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ABSTRACT. We seek to find critical points of a functional defined by

Eα(u) =

∫
Td

1

2
|Aα/2u|2 + F (x, u) dx, α ∈ (0, 1],

on an infinite dimensional space (Sobolev Space), where A is a self-adjoint, uniformly elliptic

operator of order 2 with suitable symmetric and smoothness conditions on the coefficients and

F (x, y) =
∫ y
0
f(x, z) dz has the properties that the real-valued nonlinear functional f(x, y) on

Td×R is continuous with respect to the spatial variable x and Lipschitz continuous with respect to

the functional component y.

We first consider Sobolev gradient of Eα as an element of a Sobolev space Hαβ , β ∈ (0, 1),

then the steepest descent (Sobolev gradient descent) equation for Eα. Under suitable initial and

periodic boundary conditions, we prove existence and uniqueness of semi-flow (a strong solution) of

this equation.

AMS (MOS) Subject Classification. 35S11.

1. Introduction

Consider a compact domain Td = [0, 1]d (or the compact manifold Rd/Zd). Let

us consider a functional of type

(1.1) Eα(u) =

∫
Td

1

2
|Aα/2u|2 + F (x, u) dx, α ∈ (0, 1]

where F (x, y) =
∫ y
0
f(x, z) dz has the properties that for each fixed y ∈ R the map

x 7→ f(x, y) lies in C(Td,R) and for each fixed x ∈ Td the map y 7→ f(x, y) lies in

C0,1(R,R), and A is a linear, self-adjoint, and uniformly elliptic operator of order 2

on L2(Td) given by

(1.2) (Au)(x) = −
d∑

i,j=1

((aij(x)uxi(x))xj , x ∈ Td
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with the properties that aij ≡ aji ∀ i, j = 1, 2 . . . , d and aij ∈ C∞(Td), and

(1.3) θ1|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ θ2|ξ|2 ∀ x ∈ Td, ∀ ξ ∈ Rd.

for some positive real numbers θ1, θ2.

A reason why we are interested in the functional Eα is to find solutions of a

pseudo-differential equations satisfied by critical points of Eα. These critical points

are those u in Sobolev space Hαβ, β > 0 for which

∇αβEα(u) = 0,

where ∇αβEα(u), an element of Hαβ, is the Sobolev gradient of Eα at u, which we

will discuss later in detail. Intuitively, we can think of such gradient as a counterpart

of the gradient of a function defined on Rd in multi-variable calculus. It is defined in

abstract sense on an infinite dimensional Hilbert space, namely on Hαβ in our case.

As a method of finding critical points of Eα, we consider the gradient descent

equation

∂tu = −∇αβEα(u)

subject to an initial condition and periodic boundary condition. Then equilibrium

solutions of this initial-boundary value problem are critical points of Eα. Even though

our future goal is to find such equilibrium solutions, in this paper we will prove

existence and uniqueness of global semi-flow u(t, x), t ≥ 0 of this initial-boundary

value problem.

The results analogous to ours for the case α = 1 and the nonlinear functional

F (x, y) satisfying stronger assumptions has been proved by T. Blass, R. de la lLave

and E. Valdinoci in [1]. Further, T. Blass, R. de la lLave have used this method to

compute numerical solution of perturbed nonlinear problem reducing to the one with

periodic boundary condition for the case α = 1, A = −∆, and F (x, y) again satisfying

stronger assumptions. Also analogous results for the case Aα replaced by (−∆)α have

been proved by R. de la lLave and E. Valdinoci in [2]. Our results generalize some

of their results. The idea of the problem we mentioned here has been proposed in [1]

with some outlines.

The proofs of the main results rely on abstract semigroup theory on a Banach

space, spectral theory of linear unbounded self-adjoint operator on a Hilbert space,

and many other concepts from functional analysis and theory of partial differential

equations and pseudo-differential equations such as Riesz Representation Theorem,

Banach Fixed Point Theorem, variation of constant formula, Sobolev Embedding

Theorem, Inverse Operator Theorem etc.

Now we briefly discuss how we will develop a setting of our work by introduc-

ing some tools needed for establishing our main results and giving an overview of
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the proofs of these results. In section 1, we will introduce Euler-Lagrange Equa-

tion for Eα, Sobolev spaces, Sobolev gradient, expressions for Sobolev gradient, and

Sobolev gradient descent equation. We will begin section 2 with stating the main

result. Then we will develop proof of this result throughout section 2. In sec-

tion 2.1, we will characterize Sobolev spaces and define various fractional powers

of operators involving A using spectral theory of closed positive unbounded self-

adjoint operators on a Hilbert space with compact resolvent. In section 2.2, we

will construct a contraction C0-semigroups generated by −A and negative of frac-

tional powers of operators involving A. More precisely, a closed densely defined

unbounded linear operator B on a Hilbert space H is an infinitesimal generator

of a contraction C0-semigroup of bounded linear operators T (t), t ≥ 0 on H if

T (0) = I, T (t1 + t2) = T (t1) ◦ T (t2) ∀ t1, t2 ≥ 0, limh↓0 ||T (h)u− u||H = 0 ∀ u ∈ H,

and ||T (t)||L(H) ≤ 1 ∀ t ≥ 0. Such semi-group has an important property, namely for

each u0 ∈ D(B) = {u ∈ H : limh↓0 ||T (h)−Ih
u−Bu||H = 0}

T (t)u0 ∈ D(B) and
dT (t)

dt
u0 = BT (t)u0 ∀ t ≥ 0.

That is, u(t) = T (t)u0 is a solution of abstract Cauchy problemdu
dt

= Bu, t > 0

u(0) = u0

Since B can not generate more than one C0-semigroup, u = T (.)u0 is a unique solution

of above abstract Cauchy problem that starts in D(A) and always remains there (for

more properties of C0-semigroup, see [10, 15, 14]). In section 2.3, we will discuss

some regularity and boundedness properties of a contraction C0-semigroup. Finally

in section 2.4, we will construct variation of constant formula (mild solution) for

the Sobolev gradient descent equation and a contraction map on the space of mild

solutions, which is a Banach space with suitable norm. We will apply Banach Fixed

Point Theorem to find a unique fixed point, which will be a unique mild solution of the

gradient descent equation. Finally we will use regularity and boundedness properties

of semigroup and nonlinear operator appearing in the gradient descent equation to

improve regularity of the fixed point. Hence we will obtain unique solution of the

gradient descent equation.

1.1. Euler-Lagrange Equation. The main motivational to the problem of finding

critical points of Eα is that these critical points are solutions of the Euler-Lagrange

equation of Eα

(1.4) Aαu+ f(x, u) = 0, x ∈ Td.
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In other words, our interest is guided by a problem of solving the pseudo-differential

equation (1.4). To see (1.4) as Euler-Lagrange equation of Eα, if φ ∈ C∞(Td) then

d

dt
Eα(u+ τφ)|τ=0 =

d

dτ
{1

2
(Aα/2(u+ τφ), Aα/2(u+ τφ))L2 +

∫
Td
F (x, u+ τφ) dx}|τ=0

=(Aαu+ f(x, u), φ)L2 = 0 (because Aα/2 is self-adjoint)

implies that Aαu+ f(x, u) = 0

We will easily see in section 1.4 that (1.4) is equivalent to ∇αβEα(u) = 0 for each

critical point u of Eα.

1.2. Sobolev spaces. Following [5, 8, 11, 14, 16], first we recall definitions of some

fractional order Sobolev spaces and then introduce new Sobolev spaces.

For any s ∈ R, Hs(Td) = {u ∈ D′(Td) :
∑

j∈Zd(1 + |j|2)s/2û(j)eij.x ∈ L2(Td)} =

D(Λs), where Λsu(x) :=
∑

j∈Zd(1 + |j|2)s/2û(j)eij.x for u ∈ D′(Td), is a Hilbert space

with the inner product (u, v)Hs(Td) = (Λsu,Λsv)L2(Td) =
∑

j∈Zd(1 + |j|2)sû(j)v̂(j)

which induces the norm ||u||Hs(Td) = {
∑

j∈Zd(1 + |j|2)s|û(j)|2}1/2.

In particular, if s = 0 then H0(Td) = {u ∈ D′(Td) :
∑

j∈Zd û(j)eij.x ∈ L2(Td)} =

L2(Td) with the inner product (u, v)H0(Td) = (
∑

j∈Zd û(j)eij.x,
∑

k∈Zd v̂(k)eik.x)L2(Td) =∑
j∈Zd û(j)v̂(j) = (u, v)L2(Td) and the norm ||u||L2(Td) = {

∑
j∈Zd |û(j)|2}1/2. Moreover,

if s ≥ 0 then
∑

j∈Zd |û(j)|2 ≤
∑

j∈Zd(1 + |j|2)s|û(j)|2 ⇒ Hs(Td) ⊂ L2(Td).

Notice that Λα = (I − ∆)α/2 on D′(Td) so that D((I − ∆)α/2) = Hα(Td).
For β ∈ [0, 1], the interpolation method (proposition 2.2 in [5]) yields Hαβ(Td) =

[L2(Td), Hα(Td)]β = [L2(Td), D(Λα)]β = D(Λαβ) = D(I − ∆)αβ/2 with norm given

by graph norm ||u||Hαβ(Td) = ||(I −∆)αβ/2u||L2(Td) = ||Λαβu||L2(Td) and inner product

(u, v)Hαβ(Td) = ((I −∆)αβ/2u, (I −∆)αβ/2v)L2(Td) = (Λαβu,Λαβv)L2(Td).

Next we define Hαβ(Td) = {u ∈ L2(Td) : (I + Aα)β/2u ∈ L2(Td)} with inner

product given by (u, v)Hαβ(Td) = ((I +Aα)β/2u, (I +Aα)β/2v)L2(Td) which induces the

norm ||u||Hαβ(Td) = ||(I + Aα)β/2u||L2(Td). In section 2.1, it will be implied that the

operator Aα1 := I + Aα satisfies the following properties: ρ(Aα1 ) contains the sector

S0,φ = {0 6= λ ∈ C : φ ≤ | arg(λ)| ≤ π, φ ∈ (0, π/2)}, and ||(λ − Aα1 )−1||L(Hαβ(Td)) ≤
M/|λ| for λ ∈ S0,φ for some M > 0. In other words, Aα1 is a sectorial positive operator

so that fractional power of Aα1 on Hαβ(Td) can be defined (for more detail, see section

1.3 in [18]).

In section 2.1, we will show that the spaces Hαβ(Td) given in the last two para-

graphs with their respective norms are the same.

1.3. Sobolev gradients. Sobolev gradient orHαβ(Td)-gradient of Eα at u ∈ Hαβ(Td)
is a unique element g ∈ Hαβ(Td) such that

DEα(u)η = (g, η)Hαβ(Td) = ((I + Aα)β/2g, (I + Aα)β/2η)L2(Td) ∀ η ∈ Hαβ(Td),
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where DEα(u) is Fréchet derivative of Eα at u. The Riesz Representation Theorem

guarantees that such a g ∈ Hαβ(Td) always exists, since DEα(u) is a continuous linear

functional on Hαβ(Td). We write g = ∇Hαβ(Td)Eα(u).

In particular, if β = 0 then DEα(u)η = (g, η)H0(Td) = (g, η)L2(Td) ∀ η ∈ L2(Td)
and g = ∇H0(Td)Eα(u). In this case, g is L2(Td)-gradient of Eα at u and is also

denoted by ∇L2(Td)Eα(u).

Now we establish the formulas for Hαβ(Td)-gradient and L2(Td)-gradient.

Lemma 1.1. For every η ∈ C∞(Td), we have

i) DEα(u)η = (Aαu+ f(x, u), η)L2(Td),

ii) DEα(u)η = ((I + Aα)1−βu− (I + Aα)−β(u− Vy(x, u)), η)Hαβ(Td)

Proof. Since

lim
||η||

L2(Td)→0

|Eα(u+ η)− Eα(u)−DEα(u)η|
||η||L2(Td)

= 0,

it follows that

Eα(u+ η) = Eα(u) +DEα(u)η + o(||η||2L2(Td))

On the other hand

Eα(u+ η) =

∫
Td

1

2
|Aα/2(u+ η)|2 + F (x, u+ η)

=

∫
Td

1

2
|Aα/2u+ Aα/2η|2 + F (x, u) + Fy(x, u)η + o(|η|2)

=Eα(u) + (η, Aαu)L2(Td) +

∫
Td
f(x, u)η + o(|η|2)

=Eα(u) + (η, Aαu+ f(x, u))L2(Td) + o(|η|2)

Combining above two expressions for Eα(u+ η), we obtain part(i) of lemma.

Since (I + Aα)β/2 is a self-adjoint operator, we have

DEα(u)η =(Aαu+ f(x, u), η)L2(Td)

=((I + Aα)β(I + Aα)−β(Aαu+ u− u+ f(x, u), η)L2(Td)

=((I + Aα)−β[(I + Aα)u− {u− f(x, u)}], η)Hαβ(Td)

=((I + Aα)1−βu− (I + Aα)−β{u− f(x, u)}, η)Hαβ(Td)

Thus part (ii) of lemma follows.

Since C∞(Td) is dense in each of L2(Td) and Hαβ(Td), lemma 1.1 shows that

∇L2(Td)Eα(u) = Aαu+ f(x, u)(1.5)

∇Hαβ(Td)Eα(u) = (I + Aα)1−βu− (I + Aα)−β{u− f(x, u)}(1.6)
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1.4. Sobolev gradient descent equations. As we discussed early in the section,

we want to solve nonlinear pseudo-differential equation (1.4) by finding the critical

points of the functional Eα. At these critical points, we expect to minimize (or

maximize) Eα by considering Hαβ(Td)-gradient descent equation given by

∂tu = −∇Hαβ(Td)Eα(u)

which then by part (ii) of lemma 1.1 becomes

∂tu = −(I + Aα)1−βu+ (I + Aα)−β(u− f(x, u))

We set linear operator L := −(I + Aα)1−β and nonlinear operator N := (I +

Aα)−β(I(.) − f(x, .)), impose initial condition u(0, x) = u0(x) and periodic bound-

ary condition u(t, x + ej) = u(t, x) (t ≥ 0) for all ej = (0, . . . , 1 . . . , 0), j =

1, 2 . . . d, x ∈ Td, and write u(t, x) = u[t](x) by fixing x to represent t 7→ u[t] as

a map from time interval into a function space . Then we get the abstract Cauchy

problem

(1.7)


du[t]
dt

= L(u[t]) + N(u[t]) if t > 0

u[0] = u0

accompanied by above mentioned periodic boundary condition.

Because of the more complicated nature of Hαβ(Td)-gradient of Eα than its

L2(Td)-gradient, it seems more natural to consider the L2(Td)-gradient. But one

of main advantages of considering the former one is that numerical solution in higher

Fourier frequency mode of (1.7) converges to its equilibrium solution much faster as

compared to its L2(Td)-gradient counterpart.

We notice that equilibrium solutions of (1.7) satisfy ∇Hαβ(Td)Eα(u) = 0 which is

equivalent to the nonlinear pseudo-differential equation (1.4) (Recall (1.6)). There-

fore, existence of unique solution u(t, x) to (1.7) is a key to study such equilibrium

solutions.

2. The Existence and Uniqueness Theorem

In this section, we prove existence and uniqueness of global solution of the initial

boundary-value problem (1.7) in a Sobolev space. Such a solution is a strong solution

to the problem.

For the sake of simplicity, we will write L2 for L2(Td), L∞ for L∞(Td), Hαβ for

Hαβ(Td), (., .)L2 or (., .)0 for (., .)L2(Td), and (., .)αβ for (., .)Hαβ(Td) in the rest of the

paper.

Theorem 2.1 (Main). Let x 7→ f(x, y) ∈ C(Td,R) for every y ∈ R, y 7→ f(x, y) ∈
C0,1(R,R) for every x ∈ Td, and u0 ∈ L∞. Then there exists a unique solution u in
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C([0,∞), L∞ ∩H2αβ) ∩ C1((0,∞), L∞ ∩H2αβ) of the initial-boundary value problem

(1.7).

2.1. Characterization of Sobolev spaces. In this section, we basically verify the

observation we made at the end of section 1.2.

By inverse operator theorem (Theorem 8.2, [11]) (A−λI)−1 is compact in L2 for

λ /∈ σ(A). By theorem 8.3, [11], there is a complete orthonormal basis {wj}∞j=1 for

L2 of eigenfunctions of A corresponding to the eigenvalues {λj}∞j=1 with |λj| → ∞ as

j →∞. Moreover, each wj is smooth on Td and σ(A) = σp(A) (point spectrum).

Since A is symmetric and positive definite, all eigenvalues of A are real, positive

and 0 < λ1 ≤ λ2 ≤ ..... ≤ λj ≤ .... (counting multiplicity) with λj → ∞ as j → ∞.

So we can write u ∈ L2 as Fourier series u =
∑

j(u,wj)L2(Td)wj.

Now onward we write (u,wj)L2 = ûj. Then Parseval’s identity (L2-inner product)

(u, v)L2 =
∑

j ûj v̂j yields ||u||2L2 = (u, u)L2 =
∑

j |ûj|2.

Thus we can characterize L2 as L2 = {u ∈ D′(Ω) :
∑

j |ûj|2 <∞}.

By proposition 10.3 in [11], for any complex z

(2.1) Azu =
∑
j

λzj ûjwj

(a spectral integral in discrete form). Moreover wj are eigenfunctions of Az with the

corresponding eigenvalues λzj .

We will discuss in section 2.2 that −A generates a C0-semigroup on L2 and define

Aα on L2 in terms of C0-semigroup generated by −A. Also we will prove that −Aα

generates C0-semigroup on L2. Then −(I + Aα) will be infinitesimal generator of a

C0-semigroup on L2 ([17]). So (I + Aα) which is negative of −(I + Aα) is a positive

operator on L2 from chapter 1 of [6]. In similar fashion as Aα, we can define (I+Aα)β

on L2 in terms of C0-semigroup generated by −(I + Aα). But at this moment, we

apply (2.1) to define an operator (I + Aα)1/2 : L2 → L2 by

D((I + Aα)1/2) = {u ∈ L2 :
∑
j

(1 + λαj )|ûj|2 <∞},

(I + Aα)1/2u =
∑
j

(1 + λαj )1/2ûjwj

Here D((I + Aα)1/2) as a subspace of L2 with inner product (u, v)D((I+Aα)1/2) =

((I + Aα)1/2u, (I + Aα)1/2v)L2 =
∑

j(1 + λαj )ûjwj that induces the graph norm

||u||D((I+Aα)1/2) = ||(I +Aα)1/2u||L2 =
∑

j(1 + λαj )|ûj|2 is equal to D((I + (−∆)α)1/2)

with analogous inner product and norm because two inner products induce the equiv-

alent norms (see Chapter 1 in [11]). On the other hand,
∑

j∈Zd(1 + |j|2α)|û(j)|2 <
∞⇔

∑
j∈Zd(1 + |j|2)α|û(j)|2 <∞ implies that D((I + (−∆)α)1/2) = D((I −∆)α/2)

with the respective inner products that induce the graph norms. Thus we have
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D((I + Aα)1/2) = Hα. For any β ∈ [0, 1], interpolation method yields Hαβ =

[H0, Hα]β = Hαβ+0(1−β) = Hαβ = [L2, D((I + Aα)1/2)]β = D((I + Aα)β/2) with inner

product (u, v)D((I+Aα)β/2) = ((I + Aα)β/2u, (I + Aα)β/2v)L2 that induces the graph

norm ||u||D((I+Aα)β/2) = ||(I + Aα)β/2u||L2 = {
∑

j∈Zd(1 + λαj )β|ûj|2}1/2.

Hence Hαβ defined as D((I +Aα)β/2) with inner product that induces the graph

norm is equal to Hαβ defined as D((I − (−∆))αβ/2) with the corresponding inner

product that induces the graph norm. Finally, we summarize

Hαβ = {u ∈ L2 : (I + Aα)β/2u ∈ L2} (β ∈ [0, 1]),

(u, v)αβ = ((I + Aα)β/2u, (I + Aα)β/2v)L2 =
∑

j(1 + λαj )βûj v̂j,

||u||αβ = {
∑

j(1 + λαj )β|ûj|2}1/2

More interestingly, we can easily extend the definition of Hαβ for any β > 0 via

implementation of interpolation method.

We notice that {wj} is an orthogonal basis for Hαβ but not necessarily orthonor-

mal because ||wj||2Hαβ = (1 + λαj )s ∀ j.

2.2. Construction of some C0-semigroups. In order to prove theorem 2.1, we will

first solve the abstract Cauchy problem obtained by dropping nonlinear term N(u)

in the first equation of (1.7)

(2.2)

du
dt

= Lu if t > 0

u(0) = u0

subject to the periodic boundary condition as mentioned in (1.7). Therefore, we

need to construct C0-semigroup etLu0, t ≥ 0 generated by L. This will be done

by constructing various C0-semigroups generated by operators involving fractional

powers of A.

Theorem 2.2. −A generates a contraction C0 semigroup on L2(Ω).

Proof. Define for each t ≥ 0

e−tAu :=
∑
j

e−tλj ûjwj, u ∈ L2(Ω).

Then for any real number a and u, v ∈ L2(Ω), we have ||e−tAu||2L2 =
∑

j e
−2tλj |ûj|2 ≤∑

j |ûj|2 = ||u||2L2 and

e−tA(au+ v) =
∑
j

e−tλj ˆ(au+ v)

=a
∑
j

e−tλj ûjwj +
∑
j

e−tλj v̂jwj

=ae−tAu+ etAv.
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Thus e−tA, t ≥ 0 is a one parameter family of bounded linear operators on L2 with

||e−tA||L(L2,L2) ≤ 1 ∀ t ≥ 0. Further, it satisfies the following properties.

For every u ∈ L2, it is not hard to show that e−tAu|t=0 = u and (e−tA ◦ e−sA)u =

e−(t+s)Au ∀ t ≥ 0, and for given any ε > 0, to choose N ∈ N such that
∑∞

j=N+1 |ûj|2 <
ε2/2 since

∑
j |ûj|2 <∞. With this N , we have

||e−tAu− u||2L2 ≤ (1− e−tλN )2
N∑
j=1

|ûj|2 +
∞∑

j=N+1

|ûj|2

So we can choose δ(N) > 0 small enough such that we can make the first term

on the right side of above inequality less than ε2/2 for 0 < t < δ(N) and hence

||e−tAu− u||L2 < ε proving that limt↓0 e
−tAu = u under L2-norm.

At this point, we have proved that e−tA, t ≥ 0 is a contraction C0-semigruop of

bounded linear operators on L2.

Finally it remains to show that −A is an infinitesimal generator of e−tA, t ≥ 0.

For u ∈ D(A),

||e
−tAu− u

t
− (−Au)||2L2 =

∑
j

(
e−tλj − 1

t
+ λj)

2|ûj|2 =
∑
j

tλ2j(
1

2!
− tλj

3!
+ . . . )|ûj|2

and so limt↓0
e−tAu−u

t
under L2-convergence exists and equals to −Au. Hence −A is

an infinitesimal generator for e−tA, t ≥ 0.

Thus the proof is complete.

Since −A is an infinitesimal generator of contraction C0 semigroup e−tA, t ≥ 0

on L2, so −A is a closed operator and D(A) is dense in L2. From Chapter IX, section

11 in [12] (or [10, 18]), expressions for fractional power of a closed positive operator

A are given by

(2.3) Aαu =
sinαπ

π

∫ ∞
0

sα−1(sI + A)−1Auds, u ∈ D(A)

and

(2.4) Aαu =
1

Γ(−α)

∫ ∞
0

s−α−1(e−sA − I)uds, u ∈ D(A)

It is also proved that −Aα generates a contraction C0-semigroup given by

e−tA
α

u =

{ ∫∞
0
ft,α(s)e−sAuds if t > 0

u if t = 0
(2.5)

where ft,α in the integrand is defined by

ft,α(s) =

{
1

2πi

∫ σ+i∞
σ−i∞ ezs−tz

α
dz if s ≥ 0

0 if s < 0

with σ > 0, t > 0, 0 < α < 1 and shown that ft,α(s) ≥ 0 for all s > 0
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In proof of Theorem 1 in Chapter IX, section 11 in [12], it is established that

||e−tAαu||L2 ≤ sup
t≥0
||e−tAu||L2

which follows that ||e−tAα ||L(L2) ≤ 1 since ||e−tA||L(L2) ≤ 1.

We summarize the above discussions below:

Theorem 2.3. −Aα generates a contraction C0-semigroup e−tA
α
, t ≥ 0 given in 2.5

on L2.

Thus (−I) + (−Aα) = −(I + Aα) also generates a contraction C0-semigroup on

L2. But this is not what we want. However, we want to construct a contraction C0-

semigroup generated by −(I + Aα) on Hαβ. Then using this semigroup and formula

2.5, we will be able to construct a contraction C0-semigroup generated by L on Hαβ.

To this end, we use (2.1) and Sobolev spaces with corresponding inner products and

norms discussed in section 2.1 to define a pseudo-differential operator (I + Aα) :

D(I + Aα) ⊂ Hαβ → Hαβ of order 2α by

D(I + Aα) = {u ∈ Hαβ : ||(I + Aα)u||2αβ =
∑
j

(1 + λαj )β+2|ûj|2 <∞},

(I + Aα)u =
∑
j

(1 + λαj )ûjwj

Theorem 2.4. −(I+Aα) generates a contraction C0-semigroup, namely e−t(I+A
α), t ≥

0, on Hαβ.

Proof. Define

e−t(I+A
α)u :=

∑
j

e−t(1+λ
α
j )ûjwj, t ≥ 0, u ∈ Hαβ

Then rest of the proof is just analytic routine similar to we did in theorem 2.2, but

this time we need to work with Hαβ-norm instead of L2-norm.

Either using the ideas of proof of theorem 2.3 (basically (2.3)-(2.5)) or defining a

semigroup by etL :=
∑

j e
−t(1+λαj )1−β ûjwj on Hαβ as in the proofs of theorem 2.2 and

theorem 2.4, we can prove the following.

Theorem 2.5. The linear operator L generates a contraction C0-semigroup, namely

etLu, t ≥ 0, on Hαβ, β ∈ (0, 1).

2.3. Regularity and boundeness properties of etL. The following technical re-

sult which states that etL increases regularity is very useful to prove regularity result

of main theorem 2.1.
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Theorem 2.6. If u ∈ L2, then etLu ∈ Hαβ for any β > 0. For instance, we have the

following estimates:

(2.6) ||etL||L(Hαβ ,Hα(β+2nλ)) ≤
( n√

2t

)n
(n ∈ N)

and for each µ ∈ (0, 1), there exists a constant Cµ,T such that

(2.7) ||etL||L(Hαβ ,Hα(β+2µλ)) ≤ Cµ,T

(µ
t

)µ
Proof. By [2], we have the following estimates on the semigroup and its generator:

If B is a self adjoint and m-dissipative operator on a Hilbert space H, and if

u ∈ H then etBu ∈ D(Bn) for all n = 1, 2, ... and

(2.8) ||(−B)n||L(H) = ||(B)n||L(H) ≤
( n√

2t

)n
and for any µ ∈ (0, 1), there exists Cµ,T such that for any t ∈ (0, T ]

(2.9) ||(−B)µ||L(H) ≤ Cµ,T

(µ
t

)µ
Since L is self adjoint and generates a C0-semigroup on Hαβ, by Lumer Phillips

Theorem L is m-dissipative and therefore by (2.8)

||(−L)n||L(Hαβ) = ||(L)n||L(Hαβ) ≤
( n√

2t

)n
and by (2.9), for any µ ∈ (0, 1), there exists Cµ,T such that for any t ∈ (0, T ]

||(−L)µ||L(Hαβ) ≤ Cµ,T

(µ
t

)µ
Since (−L)

1
δ = (γ + Aα) where δ = 1− β, for u ∈ Hαβ, we have

(2.10) ||etLu||α(β+2nδ) = ||(−L)netLu||αβ ≤
( n√

2t

)n
||u||αβ,

(2.11) ||etLu||α(β+2µδ) = ||(−L)µetLu||αβ ≤ Cµ,T

(µ
t

)µ
||u||αβ

By virtue of theorem 2.5, it suffices to prove that if u ∈ L2 then etLu ∈ Hαβ for

all β ≥ 1 which follows from 2.6 and 2.7.

We see from previous theorem 2.6 that if u ∈ L∞ ⊂ L2 then etLu ∈ Hαβ, β ≥ 0.

For large enough β > 0, etLu ∈ L∞ by Sobolev Embedding Theorem. Thus we can

assume that etL is an operator on L∞. Using the method analogous to proposition

3.6 in [1], we can establish bounds for etL and N as operators on L∞ into itself.

Theorem 2.7. If u ∈ L∞, then (a) ||N(u)||∞ ≤ ||u||∞+ ||f(., u)||∞ and (b) for each

t ≥ 0, ||etLu||∞ ≤ ||u||∞.

This theorem shows that N : L∞ → L∞ is locally bounded and etL : L∞ → L∞

is bounded with ||etL||L(L∞) ≤ 1.
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2.4. Proof of main theorem 2.1. Next we introduce an integral form of (1.7) and

apply Banach Fixed Point Theorem to prove that a unique solution in this form

always exists.

An intergral form of (1.7)

u(t, x) := etLu0(x) +

∫ t

0

e(t−s)LN(u(s, x)) ds

is called a mild solution of the equation.

We write u(t, x) := u[t](x) to see that t 7→ u[t] defines a map from a time interval

into a function space. Then for any u0 ∈ L∞ and T > 0, we define a subspace

WT = {u ∈ C([0, T ], L∞) : u[0] = u0}

of C([0, T ], L∞) with norm

||u||∞,T = max
0≤t≤T

||u[t]||∞

Notice that if 0 < t ≤ T then WT ⊆ Wt and ||u[s]||∞,t ≤ ||u[s]||∞,T

Theorem 2.8. A map Ψ : WT → WT defined by

Ψ(u[t]) := etLu0 +

∫ t

0

e(t−s)LN(u[s]) ds

is a contraction map for some small T > 0 independent of u0.

Proof. We see that Ψ(u[0]) = u0 and applying Theorem 2.7

||Ψ(u[t])||∞ ≤ ||u0||∞ +

∫ t

0

[||u[s]||∞ + ||f(., u[s])||∞] ds

≤ ||u0||∞ + [||u||∞,t + max
0≤s≤t

||f(., u[s])||∞]

<∞

implying that Ψ defines a map on WT .

Since |f(x, y1) − f(x, y2)| ≤ L(f)|y1 − y2| ∀ x ∈ Td,∀ y1, y2 ∈ R for some

constant L(f) depending on f , this yields

(2.12) ||f(., u[s])− f(., u[s])||∞ ≤ L(f)||u[s]− v[s]||∞ u, v ∈ Wt

If u, v ∈ Wt then an argument analogous to the previous theorem 2.7 yields

||N(u[s])−N(v[s])||∞ ≤ ||u[s]− v[s]||∞ + ||f(., u[s])− f(., v[s])||∞
≤ [1 + L(f)]||u[s]− v[s]||∞



NONLINEAR PSEUDO-DIFFERENTIAL EQUATIONS 371

and hence

||Ψ(u[t])−Ψ(v[t])||∞ ≤
∫ t

0

||e(t−s)L||L(L∞)||N(u[s])−N(v[s])||∞ ds

≤
∫ t

0

[1 + L(f)]||u[s]− v[s]||∞ ds

≤ t[1 + L(f)]||u− v||∞,t

Choose T = 1
2[1+L(f)]

. Since [1 + L(f)] is independent of u0, T is independent of

u0 and for every t with 0 ≤ t ≤ T

||Ψ(u[t])−Ψ(v[t])||∞ ≤
1

2
||u− v||∞,T

Taking supremum over all t ∈ [0, T ] on the left side, we get

||Ψ(u)−Ψ(v)||∞,T ≤
1

2
||u− v||∞,T

and hence Ψ is a contraction map on WT .

Proof of theorem 2.1: As a closed subset of a Banach space, WT with the norm

||.||∞,T is complete. Applying Banach Fixed Point Theorem, theorem 2.8 now follows

that the map Ψ : WT → WT has a unique fixed point uF ∈ WT for a small enough T .

That is,

uF [t] = Ψ(uF [t]) := etLu0 +

∫ t

0

e(t−s)LN(uF [s]) ds

which is, in fact, a mild solution of (1.7) in C([0, T ], L∞).

Since T is independent of initial data u0, we can follow the same method as above

with starting solution at t = T instead of starting at t = 0, we can obtain a unique

mild solution in C([T, 2T ], L∞) of (1.7) with the initial data replaced by u[T ] = u0.

Then we can apply concatenation (Gluing Lemma) to obtain a unique mild solution

on [0, 2T ] of (1.7) with u[0] = u0. Repeating this process indefinitely, we can obtain

a unique mild solution on [0,∞) of (1.7) with u[0] = u0. We again denote it by uF .

Then uF ∈ C([0,∞), L∞) with uF [0] = u0.

Since ||(γ + Aα)−βu||α(s+2β) = ||u||αs ∀ u ∈ Hαs, s ≥ 0, the operator (I + Aα)−β

maps Hαs into Hα(s+2β), that is, it increases regularity by 2αβ. In particular, L∞ ⊂
L2 = H0, (I + Aα)−β maps L∞ into H2αβ. Also ||(I + Aα)−β||L(Hαs,Hα(s+2β)) = 1.

Further, we notice that N increases regularity by 2αβ on regularity of u− f(., u).

For instance, as uF [.] ∈ L∞, by theorem 2.7 N(uF [.]) ∈ L∞ and so N(uF [.]) ∈
H2αβ with

||N(uF [.])||2αβ = ||uF [.]− f(., uF [.]))||0 ≤ (||uF [.]||∞ + ||f(., uF [.])||∞)

Regularity and contracting C0-semigroup properties of etL (Theorems 2.5, 2.6)

imply that ||etL||L(H2αβ) ≤ 1 ∀ t ≥ 0. Applying this inequality and previous inequality,
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for each fixed t ≥ 0 we get

||uF [t]||2αβ ≤ ||etLu0||2αβ + t(||uF ||∞,t + max
0≤s≤t

||f(., uF [t])||∞) <∞

This inequality together with (2.12) follows that uF ∈ C([0,∞), H2αβ) and hence

uF ∈ C([0,∞), H2αβ ∩ L∞).

Till now we have only proved the unique existence of mild solution and improved

its regularity. To complete the proof of theorem 2.1, we have to show that the map

t 7→ uF [t] is C1 from (0,∞) into H2αβ. In order to show this, du
dt

= L(uF ) + N(uF )

helps us anticipate what the first derivative of this map should be. So we define

v[t] := L(uF [t]) + N(uF [t]) = LetLu0 +

∫ t

0

Le(t−s)LN(uF [s]) ds+ N(uF [t]) for t > 0

Then 1
h
(uF [t+ h]− uF [t])− v[t]

= {1

h
(ehL − I)− L}etLu0 +

∫ ∞
0

{1

h
(ehL − I)− L}e(t−s)LN(uF [s]) ds

+
1

h

∫ t+h

t

e(t+h−s)LN(uF [s]) ds−N(uF [t])

Since etLu0 ∈ D(L), by definition of infinitesimal generator limh↓0
1
h
(ehL−I)etLu0 =

LetLu0 under H2αβ-convergence. That is, limh↓0 ||{ 1h(ehL − I)− L}etLu0||2αβ = 0

As we have (ehL − I) =
∫ h
0
d(eτL) =

∫ h
0
LeτL dτ and Le(t−s)L = e(t−s)LL, so

||
∫∞
0
{ 1
h
(ehL−I)−L}e(t−s)LN(uF [s])ds||2αβ ≤

∫∞
0
||{ 1

h

∫ h
0
eτL dτ−I}e(t−s)LLN(uF [s])||2αβds.

Since for every u ∈ H2αβ limh↓0
1
h

∫ h
0
eτLu dτ = u under H2αβ-convergence, the inte-

grand on right side of above inequality approaches to 0 as h ↓ 0. Thus limh↓0 ||
∫∞
0
{ 1
h
(ehL−

I)− L}e(t−s)LN(uF [s])ds||2αβ = 0.

Substituting s = t+ τ , we get

1

h

∫ t+h

t

e(t+h−s)LN(uF [s]) ds−N(uF [t]) =
1

h

∫ h

0

e(h−τ)LN(uF [τ + t]) dτ −N(uF [t])

= {1

h

∫ h

0

e(h−τ)LN(uF [t]) dτ −N(uF [t])}+
1

h

∫ h

0

e(h−τ)L{N(uF [τ + t])−N(uF [t])} dτ

Because of the similar reason as in previous paragraph, the first term on the right side

converges to 0 as h ↓ 0 under H2αβ-convergence. Applying ||e(t+h−s)L||2αβ ≤ 1 and

||N(uF [τ + t])−N(uF [t])||2αβ = ||(uF [τ + t]−f(., uF [τ + t]))− (uF [t]−f(., uF [t]))||0 ≤
[1 +L(f)]||uF [τ + t]− uF [t]||∞ with continuity of τ 7→ uF [τ ] from [0,∞) into L∞, the

second term on the right side also converges to 0 as h ↓ 0 under H2αβ-convergence.

Hence limh↓0 || 1h
∫ t+h
t

e(t+h−s)LN(uF [s]) ds−N(uF [t])||2αβ = 0.

Thus limh↓0 || 1h(uF [t+ h]− uF [t])− v[t]||2αβ = 0. Therefore, duF [t]
dt

= v[t] ∈ H2αβ.

It is not hard to show that v[t] ∈ L∞. Since t 7→ v[t] is continuous, it is C1.

Finally, we have uF [.] ∈ C1((0,∞), H2αβ ∩ L∞). Hence the proof of theorem 2.1

is complete.
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