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ABSTRACT. In the present article, we have studied a multi-delayed predator-prey model where

the prey species is subject to harvesting under stochastic environment. Predator’s interference in

predator-prey relationship provides better descriptions of predator’s feeding over a range of predator-

prey abundances, so the predator’s functional response is considered to be Type II ratio-dependent

here. A constant time delay is incorporated in the logistic growth of the prey to represent a delayed

density dependent feedback mechanism. A second time delay is considered to account for the length

of the gestation period of the predator. Along with these delays harvesting of prey species plays a

significant role to better description of the system. Stochastic stability is measured by second order

moment terms by calculating the non-equilibrium fluctuation of the non-delayed system and Fourier

transform technique depicts the fluctuation of stochastic stability by introducing time lag. Differ-

ent dynamical behaviors for both situations have been illustrated numerically also. The biological

implications of the analytical and numerical findings are discussed critically.

Key words: Delay; Gaussian white-noise; Ratio dependent functional response; Harvesting; Mo-

ment equations; Fourier transform

1. Introduction

In ecology, understanding the prey-predator relationship is the central goal and a

very significant component of this is the predators rate of feeding upon prey. Preda-

tor’s functional response, defined as the amount of prey catch per predator per unit

of time. After the pioneering studies of [1], i.e., linear, only prey dependent and

ratio dependent functional response, response functions of predators which depends

on both prey and predator abundance can provide better descriptions of predator

feeding over a range of predator-prey abundances because of predator interference.

More recent theoretical work has demonstrated that the mathematical form of the

‡Corresponding author’s E-mail: g p samanta@yahoo.co.uk, gpsamanta@math.becs.ac.in
†Research is supported by UGC (Dr. D. S. Kothari Postdoctoral Fellowship), India; No. F.4-

2/2006(BSR)/13-1004/2013(BSR).

Received April 15, 2014 1061-5369 $15.00 c©Dynamic Publishers, Inc.



206 D. JANA AND G. P. SAMANTA

feeding rate can influence the distribution of predators through space [2], the stability

of enriched predator-prey systems [3, 6] correlations between nutrient enrichment and

the biomass of higher trophic levels [3], and the length of food chains [7]. Predators

may or may not kill their prey prior to feeding on them, but the act of predation often

results in the death of its prey and the eventual absorption of the prey’s tissue through

consumption. Predators can have profound impacts on the dynamics of their prey

that depend on how predator consumption is affected by prey density (the predator’s

functional response). Predator’s functional response is affected by the structure of

prey habitat and predator’s hunting ability [8, 9]. Predator’s functional response is

considered as Type II ratio-dependent [10, 11, 12, 13, 14, 15, 16, 17] because a ratio-

dependent predator-prey model does not show the so called paradox of enrichment

[10, 18, 19] and biological control paradox [20]. In general, in our ecosystem, harvest-

ing is a very frequently used process to exploit biological resources for the necessity

of human beings and the society. There are different ways of harvesting have been

used in the ecosystem and the most simple and common way to harvest the ecological

resources is when the resource population is harvested at a constant rate and math-

ematically it is represented by h(t) = h, where h being a constant. The drawback of

the constant rate harvesting is that it is independent of the density of the harvesting

stock. Another important harvesting strategy is based on the catch-per-unit-effort

(CPUE) hypothesis and mathematically it is written as h(t) = qEx(t), where q is the

catchability coefficient, E is the constant external effort and x(t) is the density of the

harvested species at time t. CPUE based harvesting strategy is supposed to be more

realistic and productive than its constant rate harvesting counterpart regarding the

cause that it is proportional to the density of the harvested stock [21]. In this paper,

we have first modified such a system, where the prey population is harvested following

the CPUE based harvesting rate and normalizing the unit of effort by setting q = 1,

we write the model with prey harvesting as follows:

dx

dt
= x

[

r
(

1 − x

K

)

− αy

ay + x
− E

]

,(1)

dy

dt
= y

[

−d0 +
αb0x

ay + x

]

where, x and y are densities of prey and predator populations respectively. Here

we assume that prey population grows logistically with intrinsic growth rate r and

grows up to the environmental carrying capacity K in absence of predator. α is

the maximal per capita prey consumption rate of predator, a is the amount of prey

necessary for the relative biomass growth rate of the predator to be half its maximum,

d0 is the food independent death rate of predator population. Notice that b0 is the

conversion efficiency of the predator, which measures the efficiency of the predator

of converting prey biomass into predator biomass. Thus, a predator is said to be
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productively inefficient if b0 < 1
a
, or simply ab0 < 1. Similarly, a predator is said to

be productively neutral or productively efficient according as ab0 = 1 or ab0 > 1.

It is well understood that many of the processes, both natural and manmade, in

biology and medicine involve time-delays. Time-delays occur so often, in almost every

situation, that to ignore them is to ignore reality. Kuang [22] mentioned that animals

must take time to digest their food before further activities and responses take place,

and hence any model of species dynamics without delays is an approximation at best.

Now it is beyond doubt that in an improved analysis, the effect of time-delay due

to the time required in going from egg stage to the adult stage, gestation period etc

has to be taken into account. Detailed arguments on the importance and usefulness

of time-delays in realistic models may be found in the classical books of MacDonald

[23], Gopalsamy [24], and Kuang [22]. In a review paper of predator-prey models

with discrete delay, Ruan [25] discussed different types of delays and the dynamics

of the corresponding models. Xiao et al. [26] observed different kinds of bifurcations

of the system (1) with delayed predator specific growth rate and constant harvesting

of either the prey or the predator population. In [14] Jana et al. studied the system

(1) with feedback delay in the prey specific growth rate and with Michaelis-Menten

type harvesting of the predator species. Recently, researchers [27, 28, 29, 30, 31] have

been incorporating multiple time delays in the differential equations to obtain more

realistic models. In the present work, we introduce two delay parameters in the model

(1), where one parameter τ1 is introduced in the growth rate of prey to account for the

effect of density dependent feedback mechanisms [32] and the second delay parameter

τ2 is introduced in the predator’s response function which is regarded as a gestation

period or reaction time of the predator [22]. We thus obtain the following multiple

time delayed predator-prey model with prey harvesting:

dx

dt
= x

[

r

(

1 − x(t − τ1)

K

)

− αy

ay + x
− E

]

,(2)

dy

dt
= y

[

−d0 +
αb0x(t − τ2)

ay(t − τ2) + x(t − τ2)

]

.

Deterministic models in ecology do not usually incorporate environmental fluctu-

ation; they are often justified by the implicit assumption that in large populations,

stochastic deviations are small enough to be ignored. Deterministic model will prove

ecologically useful only if the dynamical patterns they reveal are still in evidence when

stochastic effects are introduced. For terrestrial system, the environmental variabil-

ity is large at both short and long time periods and could be expected to develop

internal mechanisms to the system which would cope with short term variability and

minimize the effects of long term variations, hence analysis of the system with white

noise gives better results. Uncertain growth of populations is usually considered as

an effect of environmental stochasticity. Reproduction of species depends on various
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factors, such as temperature, humidity, parasites and pathogens, environmental pol-

lution etc. [33]. Since physical and biological environments of populations are not

totally predictable, the growth of populations should be considered as a stochastic

process rather than a deterministic one [34]. In spite of some shortcomings, Gaussian

white noise has been proved extremely useful to model rapidly fluctuating phenomena

[35, 36]. Therefore, model system (2) by introducing the environmental stochasticity

in the form of Gaussian white noise is represented by:

dx

dt
= x

[

r

(

1 − x(t − τ1)

K

)

+ η1(t)

]

− αxy

ay + x
− Ex,(3)

dy

dt
= y

[

− d0 + η2(t)

]

+
αb0x(t − τ2)y

ay(t − τ2) + x(t − τ2)

where the perturbed terms η1(t) and η2(t) are assumed to be the independent Gauss-

ian white noise satisfying the conditions:

〈ηj(t)〉 = 0 and 〈ηj(t1)ηj(t2)〉 = ǫjδ(t1 − t2) for j = 1, 2.

Here ǫj > 0 (j = 1, 2) are the intensities or strengths of the random perturbations, δ

is the Dirac delta function defined by

{

δ(x) = 0, for x 6= 0,
∫∞
−∞ δ(x)dx = 1,

and 〈·〉 represents the ensemble average of the stochastic process.

Though Gaussian white noises are so very irregular, these are extremely useful to

model rapidly fluctuating phenomena. Of course true white noises do not occur in

nature. However, as can be seen by studying their spectra, thermal noises in electrical

resistance, the force acting on a Brownian particle, climate fluctuations, disregarding

the periodicity of astronomical origin etc. are white to a very good approximation.

These examples support the usefulness of the white noise idealization in applications

to natural systems. Furthermore it can be proved that the process (x, y)T , solution

of (3), is Markovian if and only if the external noises are white. These results explain

the importance and appeal of the white-noise idealization [5]. It is noted that ηi(t)

are not defined in the ordinary sense. It can be proved that ηi(t) are the derivatives

of the Wiener process Wi(t) in the generalized functions sense.

2. Stochastic scenario of non-delayed system

Assume that fluctuations in the environment will manifest themselves mainly as

fluctuations in the natural growth rate of the prey and in the natural mortality rate

of the predator since these are the main terms subject to coupling of a prey-predator

pair with its environment [4]. Thus the behaviour of the prey-predator pair (3)
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without delay in a random environment will be considered within the framework of

the following model:

dx

dt
= x

[

r

(

1 − x

K

)

+ η1(t)

]

− αxy

ay + x
− Ex,(4)

dy

dt
= y

[

− d0 + η2(t)

]

+
αb0xy

ay + x
.

To study the behavior of the system (4) about the steady state E∗, let us substitute

x′ = lnx, y′ = lny; x = u + x∗ and y = v + y∗. Then the system (4) reduces to the

following Itô type stochastic differential equations in terms of deviation variables

(u, v):

du

dt
= a1u + b1u

2 + c1v + d1v
2 + e1uv + η1(t),(5)

dv

dt
= a2u + b2u

2 + c2v + d2v
2 + e2uv + η2(t),

where

(6)

a1 = −rx∗

k
+ αx∗y∗

(ay∗+x∗)2
, b1 = − r

k
+ aαy∗2)

(ay∗+x∗)3
,

c1 = − αx∗2

(ay∗+x∗)2
, d1 = aαx∗2

(ay∗+x∗)3
,

e1 = − 2aαx∗y∗

(ay∗+x∗)3
, a2 = αb0ay∗2

(ay∗+x∗)2
,

b2 = αb0y∗(a2x∗−x∗−ay∗)
(ay∗+x∗)3

, c2 = − αab0x∗y∗

(ay∗+x∗)2
,

d2 = αb0x∗(y∗−ax∗−a2y∗)
(ay∗+x∗)3

, and e2 = 2αb0ax∗y∗)
(ay∗+x∗)3

.

The solutions {u(t), v(t)} of (5) subject to known initial values {u(t0), v(t0)} deter-

mine the statistical behavior of the model system (4) near the steady state E∗ at time

t > t0.

2.1. Statistical linearization: moment equations. The statistical linearization

of the system (5) are represented by the following system of linear equations:

du

dt
= α1u + β1v + f1 + η1(t),(7)

dv

dt
= α2u + β2v + f2 + η2(t),

where the errors in the above linearization are given by

e1 = a1u + b1u
2 + c1v + d1v

2 + e1uv − α1u − β1v − f1,(8)

e2 = a2u + b2u
2 + c2v + d2v

2 + e2uv − α2u − β2v − f2.

The unknown coefficients αi, βi and fi (i = 1, 2) of the equations (7) are to be

determined from the minimization of the averages of the squares of errors in (8). The

unknown coefficients are determined by demanding that [35, 39, 40]:

(9)
∂

∂αi
〈e2

i 〉 =
∂

∂βi
〈e2

i 〉 =
∂

∂fi
〈e2

i 〉 = 0, i = 1, 2.
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Let us express 〈u3〉, 〈u4〉, 〈u2v〉, 〈uv2〉, 〈u2v2〉 and 〈u3v〉 in terms of the first two

moments of each of the variables and the correlation coefficients using a bivariate

Gaussian distribution [35]. Since we are interested only in the first few moments, it

is convenient to use the characteristic function:

χ(ν1, ν2) = exp

[

i〈u〉ν1 + i〈v〉ν2 −
1

2

{

σ2
1ν

2
1 + σ2

2ν
2
2 + 2ρ12σ1σ2ν1ν2

}

]

,

σ2
1 = 〈u2〉 − 〈u〉2,

σ2
2 = 〈v2〉 − 〈v〉2,

ρ12 =
〈uv〉 − 〈u〉〈v〉

σ1σ2

.

So, we have

〈unvm〉 = (−1)n+m ∂n+m

∂νn
1 ∂νm

2

[χ(ν1, ν2)]|ν1=ν2=0,

〈u4〉 = 3〈u2〉2 − 2〈u〉4,(10)

〈u2v2〉 = 〈u2〉〈v2〉 + 2〈uv〉2 − 2〈u〉2〈v〉2,
〈u3v〉 = 3〈u2〉〈uv〉 − 2〈u〉3〈v〉,
〈u3〉 = 3〈u〉〈u2〉 − 2〈u〉3,
〈v3〉 = 3〈v〉〈v2〉 − 2〈v〉3,

〈u2v〉 = 2〈u〉〈uv〉 − 2〈u〉2〈v〉 + 〈u2〉〈v〉,
〈uv2〉 = 2〈u〉〈uv〉 − 2〈u〉〈v〉2 + 〈u〉〈v2〉.

Then expressions for αi, βi and fi (i = 1, 2) are given by

αi = ai + 2bi〈u〉 + ei〈v〉, βi = ci + 2di〈v〉 + ei〈u〉,(11)

fi = bi(〈u2〉 − 2〈u〉2) + di(〈v2〉 − 2〈v〉2) + ei(〈uv〉 − 2〈u〉〈v〉).

The coefficients are the functions of the parameters involved within the model system

and also of the different moments involving u and v. After some algebraic manipula-

tions, we obtain the following system of first two moments:

d〈u〉
dt

= a1〈u〉 + b1〈u2〉 + c1〈v〉 + d1〈v2〉 + e1〈uv〉,(12)

d〈v〉
dt

= a2〈u〉 + b2〈u2〉 + c2〈v〉 + d2〈v2〉 + e2〈uv〉,

d〈u2〉
dt

= 2[a1〈u2〉 + b1〈u3〉 + c1〈uv〉 + d1〈uv2〉 + e1〈u2v〉] + 2ǫ1,

d〈v2〉
dt

= 2[a2〈uv〉 + b2〈u2v〉 + c2〈v2〉 + d2〈v3〉 + e2〈uv2〉] + 2ǫ2,

d〈uv〉
dt

= a1〈uv〉 + b1〈u2v〉 + c1〈v2〉 + d1〈v3〉 + e1〈uv2〉 + a2〈u2〉

+ b2〈u3〉 + c2〈uv〉 + d2〈uv2〉 + e2〈u2v〉,
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where the following relations are used:

(13) 〈uη1〉 = ǫ1, 〈uη2〉 = 〈vη1〉 = 0, 〈vη2〉 = ǫ2.

Let me now assume that the system size expansion is valid such that the correlations

ǫi (i = 1, 2) given by (13) decrease with the increase of the population size and they

are assumed to be of the order of the inverse of the population size N [35, 41, 40]:

(14) ǫi ∝ o[
1

N
], i = 1, 2.

Therefore, using the expressions (10), (13) and keeping the lowest order terms and

replacing the averages 〈u〉 and 〈v〉 by their steady state values 〈u〉 = 〈v〉 = 0 [42], we

get the following reduced equations for second order moments:

[D − 2a1]〈u2〉 = 2c1〈uv〉,(15)

[D − 2c2]〈v2〉 = 2a2〈uv〉,
[D − a1 − c2]〈uv〉 = a2〈u2〉 + c1〈v2〉,

where D stands for the operator d
dt

.

2.2. Non-equilibrium fluctuation and stability analysis. Eliminating 〈u2〉 and

〈v2〉 from the equations of (15), we get the following third order linear ordinary

differential equation in 〈uv〉:

(16) [D3 + 3AD2 + 3BD + C]〈uv〉 = 0.

Let 〈uv〉 = emt be a trial solution of (16) and the auxiliary equation is given by

(17) m3 + 3Am2 + 3Bm + C = 0,

where

A = −(a1 + c2), B =
2

3
{(a1 + c2)

2 +2(a1c2−a2c1)}, C = −4(a1 + c2)(a1c2−a2c1).

Let H = A2 − B. Then the nature and structure of the roots of (17) will solely be

determined by the quantities A and H . We discuss the following two cases.

Case 1. H < 0

In this case, roots of (17) are given by

m1 = −A, m2,3 = −A ± i
√

3H0, where H0 = −H(> 0).

The solutions of the linear system (15) are then given by

〈uv〉 = A1e
−At + e−At[A2cos(

√

3H0t) + A3sin(
√

3H0t)],(18)

〈v2〉 = B1e
−At + e−At[B2cos(

√

3H0t) + B3sin(
√

3H0t)] + P1e
2a1t,

〈u2〉 = C1e
−At + e−At[C2cos(

√

3H0t) + C3sin(
√

3H0t)] + P2e
2c2t

where Ai, Bi, Ci, (i = 1, 2, 3), P1 and P2 are constants. Thus, each of 〈uv〉, 〈u2〉, 〈v2〉,
given by (18), converge with increasing time if A > 0, i.e., if a1 +c2 < 0, depicting the
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Figure 1. Stability region w.r.t second order moment of system (5) in

αE-plane for ab0 < 1. Parameters: r = 3.3, k = 898, a = 0.2, b0 = 0.5,

d0 = 1.52.

stochastically stable situation of the system (4) in the sense of second order moments

(Arnold, 1974). On the other hand, if a1 + c2 > 0, then A < 0 and the system is

stochastically unstable.

Case 2. H > 0

In this case, roots of (17) are given by

m1 = −A, m2,3 = −A ±
√

3H.

The solutions of the linear system (15) are then given by

〈uv〉 = F1e
−At + F2e

(−A+
√

3H)t + F3e
(−A−

√
3H)t,(19)

〈v2〉 = G1e
−At + G2e

(−A+
√

3H)t + G3e
(−A−

√
3H)t + Q1e

2a1t,

〈u2〉 = K1e
−At + K2e

(−A+
√

3H)t + K3e
(−A−

√
3H)t + Q2e

2c2t,

where Fi, Gi, Ki, (i = 1, 2, 3), Q1, Q2 are constants. In this case, we observe that

each of 〈uv〉, 〈u2〉, 〈v2〉, given by (19), converge with increasing time when A > 0

(i.e., a1 + c2 < 0) and
√

3H < A hold simultaneously and the system will said to

be stochastically stable in the sense of second order moments. The system, on the

other hand, is unstable when a1 + c2 > 0 or
√

3H < A or both of them hold. Thus,

exchange of stability occurs when a1 + c2 = 0 and
√

3H = A.
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Figure 2. Fig. (i,iv,vii,x) are second order moment w.r.t time of sys-

tem (5) and Fig. (ii,v,viii,xi) and (iii,vi,ix,xii) are respectively time evo-

lution and phase plane diagram of system (4). (α, E) are from stability

domain Ri (i = 1, 2, 3, 4) of Fig. 1, where 1st and 3rd panel depict

the stochastic stability, where 2nd and 4th panel depict the stochastic

instability. Other parameters are as in Fig. 1.

3. Stochastic scenario of delayed system

dx

dt
= x

[

r

(

1 − x(t − τ1)

K

)

+ η1(t)

]

− αxy

ay + x
− Ex,(20)

dy

dt
= y

[

− d0 + η2(t)

]

+
αb0x(t − τ2)y

ay(t − τ2) + x(t − τ2)
.

Again using the transformations: x′ = lnx, y′ = lny; x = u + x∗, y = v + y∗ and

assuming the delay to be very small, the system (20) (to a first approximation) can

be written as

du

dt
= ā1u + c1v + A1u(t− τ1) + η1,(21)

dv

dt
= a2u(t − τ2) + c2v(t − τ2) + η2.
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Figure 3. Stability region w.r.t second order moment of system (5) in

αE-plane for ab0 = 1. Parameters: r = 3.3, k = 898, a = 2, b0 = 0.5,

d0 = 1.52.

where, ā1 = αx∗y∗

(ay∗+x∗)2
and A1 = −rx∗

k
.

3.1. Fourier transforms: spectral density. Taking Fourier transform of both

sides of each of the equations in (21) and following [20, 26], we obtain

η̄1(s) = isū(s) − ā1ū(s) − c1v̄(s) − A1ū(s)e−isτ1 ,(22)

η̄2(s) = isv̄(s) − a2ū(s)e−isτ2 − c2v̄(s)e−isτ2,

where n̄(s) =
∫ +∞
−∞ n(t)e−istdt.

The system of equations (22) can be written in matrix form as

(23) AX = B,

where

A =

(

−ā1 − A1e
−isτ1 + is −c1

−a2e
−isτ2 −c2e

−isτ2 + is

)

, X =

(

ū(s)

v̄(s)

)

and B =

(

η̄1

η̄2

)

.



ROLE OF MULTIPLE DELAYS IN RATIO-DEPENDENT PREY-PREDATOR SYSTEM 215

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

3

Time

S
ec

o
n

d
 o

rd
er

 m
o

m
en

ts

(i) α=6, E=1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Time

(iv) α=4, E=1

〈uv〉

〈uv〉

〈v2〉

〈u2〉 

〈u2〉 

〈v2〉

0 100 200 300 400 500
0

200

400

600

800

Time

P
o

p
u

la
ti

o
n

s
(ii)

0 200 400 600 800
0

20

40

60

x

y

(iii)

0 100 200 300 400 500
0

200

400

600

800

Time

(v)

0 200 400 600 800 1000
0

50

100

150

x

(vi)

x x

y y

Figure 4. Fig. (i,iv) are second order moment w.r.t time of system

(5) and Fig. (ii,v) and (iii,vi) are respectively time evolution and phase

plane diagram of system (4). (α, E) are from stability domain Ri (i =

1, 3) of Fig. 3, all figures depict the stochastic stability of the system.

Other parameters are as in Fig. 3.

Now

M = detA = {(ā1c2 − c1a2) cos(sτ2) + A1c2 cos(s(τ1 + τ2))

− sA1 sin(sτ1) − sc2 sin(sτ2) − s2}
− i{(ā1c2 − a2c1) sin(sτ2) + A1c2 sin(s(τ1 + τ2))

+ sA1 cos(sτ1) + sc2 cos(sτ2) + sā1}.

Assuming A−1 exists, we have A−1 = (aij)2×2, where

a11 = −c2 cos(sτ2)+i{s+c2 sin(sτ2)}
M

, a12 = c1
M

,

a21 = a2(cos(sτ2)−i sin(sτ2))
M

, a22 = −ā1−A1 cos(sτ1)+i{s+A1 sin(sτ1)}
M

.

Then the solution of (23) can be written as

(24) ū(s) =
2
∑

j=1

a1jηj , v̄(s) =
2
∑

j=1

a2jηj
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Figure 5. Stability region w.r.t second order moment of system (5) in

αE-plane for ab0 > 1. Parameters: r = 3.3, k = 898, a = 3, b0 = 0.5,

d0 = 1.52.

Now following [20, 26] and using (24), the spectral density of u is given by

Su(ω) = lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

〈u(t)u(t′)〉 exp{iω(t′ − t)}dtdt′ =

2
∑

j=1

|a1j |2Sηj
(ω).

Similarly the spectral density of v is given by

Sv =

2
∑

j=1

|a2j|2Sηj
(ω).

Therefore the fluctuation intensity (variance) of u is given by

σ2
u =

1

2π

∫ +∞

−∞
Su(ω)dω =

1

2π

∫ +∞

−∞

2
∑

j=1

|a1j |2Sηj
(ω)dω =

1

2π

∫ +∞

−∞

2
∑

j=1

|a1j |2dω,

since Sηj
(ω) = 1.

Similarly the fluctuation intensity of v is given by

σ2
v =

1

2π

∫ +∞

−∞

2
∑

j=1

|a2j |2dω.
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Figure 6. Fig. (i,iv,vii) are second order moment w.r.t time of system

(5) and Fig. (ii,v,viii) and (iii,vi,ix) are respectively time evolution and

phase plane diagram of system (4). (α, E) are from stability domain

Ri (i = 1, 3, 4) of Fig. 5, panel 1 and 2 depict the stochastic stability of

the system and panel 3 depicts the stochastic instability of the system.

Other parameters are as in Fig. 5.

4. Numerical computations

We perform numerical computations to observe various dynamics of the systems,

so we consider the parameters are as r = 3.3, k = 898, a = 3, b0 = 0.5, d0 =

1.52 and (α, E) are varying for different figures and approximate the solutions of

the system by Euler-Maruyama method. First we consider the non-delayed case,

i.e. τ1 = τ2 = 0. First we plot the stability region of the system (5) w.r.t second

order moment in αE-plane (Figs. 1, 3, 5). Figs. 1, 3 and 5 are respectively for

productively inefficient (ab0 < 1), productively nutrient (ab0 = 1) and productively

efficient (ab0 > 1) predators. Figs. 2, 4, 6 are the status of the system w.r.t second

order moments, time evolutions and phase plane diagrams. Here also Figs. 2, 4 and

6 are respectively for productively inefficient, productively nutrient and productively

efficient predators. In the figures of stability region (Figs. 1, 3, 5), Ri (i = 1, 2, 3, 4)
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Figure 7. Figures (i, iii) and (ii, iv) depict, respectively, the time

evolution and corresponding phase trajectory of the delay-stochastic

model system (20), when the predator population is productively in-

efficient (ab0 < 1). For τ1 = 0.48, τ2 = 0.4, system is stochastically

stable (Fig. (i, ii)) and for τ1 = 0.54, τ2 = 0.4, system is stochastically

unstable (Fig. (iii, iv)). Other parameters are in Fig. 1.

stands for the stochastic stability conditions H < 0, A > 0; H < 0, A < 0; H > 0,

A > 0,
√

3H < A and H > 0, A < 0,
√

3H < A.

In the numerical experiments of the delay-stochastic system (20), consider the

set of parameter values for the case when the predators are productively inefficient

(ab0 < 1). Delay-stochastic system (20) is stable for τ1 = 0.48 and τ2 = 0.4 (time

series in Fig. 7(i) and phase plane in Fig. 7(ii)) and unstable for τ1 = 0.54 and τ2 = 0.4

(time series in Fig. 7(iii) and phase plane in Fig. 7(iv)).

5. Conclusions and Discussions

Understanding the relationship between predator and prey is central goal in ecol-

ogy. Predators rate of feeding upon prey is one of the most significant components

in the study of predator-prey relationship. Predator’s interference in prey-predator

interaction is supposed to have significant role in the stability of the their interaction.

Also the time lag between prey capture and its corresponding positive feedback to

predator’s growth rate is a very significant part to realize the system. The purpose of

this work is to observe the extent to which Predator’s interference and gestation delay
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drive the population dynamics of a predator-prey interaction under fluctuating envi-

ronment. Results shows that Predator’s interference plays a significant role to change

the stochastic stability of the system. To study the effect of environmental fluctuation

on the time-delayed predator-prey system (20), I have superimposed Gaussian white

noises on (2) and then study non-equilibrium fluctuation and stability of the resulting

stochastic model (20) by using Fourier transform technique. Following the criteria of

stability in the stochastic environment [43], it is seen that the environmental noises

have a destabilizing effect on the system. Also the deterministic system and the noise-

induced stochastic system may behave alike with respect to stability. It is well known

that natural populations of plants and animals neither increase indefinitely to blanket

the world nor become extinct (except in some rare cases due to some rare reasons).

Hence, in practice, we often want to keep the prey and predator population to an

acceptable level in finite time. In order to accomplish this we strongly suggest that

in realistic field situations (where effect of time-delay and environmental fluctuation

can never be violated), the parameters of the system should be regulated in such a

way that E∗ is deterministically stable.
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