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ABSTRACT. A turbulent flow over different growing and non growing water waves is considered

by constructing a high-Reynolds-number stress closure model. The profile of the water wave as well

as the associated orbital velocities are prescribed. In the case of a growing wave, the profile and

the orbital velocities can change dynamically under the action of the wind blowing above the wave.

This work focuses on the influence of the wave age (ratio of the wave speed over the wall friction

velocity) and the wave steepness on the dynamics of the critical layer (the region about the height

at which the real part of the complex wave phase speed is equal to the mean flow velocity) and on

region of close streamlines, called cat’s eye patterns that are created above the surface of the wave

and is centered about the critical layer. The simulations show that the height of the critical layer

increases with the wave age and the steepness of the wave, what is in agreement with the direct

numerical simulations reported by Sullivan et al.[21]. The cat’s eye patterns increase in size and

extend vertically with the increase of the wave age and lead to a maximum disturbance of the mean

flow for older waves. The model being computationally less expensive than a DNS approach, it

allowed us to study waves growing under the influence of the wind. The simulations show that as

the wave grows the critical layer elevates and the cat’s eye structures become larger leading again

to an important disturbance of the wind flow above the wave.

AMS (MOS) Subject Classification. 76D10, 76D33, 76M12.

1. Introduction

The process of wind generated waves growth and decay has been a subject of

many studies for decades but despite theoretical studies, experiments and numerical

simulations the question of the energy transfer between the wind and the water waves

remains very controversial. In 1957 Miles was the first to give a quantitative descrip-

tion for the growth of wind generated waves [16]. But in his theory the interaction

between wave-induced motions in the air flow and the turbulence is neglected, turbu-

lence serves only to maintain a logarithmic wind profile. A specific region called the

critical layer is at the center of Miles theory and of Lighthill interpretation of wave

growth [11]. The critical layer is the region about the critical height ζc defined as the

height at which the real part of the complex wave phase speed c (= cr + ici) is equal
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to the mean flow velocity. Mile states that the energy is transferred from the wind

to a wave at a rate that is proportional to the curvature of the velocity profile at the

critical height. The main focus of this work is to study the dynamic of the critical

layer above different water waves.

Numerical simulations of a flow over waves based on the Reynolds Averaged

Navier-Stokes equations were carried out by Gent and Taylor [7] who used a one

equation turbulence model and Al-Zanadi & Hui [1] who used a two-equation eddy

viscosity closure for turbulence. In the 90’s, Mastenbroek et al. [15] applied a second-

moment Reynolds stress turbulence closure for the turbulent flow over water waves

and compared it to a k–ε model. They show that wave growth is very sensitive to

the turbulence model used. Belcher and Hunt compiled a review of the different

turbulence model used for turbulent flow over hills and waves [2]. In the 90’s, some

direct numerical simulations have been carried out to study the turbulent flow over

stationary wavy surfaces [13],[4],[3]. As the wavy surface was stationary these sim-

ulations could not be applied to ocean water waves. More recently direct numerical

simulations of flows over idealized water waves have been performed, eliminating the

sensitivity to the turbulence closure model [5],[12]. In 2000 Sullivan et al. [21], devel-

oped a three-dimensional DNS model to study turbulent flows over idealized water

waves. They studied the influence of the wave on the mean flow depending on the

wave age c/U∗ (wave speed over the wall friction velocity) and the wave slope ak.

They pointed out the importance of the region of closed streamlines also called cat’s

eye pattern centered at the critical layer height. For young waves (small c/U∗) the

cat’s eye pattern is centered upwind of the trough and extend almost all the way to the

surface of the wave. As the wave age increases the cat’s eye centers move upstream,

the pattern expands in the vertical direction and the structures are formed well above

the water surface causing a maximum of disturbance to the mean streamlines.

Direct numerical simulations have the irrefutable advantage of not depending

on the turbulence closure model but the very high computational cost associated

with them only allows, for now, to study non growing idealized monochromatic wave

profiles. In order to get a little closer to reality and following the study of Sajjadi

et al. [20], we present here, a computational study of turbulent flow over growing

water waves with varying slopes ka and different wave ages cr/U∗, using a differential

second-moment turbulence closure model. The initial shape of the water surface is

prescribed but the wave profile as well as the orbital velocities can evolve dynamically

under the action of the air flow above the surface.

After presentation of the governing equations and of the numerical model, our

results for a moving non growing monochromatic wave are presented and compared

to the ones obtained by Sullivan with his DNS simulations [21]. We will look at the
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influence of the wave age and wave slope on the dynamic of the critical layer. After

validation of the model we will investigate monochromatic moving and growing waves.

2. Problem formulation

We consider a deep water surface wave moving at the speed cr =

√
g

k
and a wind

with a logarithmic profile blowing above the wave. At the height of one wavelength

above the surface of the wave, the wind velocity is imposed to be Uλ .

The turbulent flow has a mean velocity profile U(ζ) = U1 ln(ζ/ζ0) where U1 ≡
U∗/κ, U∗ is the friction velocity , κ is von Kármán’s constant and ξ and ζ are the

wave-following coordinate through the transformation

x = ξ, z = ζ + h(ξ, η),(2.1)

where h = h(ξ, η) maps z = h0 on zη = 0 and is evanescent for kζ ↑ ∞ but is

otherwise arbitrary. The wave is assumed to be periodic in the x-direction, it has a

wavelength λ, an amplitude a and a slope ak = 2π/λ. In our simulations, the frame

of reference is traveling with the wave. The wave is monochromatic with an initial

surface profile given by h(X , t) = a(t)− a(t) cos[kX ], where X = ξ − crt

3. Equations of motion

The flow of air with density ρa and kinematic viscosity νa over water waves is gov-

erned by the Reynolds averaged Navier-Stokes equations, which for an incompressible

fluid may be expressed in the Cartesian form as

∂Ui
∂xi

= 0(3.1)

DUi
Dt

= − 1

ρa

∂P

∂xi
+

∂

∂xj

[
νa

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− u′iu′j

]
(3.2)

where Ui is the mean velocity component in the xi-direction, P is the mean pressure,

u′iu
′
j is the Reynolds-averaged stress correlation and t is time.

The air is assumed to be flowing over an unsteady surface wave, propagating

along the positive ξ-axis and whose elevation h is given by

h(ξ, t) = a(t) cos[k(ξ − ct)]

c is the complex phase speed.

In order to close equation (3.2), a model for the Reynolds-averaged stress cor-

relations must be provided a priori. A rational approach for providing a model for
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u′iu
′
j in equation (3.2) relies on its exact transport equation, which may be cast in the

following form

Du′iu
′
j

Dt
= Pij + Πij − εij + dij(3.3)

where Pij = −(u′iu
′
k∂Uj/∂xk+u

′
ju
′
k∂Ui/∂xk) is the production term, Πij represents the

velocity-pressure gradient correlation, εij the viscous dissipation, and dij represents

diffusion by both molecular viscosity and the triple velocity moments.

On the left-hand side of (3.3), the stress convection, and the production term

are both exact and require no further modelling. However, all other terms contain

further unknowns which must be modelled. For this we adopt a high-Reynolds-

number turbulence model [18].

In this model, the pressure correlation Πij is decomposed into a redistributive

part, φ∗ij, and a non-redistributive part by

Πij ≡ −
1

ρa

(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
= φ∗ij +

u′iu
′
j

2K
dpkk(3.4)

where dpkk = −(1/ρa)∂u′kp
′/∂xk represents the pressure diffusion of the turbulent

kinetic energy K = 1
2
u′iu
′
i.

The model employed for the redistributive part of the pressure correlation, φ∗ij,

is based on the cubic realizable form derived by Fu [6].

The dissipation εij is modelled as

εij =
(
1− A1/2

) ε
K
u′iu
′
j + 2/3εδij(3.5)

where A = 1−9/8(A2−A3), A2 = aijaij, A3 = aijajkaki and aij = u′iu
′
j/K−2/3δij

This is very similar to the form adopted in other high-Reynolds-number flows,

see for example Gibson & Launder [8].

In (3.5) The dissipation rate ε is obtained from the solution of its own transport

equation:

Dε

Dt
= cε1

εPkk
2K
− cε2

ε2

K
+

∂

∂xl

[(
νaδlk + cεu′lu

′
k

K

ε

)
∂ε

∂xk

]
+cε3A

1/2(1− A)
ε√
K
u′iu
′
j

∂A

∂xi

∂

∂xj

(
K3/2A1/2

ε

)
(3.6)

with coefficients

cε1 = 1.0, cε2 = 1.92/(1 + 0.7AdA
1/2
2 ), Ad = max(0.2, A), cε3 = 1.0, cε = 0.18

The only remaining term in the stress transport equations is the diffusion term

dij =
∂

∂xk

(
νa
∂u′iu

′
j

∂xk
− u′iu′ju′k

)
(3.7)
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The viscous diffusion is, of course, exact, and the triple correlations are modelled as

proposed in Hanjalic & Launder [9]

u′iu
′
ju
′
k = −cs

K

ε

[
u′iu
′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′iu
′
k

∂xl
+ u′ku

′
l

∂u′ju
′
i

∂xl

]
(3.8)

where cs = 0.11.

4. Numerical schemes

The governing equations are solved using the finite volume method. The volumes

are non-orthogonal and collocated such that all flow variables are stored at one and the

same set of nodes. The numerical scheme uses a pressure based solver, approaching

iteratively the solution using a semi-implicit method for pressure linked equations

[17].

We have used a first order forward discretization in time, and the convective

fluxes are approximated with the higher-order upstream-weighted scheme, QUICK

of Leonard [10]. The pressure and diffusive fluxes are discretized using a central

difference operator.

The finite volume method and the chosen discretizations lead to penta-diagonal

equation in 2D, those systems are solved using a generalized version of tri-diagonal

matrix algorithm (TDMA).

The discretization is proceeded by a transformation of the Cartesian coordinates

of the governing equations to the non-orthogonal coordinates ξ and ζ using the Jaco-

bian transformation matrix. The transport equation for any scalar property Φ many

be expressed in non-orthogonal direction as

∂

∂t
(JρaΦ)︸ ︷︷ ︸

transient term

+
∂

∂ξ

(
ρaU

(ξ,ζ)Φ
)

+
∂

∂ζ

(
ρaW

(ξ,ζ)Φ
)

︸ ︷︷ ︸
convection

+
∂

∂ξ

(
αΦJ

∂Φ

∂ξ

)
+

∂

∂ζ

(
βΦJ

∂Φ

∂ζ

)
︸ ︷︷ ︸

diffusion

= JSΦ︸︷︷︸
source

(4.1)

where U (ξ,ζ) = Uzζ−Wxζ and W (ξ,ζ) = Wxξ−Uzξ are contravarient velocity compo-

nents, J is the Jacobian of the transformation, SΦ is the source term including diffusive

terms, pressure terms in the momentum equation, αΦ = ΓΦ(x2
ζ+z

2
ζ ), βΦ = ΓΦ(x2

ξ+z
2
ξ ),

where ΓΦ is isotropic diffusivity, and the subscripts ξ, ζ denote partial differentiations.

The mesh covering the computational domain contains 100 × 50 nodes and ex-

tends over six wavelengths in horizontal direction and one wavelength in the vertical

direction. It is refined near the water surface in order to capture the steep gradients

which are inherently present there. After a parameter analysis, this mesh size was

chosen because it was the smaller size that ensured grid independent results.
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5. Boundary conditions

At the top of the computational domain:

The mean velocities are

(U,W ) = (Uλ − cr, 0)

(due to the fact that the frame of reference is moving with the wave at the phase

speed cr ). The vertical gradients of K, ε and normal stresses are set to zero. The

turbulent shear stress is u′w′ = 0.

At the water surface the mean velocity components are matched (to first order

in ka to orbital velocities:

U = −crka cos(kX )− cr, W = −crka sin(kX )

Note that when cr = 0 the lower boundary conditions reduce to non-slip condi-

tion, which implies the wave is stationary. But as the wave is unsteady it can still

grow as a result of shear flow above it if ci 6= 0.

The air flow is assumed to be periodic in the horizontal direction, so periodic

boundary conditions are imposed to all mean variables, turbulent stresses and the

turbulent dissipation rate.

6. Results

6.1. Non growing monochromatic waves. In a first time, the wave shape and the

orbital velocity are considered time independent. Figure (1) displays the streamlines

obtained from the velocity field and shows the influence of the wave age on the

critical layer. For these numerical simulations the waves steepness remains constant

at ak = 0.1 and the ”modified wave ages” cr/uλ (instead of the classic wave age

cr/U∗) varies between 0 and 0.47. For each wave age the height of the critical layer is

represented by a white line. First, it can be seen that for a wave age of zero, that is for

a stationary wave, at this steepness, there is no flow separation. There is also no cat’s

eye pattern and so no critical layer near the surface of the wave. For a moving wave

(cr/Uλ > 0), as the wave age increases the streamlines patterns change rapidly. At

small wave age (cr/Uλ = 0.04) the cats eyes structures appear and are then located

very close to the surface. They are centered slightly upwind of the through. The

critical layer is thinner in the windward side of the wave and thicker on the leeward

side of the wave. As the wave age increases (cr/Uλ = 0.14), the height of the critical

layer increases. The cat’s eye patterns elevate in the vertical direction. The critical

layer is now less asymmetrical than at a lower wave age. As the wave age increases

even more (cr/Uλ = 0.47), the cat’s eye structures extend all the way to the crest of
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the wave; the structures grow in size (can get bigger than the wave amplitude) and

extend even more in the vertical direction for a maximum disturbance of the mean

flow. The wind flow does not follow at all the profile of the wave anymore. At this

wave age the critical layer is almost flat and independence of the horizontal position.

These observations are in agreement with the results obtained by Sullivan et al.

Figure 1. Streamlines pattern for different wave ages and constant

steepness of 0.1

Figure (2) displays the pressure contours and shows how the surface wave affects

the pressure field for a monochromatic wave with ka = 0.1 and cr/Uλ = 0.47. The

height of the critical layer is represented by a white line. At this steepness and this

wave age, the critical layer has the greatest impact on the velocity field what is also

in agreement with the DNS simulation results obtained by Sullivan et al.. At a wave

age of 0.47 the pressure contours depict a marked hilting in the streamwise direction

below the critical layer, above the critical layer the pressure contours bend back as

the upstream direction, in accordance with Sullivan et al. observations. Figure (3)

illustrates the influence of the steepness on the critical layer by showing the streamline

patterns for a fixed wave age c/Uλ = 0.47 and for three different wave steepness,

ka = 0.1, 0.2 and 0.3 (bottom to top). As the steepness increases, the height of

the critical layer height increases and the cats eye structures extend vertically, as

suggested by Sajjadi, Hunt & Drullion [20]. At low steepness, the structures extend

horizontally over the crest while for a larger steepness the are more centered over the
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through for a maximum disturbance o the mean flow.

Figure 2. Pressure field at an alternate wave age of 0.47 and a teep-

ness of 0.1

Figure 3. Streamlines for an alternate wave age of 0.47 and different steepnesses.

Ocean waves are not only moving but also growing and their steepness is changing

as they travel. As the steepness of the wave is definitely having an effect on the critical

layer, it is important to study waves changing in amplitude.

6.2. Growing monochromatic waves. We will now consider the case of a monochro-

matic wave for which the initial shape is prescribed but the wave profile as well as

the orbital velocities can evolve dynamically under the action of the wind above the

surface. The initial steepness is 0.1 The profile of the wave is given at any time t by

h(X , t) = a0 − a0 cos[kX ]ekcit Where ci is the complex part of the phase speed, and

a0 is the initial amplitude.
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The complex part of the phase speed ci is calculated from the growth factor

ς = kci through a model which couples air with water at the interface [19].

We express the inviscid equation for the amplitude, φ(ζ), of mean perturbation

velocity U(ζ) as

Ω(ζ) = (U − c)−1[U ′φ− (U − c)φ′]−1φ

where Ω satisfies the Riccati equation

Ω′ = k2(U − c)2Ω2 − (U − c)−2(6.1)

According to Sajjadi et al. [20], the solution of (6.1) may be expressed as

w = U ′0c

[
Ω1 −

1

U ′1(U1 − c)
−
∫ ζ1

0

U ′′ dζ

U ′2(U − c)

]
[1 +O(kζ1)2](6.2)

where the subscript 1 implies evaluation at the point ζ = ζ1 defined such that

k|ζc| < kζ1 � 1, |U1 − c| � ci

Evaluation of the integral in (6.2), where the path of integration is taken under

the sigularity at ζ = ζc, and taking the imaginary part, yields the approximation

wi = π(U ′0/U
′
c)γ[1 +O(k|ζc|)2], γ = −cU ′′c /U ′

2

c

The growth factor is then obtained from the secular equation [19] and may be

expressed as

ς =
ρa

2ρw
U ′0

{
wi − (νak/2cr)

1
2 [(U ′c/kcr) + 2(wr − 1)]

(wr − 1)2 + w2
i

}
(6.3)

where νa and ρa are, respectively, the kinematic viscosity and the density of the air,

ρw is the water density, U ′0 is the gradient of U at the air-sea interface, the suffix c

implies evaluation at the critical point ζ = ζc and wr = 1− crU ′0e−kζc/U ′
2

c .

To reduce the computational costs the wave profile and the computational do-

main will only be updated every 75 iterations (limit for which the CLF condition is

satisfied). All the variables will then be interpolated/extrapolated onto the new grid.

Figure (4) shows the streamlines at different time steps of the simulation. As

the waves grows and become steeper the critical layer that is initially very close to

the surface wave rises. The cat’s eye pattern also grows in size and extend vertically

what leads to an important disturbance of the mean flow.
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Figure 4. Streamlines for an alternate wave age of 0.47 and different steepnesses.

7. Conclusions

A coupled air-sea Reynolds stress model was successfully applied to non growing

and growing monochromatic waves. The results obtained on the moving but non

growing monochromatic waves is in accordance with the results found by Sullivan

et al. [21] using direct numerical simulation. The height of the critical layer and

the vertical extend of the cat’s eye structures increase with the wave age and the

steepness. As a monochromatic waves grows under the effect of wind, the height

of the critical layer and the size cat eyes structures increase. Compared to a very

computationally costly DNS simulation our model allow us to get a little closer to

what happens in nature by working with an evolving mesh. But there remains much

further investigations in order to model adequately the airflow over wind generated

waves. There is no monochromatic wave in the ocean, waves travel in groups. Because

of the asymmetry of the flow over a group of waves (waves growing on the upwind side

of the group and decreasing on the downwind of the group), the critical layer height

will spatially dependent over the waves of the group. These variations in the height

of the critical layer will contribute to the energy input to the wave group. Thus the

next step of our investigation will be an equivalent study on groups of waves.
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