dµǫ(z) · trace(C−1
ǫ R)

−1

2

k∑

i=1

∫

Rm

qih̄i(xǫ, z)〈z, Rz〉dµǫ(z) ≥ 0.(15)

2. Limiting Operations

Let

M(ǫ) = 1 + Kǫω
′(f(xǫ)) + Kǫ

k∑

i=1

‖ω̃′(h̄i(xǫ, z) + 〈Ai, ȳ〉)‖∞

Dividing (10), (13), and (15) by M(ǫ) and letting {ǫ}>0 tend to zero through an

appropriate subsequence we obtain

λ0∇g(x∗) + λ0

k∑

i=1

∫

Rm

qih̄i(x
∗, z)dµ∗(z) + λ1∇f(x∗)

k∑

i=1

∫

Rm

λ̄i(z)∇xh̄i(x
∗, z) exp(−|z|2)dz = 0(16)

λ0

(
k∑

i=1

qiAi + q̄

)
+

k∑

i=1

λ2iAi ≥ 0,

(17) λ2i =

∫
λ̄i(z) exp(−|z|2)dz

(18)
k∑

i=1

∫

Rm

qih̄i(x
∗, z)C∗(z − r∗)dµ∗(z) = 0

1

(2π)m/22

k∑

i=1

∫

Rm

qih̄i(x
∗, z)dµ∗(z) · trace(C∗−1R)

+

k∑

i=1

∫

Rm

qih̄i(x
∗, z)〈z, Rz〉dµ∗(z) ≤ 0.(19)
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where in (18) and (19)

r∗ = mean(µ∗)

C∗ = cov(µ∗)

λ0 + λ1 +
k∑

i=1

‖λ̄i‖∞ 6= 0, λ0 ≥ 0, λ1 ≥ 0, λ̄i ≥ 0.(20)

Theorem 2.1. Let (x∗, ȳ∗, µ∗) be optimal for problem (P00). Then, there exist mul-

tipliers λ0 ≥ 0, λ1 ≥ 0, λ̄i ≥ 0, i = 1, . . . , k such that (16)–(20) hold.

3. Second Order Conditions

Let (x∗, ȳ∗, µ∗) be optimal for problem P00. Let

Qµ∗(x) =
k∑

l=1

∫

Rm

qlh̄l(x, z)dµ∗(z) +
k∑

l=1

ql〈ql, ȳ
∗〉 + 〈q̄, ȳ∗〉

Suppose that I3(x∗) = I4(x∗) = 0. If we consider the problem

(P000) min{g(x) + Qµ∗(x)}

subject to

f(x) ≤ 0

We know problem (P000) has solution x∗. We will obtain second order conditions

for problem (P000). For ease of notation we assume that

(21) f(x) =




f1(x)

f2(x)

f3(x)

f4(x)




.

Let

Î(x) = g(x) + Qµ∗(x)

Ii = fi(x), i = 1, 2, 3, 4.(22)

Suppose that

I1(x
∗) < 0

I2(x
∗) < 0

I3(x
∗) = 0

I4(x
∗) = 0(23)

Following the approach of Wang [7] let

(24) P = {p ∈ Rn : ∇xI3(x
∗, µ∗)Tp = ∇xI4(x

∗, µ∗)Tp = ∇xÎ(x
∗, µ∗)Tp = 0}
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Suppose that for every p ∈ P there exists a vector V (p) ∈ Rn such that

pT∇2
xI3(x

∗, µ∗)p + ∇xI3(x
∗, µ∗)T V (p) ≤ 0

pT∇2
xI4(x

∗, µ∗)p + ∇xI4(x
∗, µ∗)T V (p) ≤ 0

pT∇2
xÎ(x∗, µ∗)p + ∇xÎ(x∗, µ∗)T V (p) ≤ 0(25)

We keep in force that {∇xIi(x
∗, µ∗) : i = 3, 4} is a linearly independent set. Thus

the matrix

(26)

(
∂I3
∂x1

(x∗) · · · ∂I3
∂xn

(x∗)
∂I4
∂x1

(x∗) · · · ∂I4
∂xn

(x∗)

)

has rank 2. Suppose that the first two columns in (27) are linearly independent. Set

(27) M1 =

(
∂I3
∂x1

(x∗) ∂I3
∂x2

(x∗)
∂I4
∂x1

(x∗) ∂I4
∂x2

(x∗)

)

Let

(28) M2(w) =

(
∂I3
∂x3

(w) · · · ∂I3
∂xn

(w)
∂I4
∂x3

(w) · · · ∂I4
∂xn

(w)

)

For t ≥ 0 let α(t) be a curve in Rn, α(t)T = (α1(t), · · · , αn(t)). Let

E(t) = (α(t)T∇2
xI3(x

∗, µ∗)α(t)α(t)T∇2
xI4(x

∗, µ∗)α(t))T(29)

Ṽ (p) = (V (p3), . . . , V (pn))T(30)

Consider the differential equation



d2α1(t)

dt2

· · ·
d2αn(t)

dt2


 =

(
−M−1

1 (M2(α(t)) + E(t))

Ṽ (p)

)
(31)

α(0) = x∗(32)

dα

dt
(0) = p(33)

We have(
I3(α(t))

I4(α(t))

)
=

(
I3(x

∗)

I4(x
∗)

)
+ t

(
∇xI3(x

∗)T α′(0)

∇xI4(x
∗)T α′(0)

)

+
1

2
t2

(
∇xI3(α(t̂))T α′′(t̂) + α′(t̂)T∇2

xI3(α(t̂))α′(t̂)

∇xI4α(t̂))T α′′(t̂) + α′(t̂)T∇2
xI4(α(t̂))α′(t̂)

)
(34)

for some t̂, 0 ≤ t̂ ≤ t.

Using (24), (29) and (31) we can rewrite (34) as
(

I3(α(t))

I4(α(t))

)
=

(
I3(x

∗)

I4(x
∗)

)
+ t

(
∇xI3(x

∗)T α′(0)

∇xI4(x
∗)T α′(0)

)
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+
1

2
t2[M1

(
α′′

1(t̂)

α′′
2(t̂)

)
+ M2(α(t̂)) + E(t̂)](35)

Thus, there exists t′′ such that for 0 < t < t′′
(

I3(α(t)

I4(α(t)

)
=

(
0

0

)

Lemma 3.1. Suppose that ∇xÎ(x∗, µ∗)T p ≤ 0, ∇xIi(x
∗, µ∗)Tp ≤ 0, i = 1, 2, 3, 4.

Then, the system

∇xÎ(x∗, µ∗)T U + pT∇2
xÎ(x∗, µ∗)p < 0

∇xI1(x
∗, µ∗)TU + pT∇2

xI1(x
∗, µ∗)p < 0

∇xI2(x
∗, µ∗)TU + pT∇2

xI2(x
∗, µ∗)p < 0

∇xI3(x
∗, µ∗)TU + pT∇2

xI3(x
∗, µ∗)p ≤ 0

∇xI4(x
∗, µ∗)TU + pT∇2

xI4(x
∗, µ∗)p ≤ 0(36)

where we look for a solution U has no solution.

Proof. If the system had a solution U , then we would construct a curve α(t) as we

did in (32) where U plays the role of Ṽ (p) in (30). Then,

Î(α(t)) < Î(x∗),

I1(α(t)) < I1(x
∗),

I2(α(t)) < I2(x
∗), 0 ≤ t ≤ t∗∗

I3(x
∗) = 0

I4(x
∗) = 0(37)

Thus, we contradict the optimality of x∗.

Lemma 3.2 ([7]). Let A, B, and C be r × n, p × n, and m × n real matices. Let b1,

b2, b3 be r-dimensional, p-dimensional, and m-dimensional real vectors respectively.

The system

Az + b1 < 0,

Bz + b2 ≤ 0,

Cz + b2 = 0,

has no solution if and only if there exist λ0 6= 0, λ ≥ 0, and µ such that

λ0T
A + λT B + µTC = 0, λ0T

b1 + λT b2 + µT b3 ≥ 0.

Now using this lemma we obtain

Corollary 3.1. Suppose that ∇xÎ(x∗, µ∗)T p ≤ 0, ∇xIi(x
∗, µ∗)T p ≤ 0, i = 1, 2, 3, 4.

Then, there exist mutipliers λ̃0 ≥ 0, λ̃i ≥ 0, i = 1, 2, 3, 4 such that
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(a) (λ̃0, λ̃1, λ̃2, λ̃3, λ̃4) 6= (0, 0, 0, 0, 0)

(b) λ̃0Î(x∗, µ∗) +
∑4

i=1 λ̃i∇xIi(x
∗, µ∗) = 0,

(c) pT (λ̃0Î(x∗, µ∗) +
∑4

i=1 λ̃i∇xIi(x
∗, µ∗))p ≥ 0.

Corollary 3.2. Suppose that {∇xIi(x
∗, µ∗)T , i = 1, 2, 3, 4} is a linearly independent

set and ∇xÎ(x∗, µ∗)T p ≤ 0, ∇xIi(x
∗, µ∗)T p ≤ 0, i = 1, 2, 3, 4. Then, there exist

multpliers ζ1 ≥ 0, ζ2 ≥ 0, ζ3 ≥ 0, ζ4 ≥ 0 such that

(a) ∇xÎ(x∗, µ∗) +
∑4

i=1 ζi∇xIi(x
∗, µ∗) = 0,

(b) pT (∇2
xÎ(x∗, µ∗) +

∑4
i=1 ζi∇2

xIi(x
∗, µ∗))p > 0.

Remark. One can also construct second order conditions involving the variable ȳ∗

as well as µ∗.

4. Other Problems

Here we see the essence of “chance constrained” approach. We can apply the above

analysis to the following problem

min{CTx + Q(x, µ) | Ax = b, x ∈ Rn1

+ }

where

Q(x, µ) =

∫

Rn

Φ(x, ξ)dµ(ξ)

Φ(x, ξ) = min{qT (ξ)y | Wy = h(ξ) − T (ξ)x, y ∈ Rn2

+ }(38)

Let us now consider a more general problem

(P) min{g(x) + Q(x) | f(x) ≤ 0}

Q(x) =

∫

Ω

Φ(x, ω)dP (ω)

Φ(x, ω) = min{qT (ω)y | W (ω)y ≥ h(ω) − T (ω)x, y ∈ Ỹ }(39)

Let us write the constraint inequality on y as follows.

X1(x, y, ω) =

k∑

j=1

W1j(ω)yj − h1(ω) −
n∑

j=1

T1j(ω)xj ≥ 0

X2(x, y, ω) =
k∑

j=1

W2j(ω)yj − h2(ω) −
n∑

j=1

T2j(ω)xj ≥ 0(40)

Assume Wij , i = 1, 2 and j = 1, . . . , n as well as h1, h2 are identically distributed

independent normal random variables. Thus

E(Xi(x, y, ·)) = 0, i = 1, 2.

E(hi) = 0, i = 1, 2.

E(Xi(x, y, ·)Xj(x, y, ·)) = δij(|y|2 + |x|2 + 1)



APPROACHES TO STOCHASTIC PROGRAMMING PROBLEMS 193

Thus

cov(X1, X2) = (|y|2 + |x|2 + 1)I
where I is the identity matrix.

An approximate solution for the above problem (P) can be constructed as follows.

Given x such that f(x) ≤ 0 and 0 < ǫ < 1 we can choose y so that

prob{ω | X1(x, y, ω) ≥ 0, X2(x, y, ω) ≥ 0} ≥ 1 − ǫ

We can accomplish this if we choose y so that

1

2π

∫ −θ
√

|y|2+|x|2+1

−∞

∫ −θ
√

|y|2+|x|2+1

−∞

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

1

2π

∫ ∞

θ
√

|y|2+|x|2+1

∫ ∞

θ
√

|y|2+|x|2+1

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

That is we may consider the problem

min
x,y

{g(x) + E(q) · y}

subject to

1

2π

∫ −θ
√

|y|2+|x|2+1

−∞

∫ −θ
√

|y|2+|x|2+1

−∞

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

1

2π

∫ ∞

θ
√

|y|2+|x|2+1

∫ ∞

θ
√

|y|2+|x|2+1

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

y ∈ Ỹ

f(x) ≤ 0(41)

Let F (s) be the cumulative distribution of the normal random variable with mean 0

and variance 1. Now this problem can be rewritten as

min
x,y

{g(x) + E(q) · y}

subject to

θ2(|y|2 + |x|2 + 1) ≥
[
F−1

(√
ǫ

2

)]2

θ2(|y|2 + |x|2 + 1) ≥
[
F−1

(
1 −

√
ǫ

2

)]2

y ∈ Ỹ

f(x) ≤ 0(42)

Suppose that M1 = max{|y| : y ∈ Ỹ } and M2 = max{|x| : f(x) ≤ 0}. Then θ should

be chosen so the θ2 = (F−1(
√

ǫ)2/(M2
1 + M2

2 + 1) to allow all the y and x values to

compete. If we choose θ2 to bigger, then we might eliminate some feasible x and y
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values from competing. If we take θ2 to be smaller, then nonfeasible values of x and

y would be considered in our computation unnecessarily.

We now consider a version that is different from the above problem.

(P) min{CT x + Q(x, µ) | Ax = b, x ∈ Rn1

+ }

where

Q(x, µ) =

∫

Rn

Φ(x, ξ)dµ(ξ)

Φ(x, ξ) = min{qT (ξ)y | Wy = h(ξ) − T (ξ)x, y ∈ Rn2

+ }
(43)

Let us now consider a more general problem

(P1) min{g(x) + Q(x) | f(x) ≤ 0}

Q(x) =

∫

Ω

Φ(x, ω)dµ(ω)

Φ(x, ω) = min{qT (ω)y | W (ω)y ≥ h(ω) − T (ω)x, y ∈ Ỹ }
(44)

Without loss of generality we assume that q ≥ 0. We also assume that 0 ≤ qi ≤ M ,

i = 1, . . . , n. Henceforth, we assume that q, W , h, and T are independent random

variables, and W , h, T are normal random variables with mean 0 and standard

deviation 1. Let

Eli = {ω : li · δ ≤ qi(ω) ≤ li · δ + δ}
and

µ

(
n⋂

i=1

Eli

)
= ∆(l1, . . . , ln)

∫
Tn

i=1
Eli

q(ω) · ydµ(ω) ≈
n∑

i=1

(li · δ)yi∆(l1, . . . , ln)

We now give a problem that approximates the problem P1 to a desired accuracy

on the set
⋂n

i=1 Eli .

(P2) min{g(x) +

n∑

j=1

(lj · δ)yj∆(l1, . . . , ln)}

subject to

χ∩n
i=1

Eli
(ω)W (ω)y ≥ χ∩n

i=1
Eli

(ω)(h(ω) − T (ω)x)

f(x) ≤ 0

y ∈ Ỹ(45)
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For ease of notation in P2 we would take W to be 2×k matrices and T to be 2×n

matrices. We would also replace the constraint y ∈ Ỹ by y ≥ 0. Then we would

consider the following problem

(P3) min

{
g(x) +

n∑

j=1

(lj · δ)yj∆(l1, . . . , ln)

}

subject to

X(1, l1, . . . , ln, ω) = χ∩n
i=1

Eli
(ω)(W (ω)y − h1(ω) − T (ω)x) ≥ 0

X(2, l1, . . . , ln, ω) = χ∩n
i=1

Eli
(ω)(W (ω)y − h2(ω) − T (ω)x) ≥ 0

f(x) ≤ 0

y ≥ 0(46)

E(X(1, l1, . . . , ln, ω)) = 0

E(X(1, l1, . . . , ln, ω)) = 0

E(X(1, l1, . . . , ln, ω)X(1, l1, . . . , ln, ω)) = (∆(l1, . . . , ln))2(|y|2 + |x|2 + 1)

E(X(2, l1, . . . , ln, ω)X(2, l1, . . . , ln, ω)) = (∆(l1, . . . , ln))2(|y|2 + |x|2 + 1)

Let F (s) be the cumulative distribution of the normal random variable with mean

0 and variance 1. In
⋂n

i=1Eli, 1 ≤ li ≤ N we solve

(P4) min
x,y

{
g(x) +

n∑

j=1

(lj · δ)yj∆(l1, . . . , ln)

}

subject to

δ2(∆(l1, . . . , ln))2(|y|2 + |x|2 + 1) ≥
[
F−1

(√
ǫ

2N

)]2

δ2(∆(l1, . . . , ln))2(|y|2 + |x|2 + 1) ≥
[
F−1

(
1 −

√
ǫ

2N

)]2

f(x) ≤ 0

y ≥ 0

We are trying to minimize the objective function g(x)+
∑n

j=1 ljδyj∆(l1, . . . , ln) while

enforcing X(1, l1, . . . , ln, ω) ≥ 0 and X(2, l1, · · · , ln, ω) ≥ 0 hold on a set of measure

≥
(
1 − ǫ

N

)
. The idea is, we divide the range of qi into N parts and then approx-

imately solve the minimization problem (P1) on each set
⋂n

i=1 Eli while enforcing

the inequality of the problem on a set of measure ≥ 1 − ǫ
N

. Finally, we put things

together, that is, we consider the problem

(P5) min
x,yl1...ln



g(x) +

∑

(l1, ..., ln)

n∑

j=1

(lj · δ)yl1···lnj∆(l1, . . . , ln) | 1 ≤ li ≤ N, i = 1, . . . , n





subject to
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δ2(∆(l1, . . . , ln))2(|y|2 + |x|2 + 1) ≥
[
F−1

(√
ǫ

2N

)]2

δ2(∆(l1, . . . , ln))2(|y|2 + |x|2 + 1) ≥
[
F−1

(
1 −

√
ǫ

2N

)]2

1 ≤ li ≤ N, i = 1, . . . , n

f(x) ≤ 0

yl1...ln ≥ 0

We remark that the second sum is taken over all n-tuples (l1, . . . , ln). Problem (P5)

is an approximate solution to (P1) while enforcing the random constraints of (P1) on

a set of measure ≥ 1 − ǫ. Again we remark that we choose δ2 to go along with the

constraints as pointed out above. This problem is a nonlinear programming problem

that can be solved using MatLab.

5. Infinite Dimensional Approach

5.1. First Approach. In the previous section we made assumptions that the random

variables are independent. Here we will avoid making the assumption of independence

and consider the decision variable y as a measurable function. Consider the problem

(P6) min
x,y

{
g(x) +

∫

Ω

F (y(ω), x)dµ(ω)

}

f(x) ≤ 0

G(y(ω), x)) ≤ 0 a.e [µ].

We assume that

G(ξ, x) > 0 if |ξ|2 + |x|2 ≥ M.

Now our decision variables are x and y(ω). We impose on f the conditions stated in

the list of assumptions in Section 1. For a fixed positive integer n let E1, E2, . . . , En

be measurable subsets of Ω. We look for a solution of (P6) where the y′s are sim-

ple function of the form
∑n

i=1 αiχEi
, αi ∈ R. Using the procedure in the proof of

Lemma 1.1 we can get a set of necessary conditions as in Lemma 5.1 below.

Lemma 5.1. Suppose x∗ and y∗(ω) are optimal for problem P6. Then, there exist

multipliers λ0 ≥ 0, λ1 ≥ 0, λ2(ω) ≥ 0 such that

λ0 + λ1 + ‖λ2(ω)‖∞ 6= 0

λ1f(x∗) = 0.

λ0∇g(x∗) + λ1∇f(x∗) + λ0

∫

Ω

∇xF (y(ω), x∗)dµ(ω)

+

∫

Ω

λ2(ω)∇xG(y(ω), x∗)dµ(ω)

= 0
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λ0∇yF (y(ω), x∗) + λ2(ω)∇yG(y(ω), x∗) = 0 a.e. [µ]

λ2(ω)G(y(ω), x∗) = 0 a.e. [µ]

The above lemma is not practical, and problem (P6) is not, in practice, easy to

deal with. It is more practical if we knew the probability distributions of the random

variables involved. The next lemma is a prelude to that idea. In the next section we

will deal with the practical situation when we know the distributions.

We now consider a problem that is relevant to the material in the next section.

(P ′
6) min

x,y

{
g(x) +

∫
F (x, ζ, y(z, ζ))e−d2(|z|2+|ζ|2)dzdζ

}

f(x) ≤ 0

G(x, y(z, ζ)) ≤ 0 a.e.

In this problem we assume that

f(x) > 0 if |x| ≥ M, |y(z, ζ)| ≤ const.

We also assume that F and G are continuously differentiable and

|F (x, ξ1, ξ2)| + G(x, ξ2) ≤ const.(1 + |ξ1|k + |ξ2|k)

for some k, a positive integer. We also assume that x ∈ Rl, ξ1 ∈ Rm and ξ2 ∈ Rn.

In this problem our decision variables are x ∈ Rl and y ∈ H1(Rq), q = m + n. Here

H1(Rq) is the Sobolev space of order one.

Lemma 5.2. Suppose that {yn} is a sequence in H1(Rq) and y0 is a fixed element in

H1(Rq) such that ‖yn − y0‖H1(Rq) ≤ θ. Then there exists a subsequence of {yn} that

converges pointwise almost everywhere to an element of H1(Rq).

Proof. There exist a subsequence {yni
} and y0 ∈ H1(Rq) such that {yni

} converges

to y0 weakly. A further subsequence of {yni
} converges to y0 strongly in Lr(B(0; 1)),

1 ≤ r < nq
nq−1

and a further subsequence of the last subsequence converges pointwise

to y0 a.e. on B(0; 1). Now taking a subsequence of the sequence that converged to

y0 a.e. on B(0; 1) we get a subsequence that converges a.e. to y0 on B(0; 2). We can

continue this process taking balls of radius 3, 4, . . . and get a diagonal sequence that

converges to y0 a.e.

Using the procedure of Lemma 1.1 we can get the following

Lemma 5.3. Suppose (x∗, y∗) is a solution to (P ′
6). Then

λ0 + λ1 + ‖λ2(z, ζ)‖∞ 6= 0

λ1f(x∗) = 0

λ0∇g(x∗) + λ1∇f(x∗) + λ0

∫
∇xF (x∗, ζ, y∗(z, ζ)) · e−d2(|z|2+|ζ|2)dzdζ
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+

∫
λ2(z, ζ)∇xG(x∗, y∗(z, ζ)) · e−d2(|z|2+|ζ|2)dzdζ = 0

λ0∇yF (x∗, ζ, y∗(z, ζ)) + λ2(z, ζ)∇yG(x∗, y∗(z, ζ)) = 0 a.e.

λ2(z, ζ)G(x∗, y∗(z, ζ)) = 0 a.e.

5.2. Second Approach. Here we follow the spirit of P ′
6. We reconsider problem

(P) to get additional insight to stochastic programming problems. We keep the

assumptions on the random variables q, W , h, T made in problem (P). (See (40) and

the equations preceding it.)

In what follows ζ = (ζ1, . . . , ζk)
T , ξi = (ξi1, . . . , ξik)

T , i = 1, 2. Similarly wi =

(wi1, . . . , w1k)
T , and Ti = (Ti1, . . . , T1n)T , i = 1, 2. Next η1, η2 represent real numbers

while τ1, τ2 represent vectors in Rn. The quantities h1, h2, are scalars. Let νζ be the

measure defined on Rk as follows. Let B be a Borel subset of Rk. We define the

measure νζ by the formula

νζ(B) = P (q−1(B))

We define the measures µξ1 and µξ2 in the same way. That is,

µξ1(B) = P (W−1
1 (B)), µξ2(B) = P (W−1

2 (B))

We define the measures µη1
and µη2

as follows. That is, for C a Borel subset of R

µη1
(C) = P (h−1

1 (C)), µη2
(C) = P (h−1

2 (C)),

Let D be a Borel subset of Rn. We define the measures µτ1 , µτ2 as follows

µτ1(D) = P (T−1
1 (D)), µτ2(D) = P (T−1

2 (D)).

We assume that the measures νζ and µξ1 and µξ2 are absolutely continuous with

respect to the Lebesgue measure on Rk. We assume that the measures µη1
and µη2

are absolutely continuous with respect to the Lebesgue measure on the real line. We

also assume that the measures µτ1 , µτ2 are absolutely continuous with respect to the

Lebesgue measure on Rn. We denote by π1(ζ), π21(ξ1), π22(ξ2, ), π31(η1), π32(η2),

π41(τ1), π42(η2) the Radon-Nikodym derivatives with respect to the corresponding

Lebesgue measure. In fact, these Radon-Nikodym derivatives are all Gaussian.

We now set

dΘ(ζ, ξ1, ξ2, η1, η2, τ1, τ2) = π1(ζ)π21(ξ1)π22(ξ2)π31(η1)π32(η2)π41(τ1)π42(τ2)

· dζdξ1dξ2dη1dη2dτ1dτ2

For ease of notation we will simply write dΘ for dΘ(ζ, ξ1, ξ2, η1, η2, τ1, τ2). Similarly

we will write yl instead of yl(ζ, ξ1, ξ2, η1, η2, τ1, τ2). Now problem (P), without the

restriction y ∈ Ỹ , becomes

(P7) min
x,y

{
g(x) +

k∑

l=1

∫
ζlyldΘ

}
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subject to

k∑

j=1

ξijyj − ηi −
n∑

j=1

τijxj ≥ 0, i = 1, 2(47)

f(x) ≤ 0, f(x) > 0 if |x| > M

Note that
k∑

j=1

ξijyj − ηi −
n∑

j=1

τijxj = 〈ξi, y〉 − ηi − 〈τi, x〉

Also note that

|y| ≤ const.(1 + |η1| + |η2| + |τ1| + |τ2|).
We remark here that in order to solve (P7) we discretize the ξijyj, ηi, τij space, and in

each subdivision we solve the problem. We also know the measure of the particular

subdivision. That is we solve a nonlinear programming problem. Let ω be a smooth

function that is zero on (−∞, 0] and positive on (0,∞). Then the inequality

〈ξi, y〉 − ηi − 〈τi, x〉 ≥ 0

is the same as ∫
ω(−〈ξi, y〉 + ηi + 〈τi, x〉)dΘ = 0.

One can see how the formulation in (P7) can be useful in approximation.

Set

E(η, ζ) = ǫ · (|η1|2 + |η2|2 + |ζ1|2 + |ζ2|2)
where ǫ > 0 is sufficiently small so that the eE(η,ζ)dΘ decreases exponentially fast.

Now consider the following problem instead of (P7).

(P7′) min
x,y

{
g(x) +

k∑

l=1

∫
ζlyle

E(η,ζ)dΘ

}

subject to

k∑

j=1

ξijyj − e−E(η,ζ)ηi −
n∑

j=1

e−E(η,ζ)τijxj + e−E(η,ζ) ≥ 0, i = 1, 2

f(x) ≤ 0,

f(x) > 0 if |x| > M

We note P7 and P7′ are equivalent except that in P7′ we have

|y| ≤ const.(1 + |η1| + |η2| + |τ1| + |τ2|)e−E(η,ζ).

and we can apply the analysis of P6′ . Also the formulation in P7′ allows us to consider

the decision variable y to come from appropriate Sobolev space as in P6′ and also

assert existence of solution provided the admissible set is nonempty. In practice we
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solve problem P7′ by discretizing the measure dΘ and approximating the decision

variable y by a simple function.

6. Numerical Examples

6.1. A stochastic problem with recourse. Consider the following two-stage sto-

chastic program with recourse.

min

{
cT x +

∫

Ω

Q(x, ξ)dµ(ξ)

}

subject to

Ax ≥ b

x ≥ 0

Q(x, ξ) = min{qT y | Wy = h(ξ) + T (ξ)x, y ≥ 0}

To illustrate the ideas presented above let

Ω = {ξ1, ξ2, . . . , ξN}, µ(ξi) = pi,

W =

(
1 1 0

0 1 1

)
,

and

h(ξ) = (0 0)T , and T = (Tjk)j=1,2;k=1,2,3.

We can consider the measure µ as one of the decision variables. We now reformulate

the problem. Set

qj(ω) =

N∑

i=1

qjiχξi
, j = 1, 2, 3

yj(ω) =
N∑

i=1

yjiχξi
, j = 1, 2, 3

Tjk(ω) =
N∑

i=1

τijkχξi
, j = 1, 2; k = 1, 2, 3.

(48)

Then, we have the following problem

min
{x, y1i,y2i,y3i,pi:i=1,...,N}

{
cT x +

N∑

i=1

(q1iy1i + q2iy2i + q3iy3i)pi

}

subject to

Ax ≥ b

x ≥ 0
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y1i + y2i =

3∑

k=1

τi1kxk, i = 1, . . . , N

y2i + y3i =
3∑

k=1

τi2kxk, i = 1, . . . , N

x, y1i, y2i, y3i ≥ 0, i = 1, . . . , N

N∑

k=1

pi = 1, p1 ≥ 0, . . . , pN ≥ 0

This reformulation has the same set-up as in Section 1. We note that this problem

is a nonlinear programming problem which can be solved using MatLab, and also

illustrates the essence of the above approach. We also note the multistage problem

in the next section fits in this approach. In this example, if we take

A =

(
1 0 2

0 1 1

)
,

b =

(
1

1

)
,

(q11 q12 q13) = (0.1 0.13 0.4),

(q21 q22 q23) = (0.3 0.4 0.23),

(q31 q32 q33) = (0.51 0.12 0.3)

(τ111 τ112 τ113) = (0.2 0.3 0.5),

(τ211 τ212 τ213) = (0.1 0.6 0.3),

(τ311 τ312 τ313) = (0.4 0.3 0.3)

(τ121 τ122 τ123) = (0.1 0 0.9),

(τ221 τ222 τ223) = (0.8 0.1 0.1),

(τ321 τ322 τ323) = (0.2 0.4 0.4)

then, using MatLab, the values of the decision variable and the corresponding objec-

tive functional value is presented in the following table.
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x1 0

x2 0.4038

x3 0.5962

y11 0.4192

y21 0.4211

y31 0.3

y12 0

y22 0

y32 0

y13 0.5366

y23 0.1

y33 0.4

p1 0

p2 1

p3 0

Objectve function 1

6.2. A general stochastic programming. We may consider the problem

min
x,y

{g(x) + E(q) · y}

subject to

1

2π

∫ −θ
√

|y|2+|x|2+1

−∞

∫ −θ
√

|y|2+|x|2+1

−∞

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

1

2π

∫ ∞

θ
√

|y|2+|x|2+1

∫ ∞

θ
√

|y|2+|x|2+1

exp

(
−1

2
(η2

1 + η2
2)

)
dη1dη2 ≤ ǫ/2,

y ∈ Ỹ

f(x) ≤ 0(49)

Let F (s) be the cumulative distribution of the normal random variable with mean 0

and variance 1. Now this problem can be rewritten as

min
x,y

{g(x) + E(q) · y}

subject to

θ2(|y|2 + |x|2 + 1) ≥
[
F−1

(√
ǫ

2

)]2

θ2(|y|2 + |x|2 + 1) ≥
[
F−1

(
1 −

√
ǫ

2

)]2

y ∈ Ỹ

f(x) ≤ 0(50)
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Suppose that M1 = max{|y| : y ∈ Ỹ } and M2 = max{|x| : f(x) ≤ 0}. Then θ should

be chosen so the θ2 = (F−1(
√

ǫ)2/(M2
1 + M2

2 + 1) to allow all the y and x values to

compete. If we choose θ2 to bigger, then we might eliminate some feasible x and y

values from competing. If we take θ2 to be smaller, then nonfeasible values of x and

y would be considered in our computation unnecessarily.

Let us consider now a specific version of this problem

Ỹ = {y | y2
1 + y2

2 ≤ 4}, f(x1, x2) = x2
1 + x2

2 − 1,

g(x) = 3x2
1 + 10x2, E(q) = (2,−1)T , ǫ = .01.

Then, we solve

min
x,y

{3x2
1 + 10x2 + 2y1 − y2}
subject to

x2
1 + x2

2 − 1 ≤ 0

y2
1 + y2

2 ≤ 4

θ2(y2
1 + y2

2 + x2
1 + x2

2 + 1) ≥
[
F−1

(√
ǫ

2

)]2

y ∈ Ỹ

f(x) ≤ 0

ǫ
2

= .005,
√

ǫ
2

= .0707,
[
F−1

(√
ǫ
2

)]
= 1.47,

[
F−1

(√
ǫ
2

)]2
= 2.1609, 2.1609/4 =

.540225. We choose θ2 =
[
F−1

(√
ǫ
2

)]2
/5. This problem can be quickly solved

using MatLab. The values of the decision variables and the corresponding objective

functional value are presented in the following table.

x1 0.0000

x2 -1.0000

y1 -1.7889

y2 0.8944

Objectve function -14.4721
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