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ABSTRACT. Highly active antiretroviral therapy (HAART) is the current standard treatment

for the Human immunodeficiency virus (HIV). We will introduce an existing system of ordinary

differential equations (ODEs) describing the interaction of the HIV virus with the human immune

system. Next we will modify this system to incorporate variables representing typical HAART

treatment with two different classes of drugs (reverse transcriptase and protease inhibitors). We

define an optimal control that seeks to maximize the benefits of these drugs while minimizing their

harmful side effects. We will prove existence of an optimal control, find the optimality condition,

and solve the system numerically using a Runge-Kutta algorithm. We will illustrate our numerical

solution and discuss the uses and limitations of this type of biological model.

Key Words: HAART, HIV model, Optimal Control, Two treatments, ODE model

AMS Subject Classification. 49K15, 92D30.

1. INTRODUCTION

In the last 30 years, AIDS (Acquired Immunodeficiency Syndrome) has become

a global pandemic, affecting people on every continent in the world, most notably

in Sub-Saharan Africa. AIDS is a devastating condition, caused by the Human Im-

munodeficiency Virus (HIV), which results in a complete breakdown of the immune

system, quickly leading to disability and death if left untreated. In the 2013 UN

Report on the Global AIDS Epidemic, it was estimated that there are currently 35.3

million people living with HIV, with 25 million (about 70%) of these people in Sub-

Saharan Africa [23]. The same report attributed 1.6 million deaths to AIDS in the

year 2012. The number of new HIV infections has been on a downward trend in

recent years, but there were still 2.3 million new HIV infections in 2012. This leaves

much that can be done in the way of HIV treatment. There is currently no vaccine for

HIV, so treatment is limited to drugs that can delay the onset of AIDS in a patient.

More effective treatment programs can increase the lifespan and quality of life for the
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millions of people currently living with HIV. However, as treatment regimens for HIV

become more and more aggressive, adverse drug side-effects can become almost as

serious as the disease itself, causing the quality of life of patients on drug treatment

regimens to become a major concern [21]. The optimal control approach to solving

for a treatment regimen addresses this issue in that it weighs the benefits of a stronger

immune system versus the extreme toxicity of the drugs used to treat HIV.

Although it infects many types of cells, HIV works primarily by targeting and

infecting CD4+ T-cells, commonly called “helper T-cells”, which it then uses to

reproduce itself. These cells are lymphocytes (a type of white blood cell and part of

the immune system) which are specifically vital to the organization of other immune

system cells in the attack on infectious diseases. CD4+ T-cells do not attack the

viruses themselves, but instead direct other lymphocytes, such as CD8+ T-cells,

to kill the virus and infected cells. CD4+ T-cells are produced in the thymus at a

constant rate, which does not change with HIV infection. When they are first created,

CD4+ T-cells are called “naive”, “quiescent”, or “un-activated” because they do not

become active in immune system responses until they are “activated” by exposure to

an antigen such as HIV (or any other molecule recognized by the immune system).

CD4+ T-cells are generally not targeted by HIV until they become activated [10],

which is why we will use the model proposed by Guedj, et. al. [10] in this paper, as

it is one of the few existing models to differentiate between these two types of CD4+

T-cells.

HIV infection causes a depletion and deterioration of these vital CD4+ T-cells

in a few different ways. In one way, stimulation of the immune system (caused by

HIV) increases the rate of replication of these cells, which increases their rate of

mutation, causing a general functional deterioration of CD4+ T-cells over time [7].

More significantly, CD4+ T-cells infected with HIV have a much shorter lifespan than

uninfected CD4+ T-cells (the death rates of un-activated, activated (non-infected),

and activated (infected) CD4+ T-cells are respectively .00014 day−1, 0.12 day−1, and

0.67 day−1) [10]. While these infected CD4+ T-cells are dying much faster than

normal due to a shorter half-life and being eliminated by the immune system through

CD8+ T-cells, the thymus does not change the rate at which it replaces these cells,

causing a gradual decline in the number of CD4+ T-cells in the bloodstream until the

immune system cannot function properly [12]. An individual is generally considered

to have AIDS when the number of CD4+ T-cells in their bloodstream drops to below

400 per microliter of blood from a normal concentration of 1000 to 1200 per microliter

[21].

After infecting a CD4+ T-cell, since HIV is a retrovirus (meaning it consists

of single-stranded RNA), it uses a protein called reverse transcriptase to convert

itself into double-stranded DNA that can infiltrate the nucleus of the cell and be
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integrated into the cell’s genome. The cell’s nucleus then rapidly produces copies of

the original viral RNA, which are “cut” into useable copies of new HIV virus by a

protein, protease, and then released into the bloodstream to infect new CD4+ T Cells.

HAART treatment (Highly Active Anti-Retroviral Therapy) is the most widely used

therapy regimen for patients with HIV. It consists of a “cocktail” of three or more

drugs, most commonly two belonging to the reverse-transcriptase inhibitor (RTI) class

and one belonging to the protease inhibitor class (PI). The RTIs affects the virus’s

ability to infect new cells, while the PI affects its ability to replicate itself properly

after it has already infected a cell. Note that for our model, we will combine the

multiple RTIs into one variable representing their combined effectiveness.

Both of these drugs are toxic and have adverse side affects. The RTI is by far

the more toxic of the two, but it is also the most effective. In Section 2 of this paper,

we will modify an already existing ODE model of the interaction between HIV and

the human immune system in order to incorporate “control” variables (representing

treatment with an RTI and a PI) as well as an “objective functional” that represents

the cumulative health benefit of these drugs. This will give us a system from which

we can derive an optimal “treatment plan” using these drugs. In Section 3 we will

establish the existence of a pair of optimal solutions for the variables representing

RTI and PI treatment that will maximize the objective functional (cumulative health

benefits) subject to the modified “state” system of ODEs. In Section 4, we will use

Pontryagin’s Maximum Principle to derive a solution for this optimal control pair. In

Section 5 we will provide numerical illustration of the optimal solutions for the RTI

and PI treatment regimens as well as the corresponding CD4+ T-cell count and viral

load over a fixed time interval. Finally, in Section 6 we will discuss the limitations and

caveats of this approach to modeling HIV treatment as well as the limits of HAART

treatment itself.

2. MATHEMATICAL MODEL

The infectious disease model for HIV given in a paper by J. Guedj, et. al. [10] uses

a first-order system of ordinary differential equations with five variables. Descriptions

of the variables and constants used are given in the following tables.

The rate of change of Q, the un-activated CD4+ T-Cell population, is given by

the following equation:

dQ

dt
= ζ + ρT − αQ− µQQ

The first term, ζ, represents the supply on new cells from the thymus, which as

previously noted, is constant. The next two terms represent the rates of activation

of the CD4+ T-Cells and the reversion from an activated state, which depend on the
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Table 1. Description of Variables used in the HIV model

Symbol Description Units

Q Un-activated CD4+ T-cells cells mm−3

T Activated CD4+ T-cells (Non-infected) cells mm−3

TI Activated CD4+ T-cells (Infected) cells mm−3

VI Infectious HIV Virus copies mm−3

VNI Non-infectious HIV Virus copies mm−3

Table 2. Description and Values of Parameters used in the HIV model

Symbol Description Value Units

ζ Rate of Q cell production 13.73 mm−3day−1

α Activation rate of Q cells 0.042 day−1

ρ Reversion rate of T cells 0.017 day−1

µQ Death rate of Q cells 0.00014 day−1

µT Death rate of T cells 0.12 day−1

µTI
Death rate of TI cells 0.67 day−1

µV Clearance rate of Virus 30.00 day−1

γ Infection rate of T cells per virion 0.050 mm−3day−1

π Number of virions per TI cell 104.00 N/A

η Efficiency of treatment with RTI (proportion) 0.96 N/A

ω Proportion of infectious virions 0.20 N/A

size of the populations of Q and T respectively. The last term is to account for the

natural death rate of the cells.

The rate of change of T , the activated CD4+ T-Cell population, is given by:

dT

dt
= αQ− (1− η)γTVI − ρT − µTT

Here again, in the first and third terms, we see a representation of the activation

of CD4+ T-Cells as well as their reversion to un-activated states. Of course these

have opposite signs from the terms in last equation, as a cell’s activation adds to

the population of T and subtracts from the population of Q and so on. The second

term represents the rate of infection of healthy, activated CD4+ T-Cells by the HIV

virus. The rate of infection will increase in proportion to the amount of virus in the

bloodstream and the amount of T-Cells available to be preyed upon. The η in this

term represents the “efficiency of treatment with RTI”, which is given experimentally

at 0.96 or 96%. Later, we will replace this constant with a variable representing the
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treatment. We can see that if the value of η were 1, this would represent new infection

completely stopping, while the closer the value is to zero, the more healthy, activated

CD4+ T-Cells we would lose to infection. The last term again is a natural death rate

of these cells.

The rate of change of TI , the population of activated CD4+ T-Cells that have

been infected by the HIV virus, is given by:

dTI
dt

= (1− η)γTVI − µTI
TI

Here we see the infection term from the last equation again, but with a positive

sign this time because it is adding to the population of infected T-Cells. The next

term is simply the death rate for the infected CD4+ T-Cells. Note that the death

rate for the infected cells is over five times the death rate of the un-infected cells,

which is in turn almost one thousand times the death rate of the un-activated CD4+

T-Cells.

We distinguish between “infectious” and “non-infectious” HIV virus because,

even without treatment, a significant of proportion of the copies that the HIV makes

of itself have some type of error that renders them ineffective for infecting further

CD4+ T-Cells. This proportion can be raised even higher by the use of a protease

inhibitor, which we will introduce into our model later.

Our equation for the rate of change of VI , the population of “infectious” HIV

virus, is given by:

dVI
dt

= ωµTI
πTI − µV VI

The first term represents the new copies of the virus being made by an infected

CD4+ T-Cell, since the virus can not replicate itself. Since this represents the rate of

change for only the “infectious” virus, this term is multiplied by ω, “proportion of in-

fectious virus”. The second term represents the clearance rate of the virus (essentially

the death rate, but the virus is never actually alive).

The last equation, the rate of change of VNI , the population of “non-infectious”

HIV virus, is given by:

dVNI

dt
= (1− ω)µTI

πTI − µV VNI

The first term here is the same as the term in the last equation, except multiplied

by (1−ω) instead of ω since we are describing the rate of change of the “non-infectious”

virus. The second term is for the clearance rate again, which is the same (µV ) for

both infectious and non-infectious virus.
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All together, the system of equations is:

dQ

dt
= ζ + ρT − αQ− µQQ

dT

dt
= αQ− (1− η)γTVI − ρT − µTT

dTI
dt

= (1− η)γTVI − µTI
TI

dVI
dt

= ωµTI
πTI − µV VI

dVNI

dt
= (1− ω)µTI

πTI − µV VNI

(2.1)

with initial conditions Q(0) = Q0, T (0) = T0, TI(0) = TI0, VI(0) = VI0, and VNI(0) =

VNI0.

We will modify the set of ODEs given by Guedj et. al. [10] by inserting two

variables into the equations: one variable, nRTI(t), which we let represent the dosage

of a reverse-transcriptase inhibitor drug as a function over time, and another variable

nPI(t), which we similarly let represent the dosage of a protease inhibitor drug as a

function over time. nRTI(t) is substituted directly for η, the constant that is meant

to represent the “effectiveness of treatment with a reverse transcriptase inhibitor” in

the second and third equations.

To insert the second drug variable, nPI(t), we look at the constant ω representing

“proportion of infectious virus”. Without treatment using a protease inhibitor, this

constant is given at 0.20, meaning that only approximately 20% of new virus copies

are “infectious”, while the rest have some type of error that prohibits them from

infecting new cells. Although this may seem low, because of the massive amount of

virus copies that infected T-Cells produce, this still allows the virus to propagate

efficiently. Treatment with a protease inhibitor causes further disfunction in this

process, causing the proportion of infectious virus to decrease significantly. Thus, we

substitute (1− nPI(t))ω for ω in the fourth and fifth equations so that this quantity,

representing the proportion of infectious virus particles, remains at 0.20 with no

treatment and decreases toward 0 as the amount of treatment with a protease inhibitor

increases.
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Hence the state equation system becomes:

dQ

dt
= ζ + ρT − αQ− µQQ

dT

dt
= αQ− (1− nRTI)γTVI − ρT − µTT

dTI
dt

= (1− nRTI)γTVI − µTI
TI

dVI
dt

= (1− nPI)ωµTI
πTI − µV VI

dVNI

dt
= (1− ω + ωnPI)µTI

πTI − µV VNI .

(2.2)

Now that we have our state system of ODEs with our control variables nRTI

(decreases rate of new T-cell infection) and nPI (decreases rate of infectious virus

production), we can define our objective functional to be maximized as

(2.3) J(nRTI , nPI) =

∫ tf

0

[
T (t)−

(
A1

2
n2
RTI(t) +

A2

2
n2
PI(t)

)]
dt.

This integral represents the cumulative health benefits of a raised CD4+ T-cell count

minus the health costs and side effects of the drugs used in the treatment. Both vari-

ables representing the drugs in the integrand are quadratic because of their extreme

toxicity. The parameters A1 and A2 are “toxicity weights” used to differentiate the

toxicity of the two drugs and they are divided by 2 because we will need to take

the derivative of the integrand later on and this will make our equations nicer. We

desire an optimal control pair, n∗RTI , n
∗
PI such that these cumulative health benefits

are maximized:

(2.4) J(n∗RTI , n
∗
PI) = max{J(nRTI , nPI)|J(nRTI , nPI) ∈ U},

where U = {(nRTI , nPI)|nRTI , nPI measurable, 0 < L1 ≤ nRTI ≤ U1 < 1, and

0 < L2 ≤ nPI ≤ U2 < 1, with t ∈ [0, tf ]} is the set of all suitable controls. In order to

solve this problem, we must establish the existence of an optimal control pair before

we derive the solution for this optimal control pair.
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3. EXISTENCE OF AN OPTIMAL CONTROL PAIR

Upper bounds on the solutions to the state variables are needed to establish the

existence of an optimal control [5]. In order to make our model realistic, we may

add the restriction that CD4+ T-Cells do not grow unbounded, meaning there exist

constants such that Q(t) < Qmax, T (t) < Tmax, and TI(t) < TImax. Now consider the

supersolutions of the remaining state equations:

dV̄I
dt

= ωµTI
πTImax

dV̄NI

dt
= µTI

πTImax

(3.1)

Since the above system is linear with bounded coefficients on a finite time interval,

the supersolutions V̄I and ¯VNI are uniformly bounded. Therefore, all of the solutions

to the state variables are bounded.

Theorem 3.1. Given the objective functional

(3.1) J(nRTI , nPI) =

∫ tf

0

[
T (t)−

(
A1

2
n2
RTI(t) +

A2

2
n2
PI(t)

)]
dt,

where U = {(nRTI , nPI)|nRTI , nPI measurable, 0 < L1 ≤ nRTI ≤ U1 < 1

and 0 < L2 ≤ nPI ≤ U2 < 1, with t ∈ [0, tf ]} subject to the state equations (2.2) and

initial conditions Q(0) = Q0, T (0) = T0, TI(0) = TI0, VI(0) = VI0, and VNI(0) =

VNI0 there exists an optimal control pair, n∗RTI , n
∗
PI , such that

(3.2) J(n∗RTI , n
∗
PI) = max{J(nRTI , nPI)|J(nRTI , nPI) ∈ U}.

Proof: The existence of the optimal control pair is established using results of Joshi

[13] and Fister et. al. [5], based on a theorem of Fleming and Rishel [6]. Using

Theorem III.4.1 from [6] the existence of an optimal control pair is proven if the

following conditions are satisfied:

1. The set of controls and state variables is non-empty.

2. The control set U is convex and closed.

3. The RHS of the state system (2.2) is bounded by a linear function in the state

and control variables.

4. The integrand of the objective functional J(nRTI , nPI) is concave on U .

5. There exist constants C1, C2 > 0 such that the integrand of the objective func-

tional J(nRTI , nPI) is bounded above by C2 − C1(|nRTI |2 + |nPI |2).

By our definition of the control set and state equations, conditions 1 and 2 are sat-

isfied. Since the state system (2.2) is bilinear in the controls, nRTI , nPI , it follows

that the right hand side of each of the equations is bounded by a linear function of

the state and control variables, satisfying condition 3. Note that the integrand of the
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objective functional is concave, satisfying condition 4. Finally we have the fact that

the integrand of J(nRTI , nPI) satisfies

[
T (t)−

(
A1

2
n2
RTI(t) +

A2

2
n2
PI(t)

)]
≤ C2 − C1(|nRTI |2 + |nPI |2)

if we take C2 > Tmax and 0 < C1 <
A1

2
, A2

2
. Thus, the five conditions are satisfied

and we can conclude that there exists an optimal control pair n∗RTI , n
∗
PI .

4. CHARACTERIZATION OF THE OPTIMALITY SYSTEM

Now we know that there exists an optimal control pair maximizing the objective

functional subject to the state equations, we use Pontryagin’s Maximum Principle

[18] to define the Hamiltonian and derive the necessary conditions for the optimal

control pair. The Hamiltonian is defined as the sum of the integrand of the objective

functional and each state equation multiplied by a corresponding adjoint variable

λi(t) where i ∈ {Q, T, TI , VI , VNI}:

H =

[
T (t)−

(
A1

2
n2
RTI(t) +

A2

2
n2
PI(t)

)]
+ λQ(t)

[
dQ

dt

]
+ λT (t)

[
dT

dt

]
+ λTI

(t)

[
dTI
dt

]
+ λVI

(t)

[
dVI
dt

]
+ λVNI

(t)

[
dVNI

dt

]
.

(4.1)

So with our state equation and optimality system, the Hamiltonian is

H =

[
T −

(
A1

2
n2
RTI +

A2

2
n2
PI

)]
+ λQ [ζ + ρT − αQ− µQQ]

+ λT [αQ− (1− nRTI)γTVI − ρT − µTT ]

+ λTI
[(1− nRTI)γTVI − µTI

TI ]

+ λVI
[(1− nPI)ωµTI

πTI − µV VI ]

+ λVNI
[(1− ω + ωnPI)µTI

πTI − µV VNI ] .

(4.2)

Theorem 4.1. Given our optimal control pair, n∗RTI , n
∗
PI and the solutions Q∗, T ∗,

T ∗I , V
∗
I , V

∗
NI to the corresponding state system (2.2), there exist adjoint variables λi
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for i ∈ {Q, T, TI , VI , VNI} satisfying the following equations

λ′Q = −∂H
∂Q

= λQ(α + µQ)− αλT

λ′T = −∂H
∂T

= λT [ρ+ µT + γVI(1− nRTI)]− λTI [γVI(1− nRTI)]− ρλQ − 1

λ′TI
= −∂H

∂TI
= µTI

λTI
− λVI

[ωµTI
π(1− nPI)]− λVNI

[µTI
π(1− ω + ωnPI)]

λ′VI
= −∂H

∂VI
= (λT − λTI

)[γT (1− nRTI)] + µV λVI

λ′VNI
= − ∂H

∂VNI

= µV λVNI

(4.3)

and the transversality conditions λi(tf ) = 0 for all i ∈ {Q, T, TI , VI , VNI}. Further-

more, the optimal control pair can be characterized by:

n∗RTI = min

{
max

{
L1,

(λT − λTI
)γTVI

A1

}
, U1

}
n∗PI = min

{
max

{
L2,

(λVNI
− λVI

)ωπµTI
TI

A2

}
, U2

}
.

(4.4)

Proof: The form of the adjoint equations and the transversality conditions are stan-

dard results from Pontryagin’s Maximum Principle [18], which is referenced in Joshi

[13] and Garira et. al. [8]. Furthermore, it follows from the optimality condition of

Pontryagin’s Maximum Principle that the objective functional subject to the state

equations is maximized when the partial derivative of the Hamiltonian with respect

to the controls is equal to zero. In this way, we can solve for our optimal control pair

n∗RTI , n
∗
PI . In our case, because our controls are bounded, when the partial derivative

is less than zero we set the control equal to its lower bound and when it is greater than

zero, we set the control equal to its upper bound in order to maximize the objective

functional.

It follows that for nRTI we have

if
∂H

∂nRTI

< 0 then n∗RTI = L1

if
∂H

∂nRTI

> 0 then n∗RTI = U1

if
∂H

∂nRTI

= 0 then
∂H

∂nRTI

= (λT − λTI
)γTVI − A1nRTI = 0

=⇒ n∗RTI =
(λT − λTI

)γTVI
A1

.

In compact form, this is written as

(4.5) n∗RTI = min

{
max

{
L1,

(λT − λTI
)γTVI

A1

}
, U1

}
.
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Similarly, for nPI we have

if
∂H

∂nPI

< 0 then n∗PI = L2

if
∂H

∂nPI

> 0 then n∗PI = U2

if
∂H

∂nPI

= 0 then
∂H

∂nPI

= (λVNI
− λVI

)ωπµTI
TI − A2nPI = 0

=⇒ n∗PI =
(λVNI

− λVI
)ωπµTI

TI
A2

.

In compact form, this is notated

(4.6) n∗PI = min

{
max

{
L2,

(λVNI
− λVI

)ωπµTI
TI

A2

}
, U2

}
.

5. NUMERICAL ILLUSTRATION

This section shows our results after running the model simulation using MAT-

LAB. The figures represent the un-activated CD4+ T-Cells (Q), activated (non-

infected) CD4+ T-Cells (T ), activated (infected) CD4+ T-Cells (TI), infectious HIV

virus (VI), non-infectious HIV virus (VNI), treatment with a reverse transcriptase

inhibitor(nRTI), and treatment with a protease inhibitor(nPI) over a 50-day treat-

ment cycle. Our numerical result suggests that the optimal course of treatment, in

order to raise the patient’s CD4+ T-Cell count as much as possible while taking into

account the toxic side effects of the drugs, is that the reverse transcriptase inhibitors

(nRTI) be given in full dose during the entire treatment cycle and protease inhibitor

(nPI) be given in full dose for the first 40 days of the treatment and tapered down

during the last 10 days. Our results show the populations of un-activated CD4+

T-Cells and activated, non-infected CD4+ T-Cells growing very fast in the beginning

of the treatment, with growth slowing down towards the end of the treatment period.

Similarly, activated, infected CD4+ T-Cells, infectious virus, and non-infectious virus

populations decrease very quickly in the first couple of weeks into the treatment, but

have a tendency to bounce back at the end of the treatment cycle.
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6. CONCLUSION AND DISCUSSION

This treatment for HIV is expensive and most of the people living in developing

countries can not afford it without a large subsidy from developed countries or inter-

national organizations. Starting time for the treatment and when to switch regimens

is very important, but access to treatment is equally important. We hope that more

antiretroviral treatment is made available to patients in these countries so that they

can be treated before their condition reaches the advanced stages of the disease.

Highly Active Antiretroviral Therapy (HAART) may develop resistance muta-

tions and may limit treatment using a second line of drugs [25] . We should identify

the best possible option for an infected individual and treat him or her as soon as we

can.
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