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ABSTRACT. The total product rate variation problem is a sequencing problem in mixed-model

just-in-time production systems. In particular, this problem consists in the minimization of a func-

tion of the total deviations between the actual and the ideal cumulative productions of a variety

of models of a common base product keeping the rate of usage of models as constant as possible.

Several pseudo-polynomial exact algorithms and heuristics have been derived for this problem. In

this paper, we propose an upper and a lower bound on the largest and smallest function values of

a feasible solution of the problem when the m-th power of the total deviations between the actual

and the ideal cumulative productions has to be minimized.
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1. Introduction

The total product rate variation problem (abbreviated as TPRVP) is a sequencing

problem in mixed-model just-in-time production systems. Mixed-model just-in-time

production systems with negligible change-over costs between the models have been

used in order to respond to the customer demands for a variety of models of a common

base product without holding large inventories or incurring large shortages. TPRVP

is the problem of minimizing a function of the total deviations between the actual

cumulative productions from the ideal one keeping the rate of usage of models as

constant as possible, see Kubiak [6]. TPRVP has been widely investigated in the

literature since it has a model with a strong mathematical base and wide real-world

applications, see Dhamala and Khadka [2]. The existing exact solution approaches

are pseudo-polynomial.
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In this paper, we propose an upper and a lower bound for TPRVP. We also derive

an explicit value of a bound such that no instance has even a feasible solution for

TPRVP with an objective function value smaller than this bound.

The remainder of the paper is as follows. In Section 2, we present a non-linear

integer programming formulation of TPRVP. In Section 3, we derive an upper and

a lower bound on the largest and smallest function values of a feasible solution of

TPRVP, which is the major contribution of this paper. In Section 4, we derive the

minimal possible function value of the m-th power of the total deviations between

the actual and the ideal cumulative productions in the sense that for a smaller value,

no instance has even a feasible solution for TPRVP. The last section concludes the

paper.

2. Non-linear Integer Programming Formulation

Let D be the total demand of n different models with di copies of model i, i =

1, 2, . . . , n, where n ≥ 2 and D =
n∑

i=1

di. The time horizon is partitioned into D equal

time units under the assumption that each copy of a model i, i = 1, . . . , n, has the

same processing time. A copy of a model is produced in a time unit k, which means

that the copy of the model is produced during the time period from k − 1 to k, k =

2, 3, . . . , D. Let ri = di
D

be the demand rate for model i, i = 1, 2, . . . , n. Moreover,

let xik and kri be the actual and the ideal cumulative productions, respectively, of

model i, i = 1, 2, . . . , n, produced during the time units 1 through k. An inventory

holds if xik − kri > 0, and a shortage incurs if kri − xik > 0. We assign the same

cost for both inventory and shortage. Miltenburg [8] and Kubiak and Sethi [7] gave

an integer programming formulation for TPRVP as follows with m being a positive

integer:

minimize

[
Fm =

D∑
k=1

n∑
i=1

|xik − kri|m
]

subject to

n∑
i=1

xik = k, k = 1, 2, . . . , D

xi(k−1) ≤ xik, i = 1, 2, . . . , n; k = 2, 3, . . . , D

xiD = di, xi0 = 0, i = 1, 2, . . . , n

xik ≥ 0, integer, i = 1, 2, . . . , n; k = 1, 2, . . . , D .
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3. Bounds

3.1. Upper Bound. We set a horizontal line with a suitable value B > 0 intersecting

the level curve for each copy (i, j), i = 1, 2, . . . , n; j = 1, 2, . . . , di, of the objective

function of TPRVP on the planning horizon [0, D]. The horizontal line with the

value B is called a bound for TPRVP. The intersecting points of the level curve of

the objective function for each copy and the bound are important to determine the

sequencing time units for all copies of all models. One seeks a smaller value of B so

that the total deviations between actual and the ideal cumulative productions can be

reduced with the sequencing time units not exceeding the planning horizon.

It is important to establish an upper and a lower bound so that one can minimize

the total deviations in a reasonable time. A sequence corresponding to the minimum

bound Bmin, which satisfies the inequality

D∑
k=1

n∑
i=1

|xik − kri|m ≤ Bmin, i = 1, 2, . . . , n; k = 1, 2, . . . , D ,

is optimal for TPRVP with the objective function Fm.

Let

X = {x = (xij)|i = 1, 2, . . . , n; j = 1, 2, . . . , di}

be the set of all feasible solutions for TPRVP.

A necessary and sufficient condition for the existence of a feasible sequence for

the bottleneck product rate variation problem (abbreviated as BPRVP), which is the

problem of minimizing a function of the maximum deviation between the actual cu-

mulative productions and the ideal cumulative ones, with the objective of minimizing

max
i,k
|xik − kri| , i = 1, 2, . . . , n; k = 1, 2, . . . , D,

is that a bound with a value B1 must satisfy the two inequalities

n∑
i=1

(bk2ri +B1c − d(k1 − 1)ri −B1e) ≥ k2 − k1 + 1(3.1)

and

n∑
i=1

(dk2ri −B1e − b(k1 − 1)ri +B1c) ≤ k2 − k1 + 1(3.2)

where k1, k2 ∈ {1, . . . , D}, k1 ≤ k2. The interval [k1, k2] overlaps with the time

interval within which copy (i, j) can be sequenced, see Brauner and Crama [1]. The

above considerations can be applied to the more general case of minimizing the m-th

power of the maximum deviation between the actual cumulative productions and the

ideal cumulative ones to derive an upper bound for TPRVP.
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Theorem 3.1. Let

UBm = nD

(
1− 1

D

)m

.

Then UBm is an upper bound on the largest value of the objective function Fm of a

feasible solution for TPRVP.

Proof: If UBm is an upper bound on the largest value of the objective function

Fm of a feasible solution for TPRVP, then this bound UBm satisfies the inequality

D∑
k=1

n∑
i=1

|xik − kri|m ≤ UBm(3.3)

for any feasible solution x ∈ X .

Let Bm be an upper bound on the largest function value of a feasible solution for

BPRVP with the objective function

max
i,k
|xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D.

Such a bound Bm has to satisfy the inequality

max
i,k
|xik − kri|m ≤ Bm, i = 1, 2, . . . , n; k = 1, 2, . . . , D .

Consider now

Bm =

(
1− 1

D

)m

.

Then we can write ⌊
k2ri + m

√
Bm

⌋
=

⌊
k2ri + 1− 1

D

⌋
.

If k2ri is an integer, we have⌊
k2ri + 1− 1

D

⌋
= k2ri, i = 1, 2, . . . , n,

and if k2ri is not an integer, we have

k2ri = bk2ric+ εi, i = 1, 2, . . . , n,

where εi is the fractional part of k2ri.

Since the inequalities
1

D
≤ εi ≤ 1− 1

D
,

hold, we get ⌊
k2ri + 1− 1

D

⌋
=

⌊
bk2ric+ εi + 1− 1

D

⌋
≥ bk2ric+ 1

> k2ri, i = 1, 2, . . . , n .

Therefore, we get ⌊
k2ri + m

√
Bm

⌋
≥ k2ri, i = 1, 2, . . . , n .(3.4)
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Thus, we can write ⌈
k2ri − m

√
Bm

⌉
=

⌈
k2ri − 1 +

1

D

⌉
.

If k2ri is an integer, we have⌈
k2ri − 1 +

1

D

⌉
= k2ri, i = 1, 2, . . . , n,

and if k2ri is not an integer, we have⌈
k2ri − 1 +

1

D

⌉
=

⌈
bk2ric+ εi − 1 +

1

D

⌉
≤ dbk2rice

= bk2ric

< k2ri, i = 1, 2, . . . , n .

Therefore, we obtain the inequality⌈
k2ri − m

√
Bm

⌉
≤ k2ri, i = 1, 2, . . . , n .(3.5)

Using the inequalities (3.4) and (3.5), a bound Bm satisfies the following inequalities:

n∑
i=1

(⌊
k2ri + m

√
Bm

⌋
−
⌈
(k1 − 1)ri − m

√
Bm

⌉)
≥

n∑
i=1

k2ri −
n∑

i=1

(k1 − 1)ri

≥ k2 − k1 + 1 .(3.6)

and
n∑

i=1

(⌈
k2ri − m

√
Bm

⌉
−
⌊
(k1 − 1)ri + m

√
Bm

⌋)
≤

n∑
i=1

k2ri −
n∑

i=1

(k1 − 1)ri

≤ k2 − k1 + 1 .(3.7)

Similarly to the inequalities (3.1) and (3.2), the bound Bm satisfies the necessary

and sufficient condition for the existence of a feasible sequence of any instance for

BPRVP with the objective function

max
i,k
|xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D .

Hence, the two inequalities (3.6) and (3.7) show that

Bm =

(
1− 1

D

)m

is an upper bound on the largest function value of a feasible solution for BPRVP with

the objective function

max
i,k
|xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D .
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Now, we obtain

D∑
k=1

n∑
i=1

|xik − kri|m =
n∑

i=1

|xi1 − 1ri|m + · · ·+
n∑

i=1

|xiD −Dri|m

= |x11 − 1r1|m + · · ·+ |xn1 − 1rn|m + . . .

+ |x1D −Dr1|m + · · ·+ |xnD −Drn|m

≤ nD ·max
i,k
|xik − kri|m

≤ nD

(
1− 1

D

)m

.

Hence, an upper bound UBm on the largest value of the objective function Fm

of a feasible solution for TPRVP is given by

UBm = nD

(
1− 1

D

)m

.

3.2. Lower Bound. The importance of a lower bound LBm on the optimal value of

function Fm for TPRVP results from the fact that, if an instance with the demands

(d1, d2, . . . , dn) has a feasible sequence with an objective function value equal to the

lower bound, this sequence is optimal. It is note-worthy that a lower bound

B∗1 = 1− rmax(3.8)

on the absolute deviation objective function |xik − kri| , i = 1, 2, . . . , n; k = 1, 2, . . . , D,

for BPRVP has been established by Steiner and Yeomans [9], and it has been gener-

alized to

B∗m = (1− rmax)m,(3.9)

for this problem with the objective function |xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D,

(see [3, 4]).

Theorem 3.2. Let

LBm = nD (1− rmax)m ,

where rmax = max {ri|i = 1, 2, . . . , n} . Then LBm is a lower bound on the optimal

value of the objective function Fm for TPRVP.

Proof: Let LBm be a lower bound on the optimal value of function Fm for

TPRVP. Such a bound LBm has to satisfy the inequality

LBm ≤
D∑

k=1

n∑
i=1

|xik − kri|m(3.10)

for any feasible solution x ∈ X .
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Now, we obtain

D∑
k=1

n∑
i=1

|xik − kri|m =
n∑

i=1

|xi1 − 1ri|m + · · ·+
n∑

i=1

|xiD −Dri|m

= |x11 − 1r1|m + · · ·+ |xn1 − 1rn|m + . . .

+ |x1D −Dr1|m + · · ·+ |xnD −Drn|m

≥ nD ·min
i,k
|xik − kri|m .

Using the lower bound (3.9) for BPRVP with the objective function

|xik − kri|m , i = 1, 2, . . . , n; k = 1, 2, . . . , D,

a lower bound LBm on the optimal value of function Fm for TPRVP can be established

as

LBm = nD (1− rmax)m .

4. Further Estimations

In this section, we show that the minimal possible value of the objective function

Fm is nD
3m

in the sense that for a smaller value, no instance has even a feasible solution

for TPRVP. For this derivation, the following lemma is useful.

Lemma 4.1. Let

UBm = nD

(
1− 1

D

)m

be an upper bound on the largest function value Fm of a feasible solution for TPRVP.

Then for i = 1, 2, . . . , n; and j = 1, 2, . . . , di, the inequality

j − m

√
UBm

nD

ri
≤
j − 1 + m

√
UBm

nD

ri
+ 1

holds.

Proof: Let UBm be an upper bound on the largest objective function value Fm

of a feasible solution for TPRVP. Without loss of generality, we can consider

UBm = nD

(
1− 1

D

)m

.

One can write

j − 1 + m

√
UBm

nD

ri
+ 1−

j − m

√
UBm

nD

ri
=

j − 1 + 1− 1
D

ri
+ 1−

j − 1 + 1
D

ri

=
1 + ri − 2

D

ri

=
D + di − 2

di
≥ 0
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for all D ≥ 2.

Hence, the inequality

j − m

√
UBm

nD

ri
≤
j − 1 + m

√
UBm

nD

ri
+ 1

holds for any feasible instance.

Theorem 4.2. Let a bound

B <
nD

3m

be given. Then there is no instance that has a feasible sequence for TPRVP with the

objective function Fm.

Proof: The lower bound

LBm = nD(1− rmax)m

implies the inequality

(4.1) 1− rmax ≤
m

√
B

nD

for any upper bound B on the largest objective function value Fm of a feasible solution

for TPRVP.

Using Lemma 4.1, we have

j − m

√
B
nD

ri
≤
j − 1 + m

√
B
nD

ri
+ 1

which can be written as

1− ri ≤ 2
m

√
B

nD
for i = 1, . . . , n.

Thus, we have

1− rmin ≤ 2
m

√
B

nD
which yields

n∑
i=1,rí 6=rmin

rí ≤ 2
m

√
B

nD

and

rmax ≤
n∑

i=1,rí 6=rmin

rí ≤ 2
m

√
B

nD
,

i.e., we have

1− rmax ≥ 1− 2
m

√
B

nD
.

Then, using inequality (4.1), we obtain

1− 2
m

√
B

nD
≤ m

√
B

nD
.
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Thus,

1

3
≤ m

√
B

nD
.

5. Concluding Remarks

The total product rate variation problem is a sequencing problem in mixed-model

just-in-time production systems. For this problem, several pseudo-polynomial exact

solution algorithms and heuristics have been developed. An upper and a lower bound

on the largest and smallest function values of a feasible solution of TPRVP are

nD

(
1− 1

D

)m

and nD(1− rmax)m,

respectively. These bounds can be used to develop an O(D logD) exact solution

procedure recently given by Khadka and Werner [5] which improves the known exact

algorithm by Kubiak from [6] with a complexity of O(D3). Moreover, it has been

shown in this paper that the minimum value of the objective function Fm is nD
3m

in the

sense that for a smaller value, no instance has even a feasible solution for TPRVP.
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