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ABSTRACT. Accordions, like their better-known mathematical cousins — solitons — are sim-

ilarity solutions of integrable partial differential equations. In the case of solitons, the similarity

variable is x− vt, where x denotes position, t denotes time, and v denotes a velocity. In the case of

accordions, the similarity variable is xtα. It can be shown that the solutions to the transient stimu-

lated Raman scattering equations will always tend toward one of a two-parameter set of accordion

solutions for any initial condition. The early history of these equations and related experiments is

reviewed. The recent observation of accordions by the Russell group at the Max-Planck Institute for

Light in Erlangen, Germany has rewoken interest in this topic and has suggested new mathematical

work. Related work at Princeton that is aimed at applications to high-energy laser pulse generation

will also be described.
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1. INTRODUCTION

Self-similarity is ubiquitous in nature [1], either exactly or approximately. Its

presence allows us to understand complex phenomena that otherwise might be com-

pletely resistant to mathematical study.

The natural world in which we live contains three space and one time dimension.

Sometimes, it is possible to analyze what is happening in these 3+1 dimensions using

linear equations, but it is often not possible, since the behaviors that we observe

are intrinsically nonlinear. Fluid systems that are described by the Navier-Stokes

equation or electromagnetic systems that are described by Maxwell’s equations with a

nonlinear permittivity are two of the more important examples. It is often possible to

simplify 3+1-dimensional systems to systems with one space and one time dimension

by taking advantage of symmetries that exist in a system. Wave propagation in a

single-mode optical fiber, or for that matter, any waveguide with a nonlinear dielectric

response in which only a single transverse mode can propagate is one case in which

this reduction occurs.
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As Ya. B. Zeldovich eloquently states in the preface to [1]:

“Progress in numerical calculation brings great good . . . The problem of formulat-

ing rules and extending ideas from vast amounts of computational data or experimen-

tal results remains a matter for our brains, our minds.”

However, even 1+1-dimensional systems can be frustratingly complex. Super-

continuum generation in optical fibers, in which many solitons emerge from a single

pulse and in which the final outcome can depend sensitively on the initial condi-

tions is one example of this complexity [2]. Chaotic conditions are often observed in

1+1-dimensional systems. So, further reduction of the complexity is often needed.

Self-similarity, when present, allows us to reduce partial differential equations to or-

dinary differential equations.

As Ya. B. Zeldovich notes, there are two basic types of self-similarity that are

observed in nature. In the first kind, we find f(x, t) → f(x − vt), where v is a

constant. In this case, we have the well-known soliton self-similarity. In the second

kind, we find f(x, t)→ (t/t0)nf(xtm/tm0 ), where m and n are constants. While often

present in nature, this second self-similarity has attracted much less attention from

the mathematical community. With the thought that a catchy name (like “soliton”)

could perhaps enhance the reputation of this somewhat neglected cousin of the soliton,

I have proposed to call them “accordions,” which mimics their observed behavior.

When m > 0, the structure is observed to shrink in x as it expands in t; when m < 0,

they both expand together.

However, even when we can find a self-similar solution, how do we know that it is

important — that it will in fact appear in a system? As Ya. B. Zeldovich once again

eloquently states:

“In nonlinear problems, exact special solutions sometimes appear to be useless;

since there is no principle of superposition, one cannot immediately find a solution to

the problem for arbitrary initial conditions.”

Integrability or near-integrability is often the key to resolving this dilemma.

The classic soliton systems like the Korteweg-de Vries equation or the nonlinear

Schrödinger equation have prescribed initial data for all x at t = 0 that tend rapidly

to zero as x→ ±∞. These systems have the property that the final asymptotic state

will always consist of a dispersive continuum and a fixed number of solitons, whose

parameters evolve linearly and thus can easily be determined at any time t from the

initial data. Once they are known, one can determine the data as a function of x

at any time t [3]. The transform that determines the parameters of the continuum

and the solitons is somewhat messy, and the inverse transform is even messier, which

limits their value as a computational technique. Nonetheless, these transforms are of
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great utility. Not only do they allow us to immediately infer the number of solitons

that will exist at large times, but they also imply that chaos cannot exist.

How do we know that a system is integrable? The most accepted evidence of

integrability is to find a Lax pair, which then becomes the basis for constructing

a nonlinear transform that effectively linearizes the original nonlinear equation and

for constructing its inverse transform. Lax pairs are known for a large number of

nonlinear integrable systems.

Integrable systems are special, but nearly integrable systems are ubiquitous.

Hence, integrable systems give us a window that allows us to peer into the inner

workings of the more complex systems that typically appear in nature.

The equations that describe transient stimulated Raman scattering are [4]:

(1.1)
∂AL
∂z

= −ikL
kS
κ2QAS,

∂AS
∂z

= −iκ2Q
∗AL,

∂Q

∂t
+ ΓQ = −iκ1A

∗
SAL,

where AL and AS are respectively the amplitudes of higher and lower amplitude waves

that appear in Raman scattering, kL and kS are the corresponding wavenumbers, Q is

the off-diagonal matrix element of the material excitation, κ1 and κ2 are parameters

that indicate the strength of the nonlinearty, and Γ ≡ 1/T2 is the decay rate for the

material excitation.

These equations play an important role in nonlinear optics, and their study —

both theoretical and experimental — by Bloembergen’s group at Harvard in the

1970s contributed in part to his winning the Nobel prize in Physics. Chu and Scott

[5] showed in 1975 that these equations have a Lax pair when Γ = 0. They then used

the standard formalism that applies when the initial data goes to zero as z → ±∞
to show that — as expected — the initial data would decompose into a dispersive

component and a set of solitons as t → ∞. However, no sign of solitons is seen in

either experiments or simulations when pulses are short compared to T2, which is the

limit in which systems are integrable.

Why?

It is this mystery that I set out to address in the late-1980s when I was col-

laborating with experimentalists at the Naval Research Laboratory that were doing

experiments on transient stimulated Raman scattering (TSRS) [6]. In these exper-

iments, the pulse durations were 40 ps, while T2 was 633 ps; so, the experiments

definitely operated in a regime in which integrable behavior was expected. Moreover,

simulations in which we set Γ = 0 showed almost exactly the same behavior as sim-

ulations in which we set T2 = 633 ps. As the pulse propagates, rapid oscillations in

both AL and Q are observed, and the amplitudes of both slowly decay [7].

The source of the difficulty was quickly traced to the initial-boundary conditions.

In the original work of Chu and Scott [5], it was assumed that at t = 0, all the
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dependent variables, AL, As, and Q tend to zero as z → ±∞. It was then possible

to solve all variables in the half-plane t > 0 using the standard methods of scattering

transform theory [3]. However, the physically relevant boundary conditions are to set

Q = 0 for all z ≥ 0 at t = 0, to set initial data for AL and AS for all t ≥ 0 at z = 0

and then to find all the variables in the quarter plane (z ≥ 0, t ≥ 0).

In the end, I was able to completely resolve the problem with a group of dis-

tinguished collaborators. We were able to show that a unique solution exists to the

Cauchy problem when properly framed. We were able to find all the similarity solu-

tions to these equations and to show that only solutions with the similarity variable

zt are consistent with the initial-boundary condition. Finally, we were able to show

that with initial-boundary data in an appropriate function space, the solution will

ultimately tend toward PIII, a Painlevé-3 function, and to relate the parameters of

the solution to the initial-boundary conditions in a simple way. We will summarize

this work in Section 2 of this contribution.

This problem has real mathematical significance, since it falls into the class of

1+1-dimensional problems in which the initial-boundary conditions are not imposed

on a line, but instead on a more complicated boundary in a plane. This set of

problems has been a topic of much recent work by Fokas and his collaborators, and

this problem presented a non-linear — and hence non-trivial — application of this

issue and his approaches.

At this time, there do not appear to be any engineering applications of this work.

However, there may be applications of the related problem in which the pump wave

(AL) and the Stokes wave (AS) are counter-propagating. It may be possible to use

the Raman effect in either gases or plasmas to generate a highly intense pulse. In this

case, the appropriate initial-boundary conditions must be specified on a strip in the

z-t plane, rather than on the edges of a quarter plane. In Section 3, we review the

experimental work to date, which began with the verification of the original theory

on the quarter plane. The mathematical problems remain open.

2. SOLUTION OF THE THE QUARTER PLANE PROBLEM

An important first step in resolving this problem was to recognize that soliton

solutions are necessary transient. This result was proved by Menyuk [8] in 1989.

Perhaps even more important from a fundamental standpoint was to show that the

Cauchy problem is well-posed, i.e. a unique solution problem exists with properly

chosen data in the quarter plane (t ≥ 0, z ≥ 0). This demonstration was published

by Menyuk and Seidman in 1992 [9]. It should be pointed out that these two results

hold for any Γ and thus apply to non-integrable as well as integrable systems.

To make progress on the integrable problem, it is useful simplify Eq. 1.1. Af-

ter setting Γ = 0, the first step is to remove the constant parameters by setting:
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A1 = (kS/kL)1/2AL, A2 = AS, X = i(kL/kS)1/2Q, χ = κ2z, and τ = κ1t. This

transformation produces the equations:

(2.1)
∂A1

∂χ
= −A2X,

∂A2

∂χ
= A1X

∗,
∂X

∂τ
= A1A

∗
2.

The next step is to normalize the dependent and independent variables. We first note

that K2(χ, τ) = K2(τ) ≡ |A1(χ, τ)|2 + |A2(χ, τ)|2 is independent of χ. Physically,

this result corresponds to conservation of the photon number. As long as A1 and A2

are both in L2, we may define a total time, T∞ =
∫∞
−∞K

2(τ) dτ . Using T∞, we may

define the normalized independent variables:

(2.2) τ̄ =
1

T∞

∫ τ

−∞
K2(τ ′) dτ ′, χ̄ = T∞χ,

and the normalized dependent variables

(2.3) Ā1 =
A1

K(τ)
, Ā2 =

A2

K(τ)
, X̄ =

X

T∞
.

With this set of transformations, the equations governing the barred quantities are

the same as Eq. 2.1. However, the new set of variables satisfy K2(τ̄) = 1 in the range

[0,1] and K2(τ̄) = 0 elsewhere. As a consequence, with no loss of generality, we may

restrict our attention to problems that satisfy this condition.

Further simplification is possible. By making appropriate transformations, it is

possible to choose A1(χ = 0, τ) and A2(χ = 0, τ = 0) (when it exists) to be real.

Given Eq. 2.1, the next step is to determine the similarity solutions. This task

was carried out by Levi et al. [10], who demonstrated using Lie Algebraic techniques

that this equation has three types of similarity solutions: phase waves, solitons (or

more generally cnoidal wave functions), and accordions (PIII solutions). For the phase

waves, the similarity variable is χ. For the cnoidal waves, the similarity variable is

χ− τ/α2, where α is a constant parameter. Finally, for the accordions, the similarity

variable is ξ = χτ . Making the variable transformation,

(2.4)
B1(ξ) = exp

(
1

2
ia ln τ

)
A1(χ, τ), B2(ξ) = exp

(
−1

2
ia ln τ

)
A2(χ, τ),

Y (ξ) = exp(−ia ln τ)X(χ, τ),

and also defining B1 = cos(βs/2), B2 = sin(βs/2), we find that βs obeys the equation

(2.5)
d2βs
dξ2

+
1

ξ

dβs
dξ
− 1

ξ
sin(βs).

This equation is a standard form for the Painlevé-3 function, PIII, and it was first

discovered in the context of transient stimulated Raman scattering by Elgin and

O’Hare [11].

In order to make further analytical progress with this problem, it was necessary to

find a way to make use of the Lax pair. Here, earlier work by Kaup [12] proved to be
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immensely valuable. Not only were the initial-boundary conditions in the formulation

of Chu and Scott [5] not appropriate for the physical problem of interest here, but the

usual application of the Lax pair would require all fields to tend to zero as τ → ±∞.

That is not true for the field X. Kaup resolved both these issues by first reformulating

the Lax pair and then by demonstrating that we would obtain the correct solution

in the time range τ = [0, 1] by simply treating X as if it equaled zero at τ = 1. In

this case, however, the evolution of the scattering data becomes significantly more

complicated than in the usual boundary-value problems. Nonetheless, Menyuk [13]

was able to obtain a remarkably simple result. He proved that the solution tends

asymptotically to a PIII solution whose parameters are completely governed by the

behavior of the initial data at τ = 0. Writing, β0 = β(χ = 0, τ = 0) and writing the

similarity variable ξ as ξ = (χ− χoff)τ , Menyuk showed that the asymptotic solution

corresponds to

(2.6) βs = β0, χoff =
1

sin β0

dβ

dτ

∣∣∣∣
χ=0,τ=0

.

Later, Fokas and Menyuk [14] revisited this problem using a powerful, general

method that Fokas had developed with his collaborators. The method of solution

was not only more elegant than the original approach that was used by Menyuk, but,

additionally, Fokas and Menyuk extended the original solution, so that it could deal

with logarithmically singular data at τ = 0. This extension is physically important,

because it corresponds to the situation in which there is a frequency mismatch between

the material excitation and the frequency difference between the pump and Stokes

waves. As noted in the Introduction, this problem has mathematical importance

because it is an example of a solvable nonlinear problem with non-trivial initial-

boundary conditions.

3. RECENT WORK

The original experiments of Duncan et al. [6] were no longer operating at the

time that the mathematical questions were resolved, and there were no tests of the

theoretical predictions until recently.

The key experimental advance that made the study of transient stimulated Ra-

man scattering possible over long distances was the invention of photonic crystal fibers

with air holes that run along the entire length of the fiber and the development of

methods for introducing gases into the fibers [15]. By carefully designing the fibers,

it is possible to avoid second-Stokes generation — a competing physical effect that

invalidates Eq. 1.1 [16]. The development of these fibers not only made it possible to

observe transient stimulated Raman scattering with co-propagating waves — which

is the case covered by the mathematical treatment in Section 2 [17], but they also
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made it possible to study counter-propagating pump and Stokes waves, which makes

it possible to amplify the Stokes wave to a high intensity [18].

This work may potentially have applications to the generation of highly intense

light pulses. To date, the highest-energy pulses are generated in solid-state lasers,

but, at some intensity, the nonlinear crystal that supplies the necessary saturable

absorption is damaged. To address this issue, Malkin et al. [19] proposed to use

backward-propagation stimulated Raman scattering in plasmas. A plasma cannot be

damaged by high-intensity light. This proposal has been studied experimentally by

Ren et al. [20, 21]. A difficulty with this experimental approach is that it is hard to

hold the plasma in place sufficiently long with sufficiently high density to create a

high-intensity output.

A potential solution to this problem is to use photonic crystal fibers. The fiber

both guides the light and holds the gas in place. The total pulse energy that can

be achieved in this way is small, but it may be possible to achieve very high peak

intensities. It may be possible to use gases for this purpose, but, additionally, it has

recently become possible to create plasmas inside photonic crystal fibers [22].

These experimental results correspond to initial-boundary conditions in which

the pump wave AL would be defined along the half-line (z = 0, t ≥ 0), the Stokes

wave AS would be defined along the half-line (z = Z, t ≥ 0), and the material excita-

tion Q would be defined along the line segment (0 ≤ z ≤ Z, t = 0), where the pump

wave is injected into the optical fiber at z = 0, and the Stokes wave is injected into

the fiber at z = Z. To my knowledge, a careful mathematical study of the equations

that govern the behavior in either gases or plasmas with this set of initial-boundary

conditions has never been undertaken. Given the current interest and potential ap-

plications, as well as the mathematical interest in studying nonlinear systems with

non-trivial initial-boundary conditions, this class of mathematical systems certainly

merits careful study.
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