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ABSTRACT: Let C(φ) denote the set of all univalent functions in the unit disk D which are

convex in the direction ei φ. A function g analytic in the unit disk D is said to be in the class

DCP (Directional Convexity Preserving) if it preserves the class C(φ) under the Hadamard product,

i.e. g belongs to the class DCP if f ∗ g ∈ C(φ) whenever f ∈ C(φ). It has been proved in the

literature that some well known and most applicable functions of a complex variable like exponential

function erz for 0 < r ≤ 1 belongs to the class DCP . In this paper we further enlarge this

class by establishing a criterion for closed convex hull of the de la Vallée Poussin kernels Vλ(z) =

λz
λ+12

F1(1, 1− λ; 2 + λ;−z), z ∈ D to be in the class DCP .

AMS (MOS) Subject Classification. 30C45.

1. Introduction and Characterization of the class DCP

Definition 1.1. A domain Ω ⊂ C is said to be a starlike domain with respect to a

point z0 ∈ Ω if the line segment joining z0 to every other points z ∈ Ω lies entirely in

Ω. Goemetrically the requirement is that every point of Ω be visible from z0.

Definition 1.2. A domain Ω ⊂ C is said to be a convex domain if it is starlike

with respect to each of its point. In other words the domain Ω is convex if the line

segments joining any two of its points lie entirely in Ω.

Definition 1.3. A domain Ω ⊂ C is said to be convex in the direction eiφ, φ ∈ R, if

and only if for every a ∈ C the set

Ω ∩
{
a+ teiφ : t ∈ R

}
is either connected or empty.
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Definition 1.4. Let A denote the set of all analytic functions in the unit disk D =

{z : |z| < 1}. Then we define some standars subclasses of A as follows:

S = {f ∈ A : f is univalent and f(0) = 0, f ′(0) = 1}

C = {f ∈ S : f(D) is convex}

S∗ = {f ∈ S : f(D) is starlike with respect to the origin}

K(φ) =
{
f ∈ S : f(D) is convex in the direction eiφ, φ ∈ R

}
Remark 1.5. It is well known that if f ∈ C , then f maps each circle |z| = r < 1

on to a closed curve Γ which bounds a convex domain. In other words if f ∈ C, then

g(z) = f(r z) ∈ C for 0 < r < 1. Similar result holds also for the class S∗. That is

if f ∈ S∗, then f maps each circle |z| = r < 1 on to a closed curve Γ which bounds

a starlike(with respect to the origin) domain, i.e. g(z) = f(r z) is also starlike for

0 < r < 1. But unlike the classes C and S∗, the class K(φ) does not entertain this

property. In other words f ∈ K(φ) does not necessarily imply f(r z) ∈ K(φ) for

0 < r < 1.

Remark 1.6. (Goodman - Saff Conjecture) In [3] and [5] it has been proved

that for r0 :=
√

2− 1 < r < 1 generally f ∈ K(φ) does not imply f(r z) ∈ K(φ). But

Goodman and Saff conjectured that such an implication may hold for 0 < r ≤ r0. In

1987 J. Brown [2] proved that

f ∈ K(φ)⇒ f(r z) ∈ K(ψ), ψ ∈ I(f),

where I(f) ⊂ [0, 2π] is a set of positive measure. But unfortunately it was not shown

that φ ∈ I(f) and thus the Goodman - Saff conjecture was still open at that time.

In order to solve the Goodman-Saff conjecture Ruscheweyh and Salinas [9] introduced

the class of functions which preserve the directional convexity under the Hadamard

product.

Definition 1.7. Let f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n be two functions in A.

Then the Hadamard product of f(z) and g(z), denoted by (f ∗ g)(z), is defined by

(1.1) (f ∗ g)(z) :=
∞∑
n=0

anbnz
n

Definition 1.8. A function g ∈ A is called a Direction-Convexity-Preserving (g ∈
DCP ) if and only if for every φ ∈ R and for every f ∈ K(φ), the function g ∗ f is

convex in the direction ei φ.

Remark 1.9. Beside the members of K(φ), we also use the term dirction convex or

convex in the direction ei φ also for not normalized functions of the class A.
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Remark 1.10. Another remark on the class K(φ) is that unlike some other subclasses

of S the class K(φ) is not rotational invarient. That is f ∈ K(φ) and α 6= 0, π(mod 2π)

do not always imply that eiαf(e−i αz) ∈ K(φ). As a result f ∈ DCP does not in

general imply that the function ei αg(z) is also in DCP .

In [9] one can finds a complete description of the members of DCP , namely

(1.2) g ∈ DCP ⇐⇒ g(z) + i t z g′(z) ∈ K(
π

2
) for all t ∈ R.

Further it is known that DCP functions are convex univalent. The following

criterion for membership in DCP is a slight variant of [9, Theorem 4] (compare [11])

Lemma 1.11. Let g be analytic in D, convex univalent and let u(t) := Re (g(e it)),

t ∈ R. Then g ∈ DCP if and only if

(1.3) σu := (u′′(t))
2 − u′(t)u′′′(t) ≥ 0 , t ∈ R .

Remark 1.12. The class DCP is not an isolated one but has a bearing on the

geometric function theory and has been used to prove various results in this field of

mathematics, for instance the preservation of convex harmonic functions in D, and

of Jordan curves in the plane with convex interior domain. It has been proved in the

literature that some well known and most applicable functions of a complex variable

like exponential function erz for 0 < r ≤ 1 belongs to the class DCP . We refer to [7],

[9], [10] for more details.

2. DCP property of de la VallÉe Poussin Kernels

In this section we further enlarge the class DCP by establishing a criterion for

closed convex hull of the de la Vallée Poussin kernels Vλ(z) = λz
λ+12

F1(1, 1 − λ; 2 +

λ;−z), z ∈ D to be in the class DCP . The classical definition of the de la Vallée

Poussin kernel of order n ∈ N is

ωn(t) :=
2n(n!)2

(2n)!
(1 + cos(t))n(2.1)

=
1(

2n

n

) n∑
k=−n

(
2n

n+ k

)
eikt.

But here we are interested in the analytic version of the de la Vallée Poussin kernel

Vn(z) =
1(

2n

n

) n∑
k=1

(
2n

n+ k

)
zk, z ∈ C.(2.2)
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Note that

2Re Vn(eit) = ωn(t)− 1, n ∈ N.(2.3)

Ruscheweyh and Suffridge [12] extended the range of the parameter n ∈ N of the de

la Vallée Poussin kernel to include all positive real numbers λ. We collect some of

their results in the following lemma.

Lemma 2.1. (a) For λ > 0, we have

Vλ(z) =
λ z

λ+ 1
2F1(1, 1− λ; 2 + λ;−z), z ∈ D.(2.4)

Furthermore, these functions extend continuously onto D, and we have

wλ(t) = Re Vλ(e
it)(2.5)

= −1

2
+ 2λ−1

(Γ(λ+ 1))2

Γ (2λ+ 1)
(1 + cos(t))λ, t ∈ R.

(b) For λ > 0, Vλ(z) is analytic and convex univalent in D.

(c) For λ ≥ 1
2
, wλ(t) is strictly periodically monotone and three times continuously

differentiable. Moreover,

(2.6) w′′λ(t)w
′′
λ(t)− w′′′λ (t)w′λ(t) ≥ 0, t ∈ R.

(d) Vλ(z) is in DCP for λ ≥ 1
2
.

In this section, we give a criterion for closed convex hulls of the de la Vallée

Poussin kernels Vλ(z) to be in DCP . But first we shall prove a result involving ωλ(t),

which we know from Lemma 2.1 to be three times continuously differentiable for

λ ≥ 1
2
.

Lemma 2.2. For λk, λj ≥ 1
2
, set

wj k(t) = w′′λk(t)w′′λj(t)−
1

2
(w′′′λk(t)w′λj(t) + w′λk(t)w′′′λj(t)), t ∈ R.(2.7)

Then the following hold:

(a) Suppose λk = λj ≥ 1
2
. Then

(2.8) wj k(t) ≥ 0, t ∈ R.

(b) Suppose λk ≥ λj ≥ 1
2
. Then (2.8) holds if and only if

(2.9) λj ≤ λk ≤ λj +
1

4

(
1 +

√
16λj − 7

)
.

Proof: Part (a) is a particular case of part(b), and it follows directly from part(c)

of Lemma 2.1 if we take λ = λk = λj in (2.6). To prove part (b), we first note that

if we set A = λk − λj, then (2.9) holds if and only if A lies in the closed interval

(2.10)

[
0,

1

4

(
1 +

√
16λj − 7

)]
.
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Hence, it is enough to prove that (2.8) holds if and only if A lies in the above closed

interval. Now after simplification (using Mathematica), we get

wj k(t) = −K{3λ2j + 3λ2k − 6λj λk − 2λJ − 2λk

+2 (−2λ2j − 2λ2k + 4λjλk + λj + λk − 2) cos(t)

+(λj − λk)2 cos(2 t)},

where

K =
1

16

2λk+λj−2 Γ (λk + 1)2 Γ (λj + 1)2

Γ (2λk + 1) Γ (2λj + 1)(
λk λj (1 + cos(t))λk+λj sec4(

t

2
)

)
.

Clearly K takes non-negative values for t ∈ R. Hence wj k(t) ≥ 0 if and only if

3λ2j + 3λ2k − 6λj λk − 2λj − 2λk

+2 (−2λ2j − 2λ2k + 4λj λk + λj + λk − 2) cos(t)

+(λj − λk)2 cos(2t) ≤ 0.

If we now set λk = A + λj and y = cos(t) in the above inequality, we get, after

simplification,

−A+ A2 − 2λj + (A− 2− 2A2 + 2λj) y + A2 y2 ≤ 0.

The left side is a quadratic expression, say F (y), in y, and y = cos(t) takes every

value between -1 and 1. Let

X = {A ≥ 0 : F (y) ≤ 0 for − 1 ≤ y ≤ 1} .

Then wj k(t) ≥ 0 for all real values of t if and only if A = λk−λj lies in X . Now F (y)

is linear in y if A = 0 and is quadratic in y with positive leading coefficient if A > 0.

Hence

X = {A ≥ 0 : F (1) and F (−1) ≤ 0} .

It is easily seen that F (1) = −2. Hence

X = {A ≥ 0 : F (−1) ≤ 0} .

Now

F (−1) = 4

(
A2 − 1

2
A+

1

2
− λj

)
= 4

(
A− 1

4
(1−

√
16λj − 7)

)
(
A− 1

4
(1 +

√
(16λj − 7))

)
.
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By hypothesis, λj ≥ 1
2
, and A ≥ 0 by our assumption. If A = 0, then F (−1) ≤ 0 and

so 0 ∈ X . If A > 0, then A− 1
4
(1−

√
16λj − 7) > 0 and hence

F (−1) ≤ 0 ⇔ A− 1

4
(1 +

√
16λj − 7) ≤ 0

⇔ A ≤ 1

4
(1 +

√
16λj − 7).

We thus see that X is the closed interval represented by (2.10). Hence wj k(t) ≥ 0 for

all t ∈ R if and only if A lies in the closed interval (2.10), that is if and only if (2.9)

holds. This completes the proof of part (b).

Theorem 2.3. For λ ≥ 1
2
, we have

Fλ := co

{
Vλk(z) : λ ≤ λk ≤ λ+

1

4

(
1 +
√

16λ− 7
)}
⊆ DCP.

Proof: The set Fλ is by definition compact. Hence in order to prove the theorem,

it suffices to show that the finite sums

V =
n∑
k=1

µkVλk ∈ DCP

for µk ≥ 0. Now V is analytic in D and continuous on D, because, by Lemma 2.1,

the functions Vλk have the same properties. Set

u(t) := Re V (eit) =
n∑
k=1

µkReVλk(eit) =
n∑
k=1

µk wλk(t).

Again by Lemma 2.1, wλk(t) is three times continuously differentiable and strictly

periodically monotone, with the function decreasing on (0, π) and increasing on

(π, 2π). Hence u(t) is also three times continuously differentiable. Also, since µk ≥ 0,

u(t) is strictly periodically monotone. Therefore, by Lemma 1.11 V ∈ DCP if and

only if

(2.11) u′′(t)u′′(t)− u′′′(t)u′(t) ≥ 0, t ∈ R.

Now

(u′′(t))2 − u′′′(t)u′(t) =

(
n∑
k=1

µk w
′′
λk

(t)

)2

(2.12)

−

(
n∑
k=1

µk w
′′′
λk

(t)

)(
n∑
k=1

µk w
′
λk

(t)

)

=
n∑

j,k=1

µk µj wj k(t),

where

wj k(t) = w′′λk(t)w′′λj(t)−
1

2
(w′′′λk(t)w′λj(t) + w′λk(t)w′′′λj(t)).(2.13)
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Since λ ≤ λk, λj ≤ λ + 1
4

(
1 +
√

16λ− 7
)
, we have wjk ≥ 0 by Lemma 2.1. Also

µk, µj ≥ 0. Hence (2.11) holds, thus completing the proof of the theorem.

Certainly the requirement

(2.14)
n∑

j, k=1

µkµj wj k(t) ≥ 0 for µj, µk ≥ 0

can hold even if not all wj k(t) ≥ 0 on [0, 2π]. One can expect a sharp bound (neces-

sary condition) for inequality (2.14). Unfortunately, because of the very complicated

nature of the functions wj k, it is not easy to get a sharp condition. However, the

following lemma will help to improve the previous result under certain conditions.

Lemma 2.4. Let εk be numbers in (0, 1) such that
∑n

k=1 εk = 1 and

(2.15)
εk

1− εj
µ2
j wj j(t) + 2µj µk wj k(t) +

εj
1− εk

µ2
k wk k(t) ≥ 0

for j 6= k and t ∈ R. Then
∑n

j, k=1 µj µk wj k ≥ 0.

Proof: By (2.15), we have

0 ≤
n∑

j,k=1

j 6=k

(
εk

1− εj
µ2
j wjj + 2µj µk wjk +

εj
1− εk

µ2
k wkk

)

= 2
n∑

j,k=1

j 6=k

(
εk

1− εj
)µ2

j wjj + 2
n∑

j,k=1

j 6=k

µj µk wjk

= 2
n∑
j=1

 n∑
k=1
j 6=k

εk

( µ2
j

1 − εj

)
wjj + 2

n∑
j,k=1

j 6=k

µj µk wjk

= 2
n∑
j=1

µ2
j wjj + 2

n∑
j,k=1

j 6=k

µj µk wjk

= 2

 n∑
j=1

µ2
j wjj +

n∑
j,k=1

j 6=k

µj µk wjk

 .

Hence
n∑

j,k=1

µj µkwjk =
n∑
j=1

µ2
j wjj +

n∑
j,k=1

j 6=k

µj µk wjj ≥ 0

and the lemma is proved.
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Theorem 2.5. Let λk ≥ 1
2
, k = 1, 2, · · · , n. Suppose there exists numbers εk ∈ (0, 1)

such that
∑n

k=1 εk = 1 and

(2.16) ωj k(t) ≥ −

√
εj εk ωj j(t)ωk k(t)

(1− εj)(1− εj)

for t ∈ R and j 6= k. Then

(2.17)
n∑
k=1

µkVλk(z) ∈ DCP

for all µk ≥ 0.

Proof: As in Theorem 2.3, the function

n∑
k=1

µk Vλk(z) ∈ DCP

if and only if

n∑
j,k=1

µj µk wj k(t) ≥ 0.(2.18)

And by Lemma 2.4, the above inequality holds if

εk
1− εj

µ2
j wj j + 2µj µk wj k +

εj
1− εk

µ2
k wk k ≥ 0(2.19)

for j 6= k. It was shown in Lemma 2.2 that wjj, wkk ≥ 0. Hence if µk = 0 or if

wjk ≥ 0, then (2.19) is obvious. If wjj = 0, then wjk ≥ 0 by (2.16) and (2.19) again

holds. So suppose wjj > 0, µk > 0, and wjk < 0. Then by (2.16),

(2.20) |wj k(t)| ≤

√
εj εk wj j(t)wk k(t)

(1− εj)(1− εk)
.

Also, (2.19) holds if and only if

(2.21)

(
µj
µk

)2

+ 2
(1− εj)wj k
εk wj j

(
µj
µk

)
+
εj (1− εj)wk k
εk (1− εk)wj j

≥ 0.

Let ∆ denote the discriminant of the quadratic equation

X2 + 2
(1− εj)wj k
εk wj j

X +
εj (1− εj)wk k
εk (1− εk)wj j

= 0.

Then
1

4
∆ =

(
(1− εj)wj k
εk wj j

)2

− εj(1− εj)wk k
εk(1− εk)wj j

≤ 0,

by (2.20). This proves (2.21) and with it the theorem.

If we take n = 2 in Theorem 2.5, then 1− ε1 = ε2 and 1− ε2 = ε1 and we obtain the

following corollary.
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Corollary 2.6. Let λj, λk ≥ 1
2
. If

wj k(t) ≥ −
√
wj j(t)wk k(t), t ∈ R,

then

µj Vλj(z) + µk Vλk(z) ∈ DCP

for all µj, µk ≥ 0.
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