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ABSTRACT. This paper presents a template matching thinning process for skeletonization of
a binary edged image and it is viewed as an analogous process of negative selection method in
immunecomputing paradigm. This immunocomputing based skeletonization process is also viewed
as a Markov process in probability theory. The mathematical formulation of this process helps
to study the performance of template matching thinning algorithm for sketelonization in image
processing. The objective of this analysis is to measure the time requirement by the algorithm and
also determine the bound on the number of iterations required for the convergence of the process of
sketelonization.
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1. Introduction

Skeletonization is an important task to perform during low-level segmentation in

image processing/computer vision. The main objective of a skeletonization process

is to reduce the insignificant features by elimination of redundant information. The

process of skeletonization is popularly termed as thinning in image processing. The

objective of this work is to reduce the storage requirement of image data.

Since 1992, Haralick [20] encouraged to the community of image analysis/machine

vision to design a model for the determination of the performance of image analysis

algorithms. This is an awful state of affairs for the engineers whose job is to design

and build image analysis or machine vision systems. Study of performance analysis

of thinning algorithms [7, 20, 21, 22, 26, 27, 28, 34, 35, 36, 41, 50] have started

from last few decades. The experimental analysis of thinning algorithms have been

studied by Chen & Hsu [7] and Heydorn & Weidner [21]. Jang & Chin [27] studied

formally the behavior of thinning algorithms using mathematical morphology. Pal

& Bhattacharyya [36] studied the average behavior of template matching thinning

algorithms using a probabilistic urn model.
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Different kinds of thinning algorithms have been proposed in the literature of

image processing such as sequential, parallel [1, 4, 6, 8, 9, 11, 17, 18, 19, 25, 26, 49,

50] or neural [12, 13, 14, 29, 42, 43] algorithms with one-pass [6, 7, 11, 26, 37, 50]

or multi-pass [8, 18, 24, 25] on binary [13, 16, 17, 46], gray level or colour images

[2, 48]. These thinning algorithms can be classified as template matching and non-

template matching thinning algorithms. The main criteria for any skeletonization

algorithms are (i) connectivity and shape preservation as well as (ii) one-pixel width.

Also thinning algorithm can be designed based on the type of image used such as

binary image, gray level image, colour image, 3D image, range image, etc. In this

paper, only the template matching thinning algorithms are considered for binary

edged image and these are to be studied in immunecomputing paradigm.

This article is organized as follows. Section 2 briefly describes the negative selec-

tion method as a novel computational technique of artificial immune systems (AIS).

Section 3 contains the template matching thinning process. Section 4 deals with the

model for thinning process in immunocomputing paradigm. Section 5 discuss the

analysis of the immunocomputing based thinning algorithm using Markov process.

The conclusion and results are discussed in Section 6.

2. Artificial Immune System

The biologically inspired computing techniques such as neurocomputing, evolutionary

computing, DNA computing, etc. are growing rapidly. On the other hand, there is a

rapid increase of comprehension of the behaves of immune system (IS). The knowl-

edge about the IS functioning has disclosed several of its main operative mechanism,

negative and/or positive selection is one of them [5].

The main task of an immune system is to perform the searching task in the body

of living being for malfunctioning cells (e.g., cells for cancer and tumor) from their

own bodies, and foreign disease causing elements (e.g., viruses and bacteria). Every

element that can be recognized by the immune system is called an antigen (Ag). The

cells that originally belong to our body and are harmless to its functioning are termed

as self (or self antigens), while the disease causing elements are named as nonself (or

nonself antigens). So the immune system has to be capable of distinguishing between

self and nonself. This process is called self/nonself discrimination. Basically this

process performed as pattern recognition tasks.

In perspective of artificial immune systems first determine the set of pattern to

be protected and name it as the self-set (P). Based upon the negative or positive

selection algorithm, generate a set of detector (M) that will be responsible to identify

all the elements that do not belong (or belong) to the self-set, i.e., the nonself (or self)

elements. The negative nature will allowed to mature only those detectors that can

identify elements not belonging to self-set justifies the name negative selection. The
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Figure 1. Schematic diagram for the functioning of negative selection

algorithm: (a) Production of detectors, (b) Monitoring for the presence

of undesired (nonself) pattern.

process of negative selection is shown in Fig. 1 and its working principle is described

in Algorithm 1.

Algorithm 1: Negative selection method of artificial immunecomputing.

Input: Set P and C

Output: Set M

Step 1. [Generation] Generate random candidate elements (C) which are stored

afterwards to form detectors.

Step 2. [Matching] Compare (match) each element in C with the elements in P.

If an element of P is recognized by an element of C (match occurred),

then discard this element of C else store this element of C in the detector

set M.

Step 3. [Loop] Repeat Step 2 until no matching takes place.

Step 4. [Termination] Stop.

The newly formed detector set (M) in used in monitoring the system for the presence

of self/nonself patterns. This set to be monitored (P+) might be composed of the set

(P) plus other new patterns (P+ ⊆ P), or it can be completely novel set (P+ = P).

3. Skeletonization Process

In this section we consider only template matching thinning techniques for the

skeletonization of binary edged image.

Consider a window of a binary edged image as shown in Fig. 2. The neighbors of

the element P1 are P2, P3, P4, P5, P6, P7, P8, and P9 where each Pi (for i = 1, 2, . . . , 9)

is a Boolean variable with values 0 (i.e., false) or 1 (i.e., true) and NOT Pi is denoted

by P i. They represent a 3×3 window (inner) with 8-neighbors of P1. A 5×5 window

(whole) with 24-neighbors of P1 is also shown in Fig. 2.
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In the process of thinning of binary images, the new value given to a point at

the nth iteration depends on its own value as well as those of its neighbors at the

(n− 1)th iteration.

P99 P9j P2j P3j P33

P9i P9 P2 P3 P3i

P8i P8 P1 P4 P4i

P7i P7 P6 P5 P5i

P77 P7j P6j P5j P55

Figure 2. Sliding window or templets of size 5 × 5 in which P1, P2,

P3, P4, P5, P6, P7, P8, and P9 forms a 3× 3 window.

Here we describe a binary thinning algorithm with 5 × 5 templates. A vertical

stroke of width 2 (i.e., a 2-stroke) is guarded by keeping one of its edges. So a

point on a west edge is preserved if it is not on a corner and its east neighbor is on

an edge, i.e., if (f(P4) AND P2 AND P6) is true (i.e., f(P4).P2.P6 = 1 or simply

P2P6f(P4) = 1). Here the Boolean function f checks whether there is no more than

one ′01′ pattern and at least one ′00′ and ′11′ pattern of the sequence of 8-neighbors

of its argument and ′AND′ (i.e., ′.′ or ′′) is the Boolean ′AND′ operation in Boolean

algebra. Mathematically, the Boolean function f is defined as

f(P1) = P1.t00.t11.t01s or f(P1) = P1t00t11t01s

where

t00 =

{
1, if ′00′ pattern found in P2, P3, P4, P5, P6, P7, P8, P9, P2

0, otherwise

i.e., t00 = P 2(P 9 + P 3) + P 4(P 3 + P 5) + P 6(P 5 + P 7) + P 8(P 7 + P 9)

t11 =

{
1, if ′11′ pattern found in P2, P3, P4, P5, P6, P7, P8, P9, P2

0, otherwise

i.e., t11 = P2(P9 + P3) + P4(P3 + P5) + P6(P5 + P7) + P8(P7 + P9)

t01s =

{
1, if more than one ′01′ pattern found in P2, P3, P4, P5, P6, P7, P8, P9, P2

0, otherwise
i.e., t01s = AB + AC + AD +BC +BD + CD

for A = P 9P2 + P 2P3, B = P 3P4 + P 4P5, C = P 9P8 + P 8P7, and D = P 5P6 + P 6P7

Similarly, the north edge of a horizontal 2-stroke is preserved if the expression (f(P6)

AND P4 AND P8) is true (i.e., P4P8f(P6) = 1).

The removal of each point of a 2×2 square pattern can be prevented by checking

the east, south and south-east neighbors. If each of these is on a corner, the expression

(f(P4) AND f(P5) AND f(P6)) is true, (i.e., f(P4)f(P5)f(P6) = 1) and the point is

to be preserved.

The preservation of horizontal and vertical straight lines can be done if a Boolean

function f0 is true, where f0 indicates a matching of the templates shown in Fig. 3.
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Mathematically f0 is defined as

f0(P1) = P1P2P4P6P8(P 3P5P7P9P77P8iP9iP5jP6j + P3P 5P7P9P99P7iP8iP2jP3j+

P3P5P 7P9P33P5iP9iP2jP9j + P3P5P7P 9P55P3iP4iP6jP7j)

x x x x x 1 x 1 1 x x 1 1 x 1 x x x x x

1 1 1 0 x x 1 1 1 x x 1 1 1 x x 0 1 1 1

1 1 1 1 x 1 1 1 1 x x 1 1 1 1 x 1 1 1 1

x 1 1 1 x 1 1 1 0 x x 0 1 1 1 x 1 1 1 x

1 x 1 1 x x x x x x x x x x x x 1 1 x 1

(a) (b) (c) (d)

Figure 3. Horizontal and vertical straight line preserving templates,

where x = don’t care term.

An element P1 survives after an iteration if the combined conditions represented

by the assignment relation

P1 ← (P1 AND (( NOT f(P1)) OR (P2 AND P6 AND f(P4)) OR

(P4 AND P8 AND f(P6)) OR (f(P4) AND f(P5) AND f(P6)))

AND ( NOT f0(P1)))

i.e., P1 ← P1(f(P1) + P2P6f(P4) + P4P8f(P6) + f(P4)f(P5)f(P6))f 0(P1)
The iterative formula for updation of P1 is given below.

P
(t+1)
1 ← P

(t)
1

(
f(P (t)

1 ) + P
(t)
2 P

(t)
6 f(P (t)

4 ) + P
(t)
4 P

(t)
8 f(P (t)

6 ) + f(P (t)
4 )f(P (t)

5 )f(P (t)
6 )
)

f0(P (t)
1 )

The skeletonization process is described in Algorithm 2.

Algorithm 2: (One-pass template matching binary thinning algorithm) This

thinning process accepts a binary edged image and produces a shape and connectivity

preserving one-pixel width binary image as a skeleton. In this algorithm a 5× 5 win-

dow (Fig. 2 ) is applied on the given binary image in left-to-right and subsequently

top-to-bottom fashion. At every position of the window, it is checked whether the

central pixel (P1) is to be transformed from 1 to 0.

Input: Binary edged image, I0.

Output: Binary thinned image, IT .

Step 1: [Input] Get a binary edged image I0.

Step 2: [Initialization] Number of iteration, t = 0 and It = I0

Step 3: [Get next pixel] Get a pixel P
(t)
1 of the binary edged image It and its

neighbours based on the size of the sliding windows where the input

pixel P
(t)
1 is the central element of the window.
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Step 4: [Existence of edge of the central pixel] In a binary edged image

It (from previous iteration), if edge of the central pixel does not exist

then do not transform the central pixel from 1 to 0 (i.e., P
(t)
1 remains

unchanged, i.e., P
(t+1)
1 ← P

(t)
1 in It+1) and repeat from Step 3 by sliding

the window; otherwise, goto Step 5.

Step 5: [Guard the vertical stroke of width 2] Compute the edge of east

neighbor (P
(t)
4 ) and if it satisfies the following conditions:

(1) edge of east (P
(t)
4 ) neighbor of P

(t)
1 exists,

(2) value of north (P
(t)
2 ) neighbor of P

(t)
1 is 1, and

(3) value of south (P
(t)
6 ) neighbor of P

(t)
1 is 1

then do not transform the central pixel from 1 to 0 (i.e., P
(t)
1 remains

unchanged, i.e., P
(t+1)
1 ← P

(t)
1 in It+1) and goto Step 3 after sliding the

window; otherwise, goto Step 6.

Step 6: [Guard the horizontal stroke of width 2] Compute the edge of the

south neighbor (P
(t)
6 ) and if it satisfies the following conditions:

(1) edge of south (P
(t)
6 ) neighbor exists,

(2) value of west pixel (P
(t)
8 ) is 1, and

(3) value of east (P
(t)
4 ) pixel is 1

then do not transform the central pixel from 1 to 0 and goto Step 3

after sliding the window; otherwise, goto Step 7.

Step 7: [Prevention of 2×2 square] Compute the edges as mentioned below.

(1) edge of east (P
(t)
4 ) neighbor,

(2) edge of south (P
(t)
5 ) neighbor, and

(3) edge of south-east (P
(t)
6 ) neighbor

if each of these edges exists then do not transform the central pixel to

0; otherwise, goto Step 3 after sliding the window.

Step 8: [Loop] Repeat the process from Step 3 through Step 7 until no further

transformation takes place.

Step 9: [Preservation of Vertical and Horizontal Lines] If the 5×5 image

window matches with the horizontal and vertical line preserving tem-

plets then transform the central pixel of the window to 0; otherwise,

goto Step 4 after sliding the window by one position.

Step 10: [Loop] t← t+ 1 Repeat the process from Step 3 through Step 9 until

no further transformation takes place.

Step 11: [Termination] Stop.
Note: The steps 3-7 can be combined by the recursive rule:

P
(t+1)
1 ← P

(t)
1

(
f(P (t)

1 ) + P
(t)
2 P

(t)
6 f(P (t)

4 ) + P
(t)
4 P

(t)
8 f(P (t)

6 ) + f(P (t)
4 )f(P (t)

5 )f(P (t)
6 )
)

f0(P (t)
1 )
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3.1. Stare-Case Elimination and Trimming. The following rules are used for

stare-case elimination and trimming.

(1) North-West bias is eliminated by the following rule:

P1 ← P1P2P 3P4P 7P6P8P2P 5P8P 9P4P6

(2) South-East bias is eliminated by the following rule:

P1 ← P1P4P 5P6P 9P2P8P3P 6P7P 8P2P4

(3) Trimming can perform by the following rule:

P1 ← P1(P 2P 3P 4P6P 8P 9 + P 2P4P 6P 7P 8P 9 + P2P 4P 5P 6P 7P 8+

P 2P 3P 4P 5P 6P 8 + P 2P 4P 6P 8(P 3P 9(P5

⊕
P7) + (P 5P 7(P3

⊕
P9)))

4. The Model

4.1. Philosophy of the Model. The template matching process over a binary edged

image is to choose binary pixels (i.e., 1’s) such that the skeleton of the given binary

edged image is one-pixel width after preserving the connectivity of the binary image.

The idea of skeletonization using immunecomputing paradigm results from the

interesting fact that, when a part of the body is cut by an accident and an operation

takes place, the immune system tries to repair the affected part of the body in such

a way that it damage a least linear part, i.e., a thin line after curing it.

4.2. Formulation. The skeleton of a binary edged image by a template matching

thinning process is a skeleton of one-pixel width and also preserve the connectivity.

Let C = {X1, X2, . . . , Xn} be a set of n points (i.e., number of 1’s) in an edged

binary image of size N = r× c where r = number of rows, c = number of columns of

it, Xi = {xi, yi,wi}, where xi ∈ {1, 2, . . . , r}, yi ∈ {1, 2, . . . , c}, wi = (bi1 , bi2 , . . . , bik),

bij ∈ {0, 1}, j = 1, 2, . . . , k, k = number of entries in the template used in the thinning

process (e.g., k = 9 means template size is 3×3) for i = 1, 2, . . . , n0, and n0 = number

of 1 in the edged image. Assume P = {w1,w2, . . . ,wm} is a set of templates used in

the thinning process where m = number of different templates used in the thinning

process. The problem is to find an one-pixel width skeleton from the given binary

edged image such that it preserve the connectivity and the shape of the given binary

edged image.

According to the theory of artificial immune system (AIS), the self-set P (Fig. 1)

is the set of templates (Set T in Fig. 4) used in the thinning process/algorithm. The

set P is to be protected. Based upon the Negative Selection algorithm, generate a set

C from the given/present binary image, i.e., set I in Fig. 4. The structure of elements

is described in Fig. 2.

Now depending on the logic for matching we segregate the elements of candidate

set C into two sets namely Accepted set (A) and Rejected set (R). The set A com-

prises of those points of C which are un-identified by the protected set P (i.e., set
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Figure 4. Schematic diagram for the functioning of template match-

ing thinning algorithm using negative selection method of immunecom-

puting paradigm: (a) Production of detectors, (b) Monitoring for the

presence of undesired (nonself) pattern.

of templates, T in Fig. 4), lies inside the intermediate thinned image in C and set R

consists of those points which are identified by the protected set P , i.e., pixels are to

be deleted for the binary edged image in C = {X1, X2, . . . , Xn}, as described in Eqn.

(4.1).

(4.1) Xi ∈

{
R, if wi ∈ P
A, otherwise

for i = 1, 2, . . . , n.

After determining sets A and R, we extract information from them which will

be used in the maturation of the candidate set C. Extract the position of each

element of the set R and set of elements of the binary image I(t)(xi, yi) ← 0 when

(xi, yi, bi1bi2 · · · bik) ∈ R where I(0) is the initial r × c binary edged image for i =

1, 2, . . . , n(0) and n(0) is the initial number of 1’s in the binary image I(0). Set I(t+1) ←
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I(t). Reconstruct the candidate set C using the binary image I(t+1). Repeat the above

procedure until R = φ. This process is described in Algorithm 3.

Algorithm 3: Thinning of binary edged image using immunecomputing paradigm

Input: Binary edged image I

Output: Thinned binary edged image I

Step 1. [Initialization] Initialize iteration number t = 0,

generate a candidate set C(t) = {Xi|i = 1, 2, . . . , n(0)} where n(0) is the

number of 1 in the binary edge image

Step 2. [Grouping] Split the set C(t) into two sets A and R using match logic

according to rule in (4.1).

Step 3. [Modification] Modify the binary image I(t) based on the set R.

Step 4. [Increment] Set t← t+ 1.

Step 5. [Reconstruction] Reconstruct the candidate set C(t) = {Xi|i =

1, 2, . . . , n(t)}.
Step 6. [Looping] Repeat from Step 2 to Step 5 until R = φ.

Step 7. [Termination] Stop.

4.3. Experimental Results of Thinning Process. The one-pass template match-

ing thinning process describe in Algorithm 2 is applied on a binary edge image as

shown in Fig. 5(a). The thinned image is shown in Fig. 5(b) where the elements at ′∗′

are not changed to 0 from 1. For simplicity, both input and output thinned images

are incorporated in one figure as shown in Fig. 5(c). Other examples are also shown

in Fig. 6.

111111111111111 111111111111111 ...............

111111111111111 111111111111111 ...............

111111111111111 111111111111111 ...............

111111111111111 1111********111 ....********...

111111111111111 111*11111111111 ...*...........

111111111111111 111*11111111111 ...*...........

111111111111111 111*11111111111 ...*...........

111111100000000 111*11100000000 ...*...

111111100000000 111*11100000000 ...*...

111111100000000 111*11100000000 ...*...

111111100000000 111*11100000000 ...*...

111111100000000 111*11100000000 ...*...

111111100000000 111111100000000 .......

111111100000000 111111100000000 .......

(a) (b) (c)

Figure 5. Experimental results of thinning process.
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......... ......... .....

......... ......... .....

......... ......... ..*..

......... ......... ..*..

....*.... ....*.... ....*....

....*.... ....*.... .*******.

....*.... ....*.... ....*....

....*.... ....*.... ..*..

....*.... ....*.... ..*..

....*..................*.... .....

....*..................*.... .....

....*..................*....

....********************.... (b)

....*..................*....

....*..................*....

....*..................*....

....*..................*.... .

....*.... ....*.... ...

....*.... ....*.... .***.

....*.... ....*.... .*. .*.

....*.... ....*.... .*. .*.

....*.... ....*.... ..*****..

....*.... ....*.... .*.....*.

......... ......... .*. .*.

......... ......... .*. .*.

......... ......... .*. .*.

......... ......... ... ...

(a) (c)

Figure 6. Other experimental results of thinning process.

5. Analysis

In this section we study that the template matching thinning process on a binary

image is analogous to the Markov process and also we study the performance of it.

Some related terms are defined in the following section.

5.1. Some Definitions. Stochastic process can be defined [23] as a collection of

random variables Xt, t ∈ T , where these random variables are defined on a common

probability space and T ⊂ (−∞,∞) is thought of as a time parameter set. The

process is called a continuous parameter process if T is an interval having positive
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length and a discrete parameter process if T is a subset of the integers. If the

random variables Xt all take on values from the fixed set S, then S is called the state

space of the process.

Many stochastic processes possess the property that, the given present state of

a process does not effect on, its past history, i.e., the past states have no influence

on the future, mathematically does not affect the conditional probabilities of events

defined in terms of the future. Such processes are called Markov processes. This

property is known as Markov property and the systems having this property are

called Markov chains. Equivalently, we can say that a process Xn having state

space S is said to be a Markov process if for every choice of non-negative integer n

and the numbers x0, x1, . . . , xn+1 each in S, the probability

(5.1) P (Xk = xk|X0 = x0, . . . , Xk−1 = xk−1) = P (Xk = xk|Xk−1 = xk−1)

Also the conditional probabilities P (Xt = y|X0 = x) are called the transition prob-

abilities of the chain. A Markov process Xt, t ∈ T , is said to be jump process

if

(5.2) x =



x0, for 0 ≤ t < τ1

x1, for τ1 ≤ t < τ2

x2, for τ2 ≤ t < τ3
...

xk−1, for τk−1 ≤ t < τk

xk−1, for τk ≤ t <∞

where, T = [0,∞).

5.2. Pure Death Process. Let Yt be the random variable (r.v.) representing a

number of deaths occurred at time interval of length t. So Yt takes values 0,1,2,. . .

etc. The process {Yt, t > 0} is known as death process [23] provided the following

assumptions hold.

Assumption 1: The conditional probability that during an interval (t, t+ h), where

h (> 0) is small, a death occurs, given that at the beginning of the interval the system

was in state i, is approximately equal to µih, where µi is death rate in state i.

Assumption 2: The conditional probability of more than one death during (t, t+h)

is negligible. In pure death process there is absolutely no birth. Thus, the pure death

process can be treated as jump process.

Define the transition probabilities as

(5.3) pi,j(t) = P (Yt+h = j|Yh = i); for t, h > 0,

which gives the probability that at time (t+ h) the system is in state j (i.e., number

of alive at time t+h is j) given that at time h it was in state i. So, we have pij(t) = 0,
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for j > i, since it is pure death process. So, by Assumption 1 we get

(5.4) pi,i−1(h) = P (Yt+h = i− 1|Yt = i) = µih,

By Assumption 2 we get

(5.5) pj+k,j(h) = P (Yt+h = j|Yt = j + k),

which is negligible, for k > 1, i.e., pj+k,j(h) = 0, k > 1

Suppose that at time t = 0 the system is at state i. In order to have state j

at time t + h (where h is small positive number), we consider the following three

possibilities:

(a): at time t, it is in state j + 1 and one death occurred during (t, t+ h),

(b): at time t, it is in state j and no death occurred during (t, t+ h), and

(c): more than one death occurred during (t, t+ h).

Thus we have,

pi,j(t+ h) = pi,j+1(t)pj+1,j(h) + pi,j(t)pj,j(h) +
i∑

k=j+2

pi,k(t)pk,j(h)

= pi,j+1(t)µj+1h+ pi,j(t)[1− µjh] + negligible terms

[by Assumption 1 and Assumption 2 and the fact,
i∑

k=0

pj,j−k(h) = 1]

Now by dividing both sides by h and taking limit on h, i.e., as h→ 0, we get

(5.6) p
′

i,j(t) = pi,j+1(t)µj+1 − pi,j(t)µj

Initial conditions are

(5.7) pi,j(0) = 0,∀ i 6= j and pi,i(0) = 1

Now, using Eqns. (5.6) and (5.7) we get

(5.8) p
′

i,i(t) = −pi,i(t)µi

By solving the differential equation (5.8) and using initial conditions in (5.7) we get

(5.9) pi,i(t) = e−µit, ∀t ≥ 0

Put j = i− 1 in Eqn. (5.6), so we get using Eqn. (5.9)

(5.10) p
′

i,i−1(t) = pi,i(t)µi − pi,i−1(t)µi−1 = µie
−µit − pi,i−1(t)µi−1

Lemma 1 : If f ′(t) = αf(t) + g(t), for t ≥ 0, then f(t) = eαtf(0) +

∫ t

0

eα(t−s)g(s)ds.

Proof: One can easily prove it by multiplying both sides by e−αs of the given condition

and integrating over s from 0 to t, i.e.,
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0

e−αsf ′(s)ds = α

∫ t

0

f(s)e−αsds+

∫ t

0

g(s)e−αsds

Using Integration by parts, we get

e−αsf(s)|t0 + α

∫ t

0

e−αsf(s)ds = α

∫ t

0

f(s)e−αsds+

∫ t

0

g(s)e−αsds

or, e−αtf(t)− f(0) =

∫ t

0

g(s)e−αsds

or, f(t) = eαtf(0) +

∫ t

0

g(s)eα(t−s)ds

So using Lemma 1, we get from Eqn. (5.10) as

pi,i−1(t) = e−µi−1tpi,i−1(0) + µi

∫ t

0

e−µi−1(t−s)e−µisds

Using conditions in (5.7) we get

(5.11) pi,i−1(t) =
µi

µi − µi−1

(e−µi−1t − e−µit)

Now putting j = i− 2 in Eqn (5.6), we get

p
′
i,i−2(t) = µi−1pi,i−1(t)− µi−2pi,i−2(t)

i.e., pi,i−2(t) =
µiµi−1

µi − µi−1

e−µi−2t

[
1− e−(µi−1−µi−2)t

µi−1 − µi−2

−1− e−(µi−µi−2)t

µi − µi−2

]
[by Lemma 1]

It is reasonable to assume that µi ∝ i, ∀ i. So µi = iµ where µ is the proportionality

constant.

Now, pi,i−1(t) = ie−µt(i−1)(1− e−µt) and pi,i−2(t) =

(
i

2

)
e−µt(i−2)(1− e−µt)2

Thus for any j ≤ i, we have

(5.12) pi,j(t) =

(
i

j

)
e−µtj(1− e−µt)i−j

5.3. Performance Study. We attempt to study the performance of template match-

ing thinning algorithms using immunecomputing paradigm. We formulate that the

template matching thinning process using negative selection method of immunecom-

puting paradigm is analogous to a kind of stochastic process (i.e., Markov process)

in statistics.

5.3.1. Template Matching Thinning Process. The central/decision element of the thin-

ning templates is considered as 1 in all the thinning algorithms and also the objective

of a thinning algorithm is to replace 1 by 0 as the desire criteria are fulfilled. Each

element of a binary pattern is considered as a central element matches with a given

set of thinning templates then this element is converted to 0 from 1. This converted

value is to be used in the subsequent iteration, and this process is continued, till no

conversion from 1 to 0 takes place in an iteration.
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I0
A

=⇒ I1
A

=⇒ I2
A

=⇒ · · · A
=⇒ Ik−1

A
=⇒ Ik

A
=⇒ · · ·

Figure 7. Thinning of a binary edged image I0 by a template match-

ing algorithm A in k iterations

5.3.2. Thinning Process using AIC. Suppose A is a parallel template matching thin-

ning algorithm and I0 is the given binary edged image. Now we apply the Algorithm

2 on the binary image I0 and an output I1 is obtained. Again the Algorithm 2 is

applied in I1 repeatedly, until two consecutive outputs are equal. We get different

modified images, say, I1, I2, . . . , Ik after 1st, 2nd, . . . , kth iterations respectively and

then it will stop after kth iterations, if the number of 1’s (considering binary image)

in Ik−1 is same as that in Ik. The intermediate thinned image Ir+1 depends only on

the immediate past thinned image Ir, not on the previous intermediate output images

I0, I1, . . . , Ir−1. This process of thinning of I0 using Algorithm 2 is shown in Fig. 7.

Suppose Xr is a random variable denoting the number of 1’s in Ir, r = 0, 1, . . . , k,

then we can say that

(5.13) P (Xk = xk|X0 = x0, . . . , Xk−1 = xk−1) = P (Xk = xk|Xk−1 = xk−1)

where, x1, x2, . . . , xk are non-negative integers. Therefore template matching thinning

process on binary edged image I0 by the Algorithm 2 (Fig. 7) is a Markov process.

Since its present state depends only on the previous state of the binary image. The

process of thinning for a given binary edged image can also be treated as pure jump

process, as defined in Eqn. (5.2). This gives a number of 1 in the binary images at

different time point t. In thinning process of binary edged image, 0 can never be

changed to 1. But 1 may change to 0 or remains unchanged. So it is a Pure Death

Process.

Now, P (Y0 = x0, Yτ1 = x1, . . . , Yτk−1
= xk−1, Yτk = xk−1)

= P (Y0 = x0)P (Yτ1 = x1|Y0 = x0)P (Yτ2 = x2|Y0 = x0, Yτ1 = x1) · · ·
P (Yτk−1

= xk−1|Y0 = x0, . . . , Yτk−2
= xk−2)P (Yτk = xk−1|Y0 = x0, . . . , Yτk−1

= xk−1)

= P (Y0 = x0)P (Yτ1 = x1|Y0 = x0) · · ·P (Yτk−1
= xk−1|Yτk−2

= xk−2)

P (Yτk = xk−1|Yτk−1
= xk−1) [By Markov Property]

= π(0)

(
x0

x1

)
e−µx1τ1 [1− e−µτ1 ](x0−x1)

(
x1

x2

)
e−µx2(τ2−τ1)[1− e−µ(τ2−τ1)](x1−x2) · · ·(

xk−2

xk−1

)
e−µxk−1(τk−1−τk−2)[1− e−µ(τk−1−τk−2)](xk−2−xk−1)e−µxk−1(τk−τk−1)

where, π(0) = P (Y0 = x0) and by using the result in Eqn. (5.12)
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= π(0)

[∏k−1
i=1

(
xi−1

xi

)]
e

−µ

2664
k−1∑
i=1

xi(τi − τi−1) + xk−1(τk − τk−1)

3775
×[∏k−1

i=1 [1− e−µ(τi−τi−1)](xi−1−xi)
]

[with τ0 = 0]

Therefore

P (Y0 = x0, Yτ1 = x1, . . . , Yτk−1
= xk−1, Yτk = xk−1)

(5.14) = π(0)

[
k−1∏
i=1

(
xi−1

xi

)]
e

−µd

0BB@
k−1∑
i=1

xi + xk−1

1CCA (
1− e−µd

)(x0−xk−1)

[Assuming that τi − τi−1 = d, ∀ i]
Let w = u × v be the number of elements in the templates used in a template

matching binary thinning algorithm. So 2w is the number of all possible patterns of

size w.

Let m be the number of templates used in the template matching thinning algo-

rithm. Now we shall compute the probabilities for the following events.

(1): 0 is changed to 1 is an impossible event in a thinning algorithm. So the

probability of the event is 0.

(2): 0 is changed to 0 is a certain event in a thinning algorithm. The probability

of the event is 1.

(3): 1 is changed to 0 is an event whose probability depends upon the nature

of thinning algorithm applied on a binary edge images. Note that a thinning

algorithm does not return a null binary image from a non-null binary image (in

which the number of 1 is not equal to zero). So the probability must lies between

0 and 1.

(4): 1 is changed to 1 is an event whose probability depends upon the nature

of the thinning algorithm applied on a binary edge images.

Now we define the probability as:

P(0 is changed to 1) = p01 = 0.

P(0 is changed to 0) = p00 = 1.

P(1 is changed to 0) = p10

where

p10 =
Total number of possible windows (i.e., template) for matching

All possible windows (i.e., template)
=

m

2w
, and

m = number of templates used in the thinning algorithm

P(1 is changed to 1) = p11 = 1− p10

These probabilities must satisfy the criteria

(5.15) p01 = 0, p00 = 1, 0 < p10 < 1, 0 < p11 < 1
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Initially, number of 1’s in the input binary edged image is X0. After the first iteration

the number of 1’s in the output binary image is x1 = x0 × p11.

Similarly x2 = x1 × p11 = x0 × p2
11. Hence,

(5.16) xi = x0 × pi11, ∀ i = 1, 2, . . . , k − 1

where k = number of iterations applied on the input binary edged image.

So, the probability

P (Y0 = x0, Yτ1 = x1, . . . , Yτk−1
= xk−1, Yτk = xk−1)

(5.17) = π(0)
k−1∏
i=1

(
xi−1

xi

)
e

−µdx0

264p11 1− pk−1
11

1− p11

+pk−1
11

375 (
1− e−µd

)x0(1−pk−1
11 ) ≤ 1

[as it is a probability]

where d = time taken for one iteration, i.e., state transition time.

Lemma 2: If N = n1 + n2 + · · · + nk for any non-negative integer N , where,

n1, n2, . . . , nk are also non-negative integer, then N ! ≥ n1!n2! · · ·nk!

Proof: Trivial.

Now, by Lemma 2 we can write

(5.18)
k−1∏
i=1

(
xi−1

xi

)
=

x0!

(x0 − x1)!(x1 − x2)! · · · (xk−2 − xk−1)!xk−1!
≥ 1,

Hence combining the results in Eqns. (5.17) and (5.18) we get,

π(0)e

−µdx0

264p11 1− pk−1
11

1− p11

+pk−1
11

375 (
1− e−µd

)x0(1−pk−1
11 ) ≤ 1

i.e., log π(0)− µdx0p11
1− pk−1

11

1− p11

−µdx0p
k−1
11 + x0(1− pk−1

11 ) log (1− e−µd) ≤ 0

i.e., x0p
k−1
11

[
µd

2p11 − 1

1− p11

− log (1− e−µd)
]

(5.19) ≤ µdx0
p11

1− p11

− x0 log (1− e−µd)− log π(0)

Here, µd is the average number of deletion during d. So, µd > 0.

Thus log (1− e−µd) < 0

Case 1: 0.5 < p11 < 1.

So, 1− p11 > 0 and 2p11 − 1 > 0. Therefore,
2p11 − 1

1− p11

> 0.

Hence, µd
2p11 − 1

1− p11

− log (1− e−µd) > 0, provide p11 > 0.5.

Again, µd is the average number of deletion (i.e., from 1 to 0) during time d.

So µd > 0.
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Using Eqn. (5.19) we get

pk−1
11 ≤

µdx0
p11

1−p11 − x0 log (1− e−µd)− log π(0)

x0[µd
2p11−1
1−p11 − log (1− e−µd)]

= 1 +
µdx0 − log π(0)

x0[µd
2p11−1
1−p11 − log (1− e−µd)]

= C (say)

As 0 < π(0) < 1, so, µdx0 − log π(0) > 0.

Thus, C > 0

So, (k−1) log p11 < logC or, k > 1+
logC

log p11

, i.e., k ≥ 1 [as p11 < 1 and so log p11 < 0]

Case 2 : 0 < p11 ≤ 0.5.

Assume µd
2p11 − 1

1− p11

− log (1− e−µd) < 0,

i.e., −2 +
1

1− p11

− log (1− e−µd)
µd

< 0 [as µd > 0 ]

i.e., p11 < 1− 1

2 + log (1−e−µd)
µd

.

Again, 0 < 2 +
log (1− e−µd)

µd
< 2 as log (1− e−µd) < 0.

So,
1

2 + log (1−e−µd)
µd

> 0.5 or, 1− 1

2 + log (1−e−µd)
µd

< 0.5

Thus, 0 < p11 < 1− 1

2 + log (1−e−µd)
µd

< 0.5, which is true.

So, µd
2p11 − 1

1− p11

− log (1− e−µd) < 0,

Thus k < 1 +
logC

log p11

, provided p11 < 0.5 (proceeding as Case 1).

But in practice, p11 ≤ 0.5. So, this relation provides lower bound of the number of

iteration required to converge the process of thinning of binary image. We compute

an upper bound of k.

Suppose, P (Yt = y|Y0 = x) = e−λ
λx−y

(x− y)!
, which is Poisson distribution with λ

as the parameter denoting average deletion of 1’s in each iteration.

Now,
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1 ≥ P (Y0 = x0, Yτ1 = x1, . . . , Yτk−1
= xk−1, Yτk = xk−1)

= P (Y0 = x0)P (Yτ1 = x1|Y0 = x0) . . . P (Yτk−1
= xk−1|Y0 =

x0), . . . , P (Yτk−2
= xk−2)P (Yτk = xk−1|Y0 = x0), . . . , P (Yτk−1

= xk−1)

= P (Y0 = x0)P (Yτ1 = x1|Y0 = x0) · · ·P (Yτk−1
= xk−1|Yτk−2

=

xk−2)P (Yτk = xk−1|Yτk−1
= xk−1) [by Markov property]

= π(0)e−λ
λx0−x1

(x0 − x1)!
e−λ

λx1−x2

(x1 − x2)!
· · · e−λ λxk−2−xk−1

(xk−2 − xk−1)!

= π(0)e−kλ
λx0−xk−1

(x0 − x1)!(x1 − x2)! · · · (xk−2 − xk−1)!

≥ π(0)e−kλ
λx0−xk−1

(x0 − xk−1)!
[by Lemma 2]

Therefore

(5.20) 1 ≥ π(0)e−kλ
λx0−xk−1

(x0 − xk−1)x0−xk−1
[as

1

i!
≥ 1

ii
]

Now, x0 > xk−1 [trivial] or 0 < x0 − xk−1 < x0 then

(5.21)
1

(x0 − xk−1)x0−xk−1
>

1

x0
x0

Combining the results in Eqns. (5.20) and (5.21), we get

(5.22) π(0)e−kλ
λx0−xk−1

(x0)x0
< 1.

Here, λ is estimated unbiased by the mean of the random variable denoting the

number of deletion in each iteration.

λ̂ =
1

k
[(x0 − x1) + (x1 − x2) + · · ·+ (xk−2 − xk−1)] =

x0 − xn−1

k

(5.23) x0 − xk−1 = kλ̂

Combining the results in Eqns. (5.22) and (5.23) we get

π(0)e−kλ̂
λ̂kλ̂

(x0)x0
< 1, i.e.,

π(0)

(x0)x0

(
λ̂

e

)kλ̂

< 1, i.e.,

(
λ̂

e

)−kλ̂
>

π(0)

(x0)x0

i.e., kλ̂ log

(
e

λ̂

)
> log π(0)− x0 log x0

Therefore

(5.24) k <
1

λ̂

[
log π(0)− x0 log x0

1− log λ̂

]
Assume B =

1

λ̂

[
log π(0)− x0 log x0

1− log λ̂

]
, λ̂ > e, i.e., 1− log λ̂ < 0

Since 0 < π(0) < 1, i.e., log π(0) < 0, again x0 is a positive integer and x0 ≥ 1.

So x0 log x0 > 0 (Note that x0 log x0 = 0 only when x0 = 0 when the input binary

edged image itself is a thinned image) and thus log π(0)− x0 log x0 < 0 as x0 > 1.

Therefore B > 0. So, Eqn. (5.24) gives an upper bound for k.
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6. Results and Conclusion

The performance of an image processing algorithm is measured in terms of time

and space requirement. These are the functions of the size of the input image. We

have designed a model for the study of average case complexity that measures the

performance of template matching thinning algorithms using immunocomputing par-

adigm for the binary images. In this model, we have computed the bounds on the

number of iterations required to converge a thinning process. In this context we have

conducted several experiments with normally distributed binary images [38] for the

following binary template matching thinning algorithms designed by: (1) Zhang &

Suen [49], (2) Chin et. al. [11], (3) Hall [19], (4) Holt et. al. [25], and (5) Pal &

Bhattacharyya [37]. After applying on a normally distributed binary images [38] we

measured the number of iterations and time requirements using workstation. The re-

sults from the experiment and by computation from the proposed model are shown in

Tables 1-10 in which θ, σ and n are the initial angle, standard deviation and number

of points (i.e., 1’s in the generated binary image) respectively. These are the param-

eters of the algorithm [38] for normally distributed binary image generation. N is

the number of iterations required, B is the bound on number of iterations obtained

from the model and λ̂ is the average number of deletions in each iteration and T is

the required time in µsec. The ratio T/B indicates the implementation complexity of

the algorithms. The order of implementation complexity of these thinning algorithms

[49, 11, 19, 25, 37] are shown in Tables 1-10. Table 1 to Table 6 are corresponding to

image of size 32× 32 and the rests (Tables 7-10) are corresponding to 64× 64.

Table 1 : θ = 0, σ = 0.356, n = 456, x0 = 610

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 5 37.60 39.542 2260 57.15

Chin [11] 11 42.72 34.272 3430 100.08

Hall [19] 7 66.86 18.242 1790 98.12

Holt [25] 8 56.37 22.85 5820 254.70

Pal & Bhattacharyya [37] 9 57.78 22.116 9470 428.19

Table 2 : θ = 36, σ = 0.467, n = 456, x0 = 616

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 4 55.75 23.456 2010 85.69

Chin [11] 10 48.50 28.267 2990 105.77

Hall [19] 6 80.33 14.522 1570 108.11

Holt [25] 7 67.00 18.398 5200 282.64

Pal & Bhattacharyya [37] 10 58.30 22.103 8590 388.68
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Table 3 : θ = 47, σ = 0.567, n = 456, x0 = 694

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 6 41.83 39.646 2960 74.66

Chin [11] 13 43.96 37.365 4000 107.05

Hall [19] 9 62.89 22.95 2300 100.21

Holt [25] 10 55.40 27.148 7570 278.84

Pal & Bhattacharyya [37] 8 80.00 16.757 8850 528.13

Table 4 : θ = 9, σ = 0.245, n = 357, x0 = 440

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 4 31.00 35.419 1190 33.59

Chin [11] 6 51.67 17.562 1630 93.03

Hall [19] 3 105.00 6.965 770 110.55

Holt [25] 4 47.75 10.786 2540 235.49

Pal & Bhattacharyya [37] 4 86.00 8.995 3240 360.20

Table 5 : θ = 47, σ = 0.677, n = 478, x0 = 742

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 7 39.57 46.213 3600 77.90

Chin [11] 16 37.75 49.311 5380 109.10

Hall [19] 10 61.40 25.587 2760 170.86

Holt [25] 11 53.64 30.618 9290 303.41

Pal & Bhattacharyya [37] 9 75.78 19.421 10540 542.71

Table 6 : θ = 28, σ = 0.367, n = 389, x0 = 605

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 5 38.00 38.599 1950 50.50

Chin [11] 17 26.59 63.805 5050 79.15

Hall [19] 7 65.86 18.43 1770 96.04

Holt [25] 7 62.28 19.833 5430 273.78

Pal & Bhattacharyya [37] 8 66.12 18.332 7920 432.03

Table 7 : θ = 0, σ = 0.478, n = 698, x0 = 1717

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 6 83.67 44.579 6330 141.99

Chin [11] 9 136.78 23.848 8520 357.26

Hall [19] 6 209.67 14.028 4620 329.34

Holt [25] 7 172.00 17.917 14590 814.31

Pal & Bhattacharyya [37] 7 177.86 17.188 16900 983.24



SKELETONIZATION OF BINARY IMAGE IN IMMUNECOMPUTING 481

Table 8 : θ = 15, σ = 0.699, n = 798, x0 = 1636

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 9 68.44 54.795 9140 166.80

Chin [11] 17 78.65 45.718 13980 305.76

Hall [19] 11 122.91 25.827 7590 293.87

Holt [25] 12 109.25 29.983 21940 731.74

Pal & Bhattacharyya [37] 11 120.27 26.544 23560 887.58

Table 9 : θ = 30, σ = 0.955, n = 1276, x0 = 2930

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 11 96.10 68.249 18040 264.32

Chin [11] 31 78.387 88.731 36090 406.73

Hall [19] 18 134.50 44.557 16510 370.53

Holt [25] 18 130.89 46.107 52140 1130.84

Pal & Bhattacharyya [37] 19 133.21 45.099 63150 1400.22

Table 10 : θ = 45, σ = 0.966, n = 910, x0 = 2144

Algorithm N λ̂ B Time T (µsec) Ratio (T/B)

Zhang & Suen [49] 11 75.36 65.65 13420 204.41

Chin [11] 26 68.46 74.421 25280 339.69

Hall [19] 12 149.33 27.476 10010 364.31

Holt [25] 13 133.46 31.631 31630 999.96

Pal & Bhattacharyya [37] 15 116.87 37.398 39190 1047.91
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