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ABSTRACT. We propose two numerical methods for pricing European option pricing problem

which is represented by a time-dependent parabolic partial differential equation. The first method

is based on the semi-discretization by the Method of Lines and then using a finite difference approx-

imation in space whereas a number of MATLAB ode solvers are experimented to perform the time

integration. The second one is based on the temporal semi-discretization by implicit Euler and a

cubic spline discretization in space. After several numerical comparisons, we found that in terms of

applicability, the approach based on splines is more flexible than the one based on the method of

line.
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1. Introduction

Financial mathematics is a branch of mathematics that assesses the risk and value

of various financial instruments. Banks, companies, and other institutions mitigate

their risk through financial instruments known as derivatives, that derive their value

from some underlying asset. These derivatives are often represented by differential

equations. However, equations that arise from pricing and modeling can be very

complex, and thus leading to the necessity of numerical methods.

The specific derivatives that we are interested to discuss in this paper are options.

An option is a security giving its holder the right to buy or sell an asset, subject to

certain conditions, within a specified period of time. If the option is for buying the

asset, it is called a Call option whereas if it is for selling the asset, then it is called a

Put option. These options are mainly classified as standard and non-standard options.

From these classes, we choose a standard option, namely, European put options for

our study in this paper. From the definition of the European option, which states

that, a European option can be exercised only on the expiration date, we see that the

holder of option has the right without obligation to transact, so the option has some

positive value.
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Numerical methods in option valuation have been investigated by many re-

searchers. The numerical approaches vary from finite element discretizations [7, 12]

to finite difference approximations [17]. A finite-difference scheme often employed

is the Crank-Nicolson (CN) scheme (see [17]). The CN scheme employs a classical

trapezoidal formula for time integration and second-order central difference formulas

for discretization of asset derivatives.

Brennan and Schwartz [1] were the first to explore the use of finite-difference

methods for pricing options. Geske and Shastri [8] compared the efficiency of var-

ious finite-difference and other numerical methods for option pricing. Vázquez [16]

presented an upwind scheme for solving the backward parabolic partial differential

equation problem arising in the case of European options.

Second-order L-stabilized time integration schemes have been proposed by Chawla

et al. [3]. Chawla et al. [4] presented high-accuracy finite-difference methods for the

Black-Scholes equation in which they employed the fourth-order L-stable time inte-

gration schemes (LSIMP) developed in Chawla et al. [5] and the well-known Numerov

method for discretization in the asset direction. They compared the computational

efficiency of their LSIMP-NUM schemes with the CN and Douglas schemes by con-

sidering valuation of European options and American options via the linear comple-

mentarity approach.

Company et al. [6] constructed and analyzed a finite difference scheme for solving

a nonlinear Black-Scholes partial differential equation modelling stock option prices

in the realistic case when transaction costs arising in the hedging of portfolios are

taken into account.

The method of lines is an interesting numerical method for solving partial differ-

ential equations. The idea is to semi-discretize the PDE into a system of continuous

and interdependent ODEs, which can then be solved by using efficient time integra-

tion schemes. However, this method is suitable only for certain classes of partial

differential equations, namely initial value problems (IVPs). Fortunately, the pricing

of the European options meets this criteria. An example of an unsuitable partial

differential equation would be the standard Laplace equation which does not have

any such initial conditions. The resulting IVPs in our case are solved by using the

MATLAB ode suite [13].

After we study the method of lines, we discuss another class of numerical methods,

namely, a cubic spline interpolation. In terms of applicability, the approach based on

splines is more flexible than the one based on method of line.

The rest of the paper is organized as follows. In Section 2, we describe an option

pricing problem and show how to reduce it to a simple parabolic problem. The
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numerical methods are constructed in sections 3 and 4. Comparative numerical results

are presented in Section 5 whereas in Section 6 we summarize the main outcomes.

2. Problem description

The value of a European put option satisfies the Black-Scholes equation with

appropriately specified final and boundary conditions [14, 17]:

(2.1)
∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 < S < ∞ , 0 < t ≤ T.

The parabolic equation (2.1) satisfies the boundary conditions

(2.2) V (0, t) = V0(t), V (∞, t) = VT (S),

and a final payoff condition

(2.3) V (S, T ) = VT (S),

for given V0(t), V (∞, t) and VT (S).

In the above, V = V (S, t), S is the value of the underlying asset at time t, σ is

the volatility of the underlying asset; E is the exercise price; r is the interest rate and

T is the expiry time.

Note that Black and Scholes had proposed the backwards parabolic equation

model (2.1) for the valuation of European options with the following final condition

at t = T :

(2.4) V (S, T ) = max(E − S, 0).

The boundary condition at S = 0 satisfies

(2.5) V (S, t) = Ee−r(T−t) − S,

and the boundary condition at S = +∞ satisfies

(2.6) V (S, t) = 0.

Using the log transformation, we transform the Black-Scholes equation (2.1) to a

standard diffusion equation as follows:

(2.7) S = Eex, t = T −
2τ

σ2
, V (S, t) = E exp

[

−
1

2
(k − 1)x −

1

4
(k + 1)2τ

]

u(x, τ),

and setting k = 2r/σ2, we obtain

(2.8)
∂u

∂τ
=

∂2u

∂x2
, −∞ < x < ∞, 0 < τ ≤

1

2
σ2T.

The final condition (2.4) is transformed to the initial condition

(2.9) u(x, 0) = f(x) = max

(

exp

[

1

2
(k − 1)x

]

− exp

[

1

2
(k + 1)x

]

, 0

)
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and the boundary conditions (2.5) and (2.6) are transformed to

(2.10) u
−∞

(τ) = exp

[

1

2
(k − 1)x

−∞
+

1

4
(k + 1)2τ

]

exp

(

−
2rτ

σ2

)

,

and

(2.11) u
∞

(τ) = 0.

In next two sections, we explain two different numerical approaches to solve the above

reduced problem.

3. Solving option pricing problem by method of lines

The method of lines (MOL) is used to solve diffusion equations by reducing the

problem to an IVP. This is done by introducing approximations for the x−derivatives,

and using initial value methods to solve the resulting problem. The basic idea behind

the MOL is to replace the spatial (boundary-value) derivatives in the PDE with

algebraic approximations. Once this is done, the spatial derivatives are no longer

stated explicitly in terms of the spatial independent variables. Thus, in effect, only

the initial-value variable, typically time in a physical problem, remains. In other

words, with only one remaining independent variable, we have a system of ODEs

that approximate the original PDE. Once formulating the approximating system of

ODEs is done, we can apply any integration algorithm for initial-value ODEs to

compute an approximate numerical solution to the PDE. Thus, one of the salient

features of the MOL is the use of existing, and generally well-established, numerical

methods for IVPs for ODEs.

To proceed with, first we discretize the domain. The infinite interval −∞ < x <

∞ is replaced by a finite interval x
−∞

≤ x ≤ x
∞

. The end values x
−∞

= xmin < 0

and x
∞

= xmax > 0 should be chosen in such a way that for Smin = Eex−∞, Smax =

Eex∞ and the interval Smin ≤ S ≤ Smax, a sufficiently smooth approximation can be

obtained. Then for a suitable integer n, the step length in x-direction is defined by

∆x = h = (x
∞
− x

−∞
)/n.

To illustrate the procedure, we carry out the following steps (see [9] for further

details) for the diffusion equation (2.8).

The first step is to evaluate the equation at x = xi. This gives

(3.1) uτ(xi, τ) = uxx(xi, τ), 0 ≤ τ ≤
1

2
σ2T.

Introducing the central difference approximation for the spatial derivative, we obtain

(3.2) uτ (xi, τ) =
u(xi+1, τ) − 2u(xi) + u(xi−1, τ)

h2
+ O(h2).



NUMERICAL METHODS FOR OPTION PRICING 525

Dropping the truncation error term, we obtain

(3.3)
d

dτ
ui(τ) =

ui+1(τ) − 2ui(τ) + ui−1(τ)

h2
, 1 ≤ i ≤ n − 1,

where ui(τ) is the resulting approximation for u(xi, τ).

Combining all the above steps, we see that the solution to ui(τ) is the solution

to the following IVP:

(3.4a) u0(x) = max

(

exp

[

1

2
(k − 1)x

]

− exp

[

1

2
(k + 1)x

]

, 0

)

, (initial value),

(3.4b)































































u0 = u
−∞

(τ), (value at the left boundary),
(

du
dτ

)

1
= 1

h2 (u2 − 2u1 + u0) ,
(

du
dτ

)

2
= 1

h2 (u3 − 2u2 + u1) ,
...

...
...

(

du
dτ

)

n−2
= 1

h2 (un−1 − 2un−2 + un−3) ,
(

du
dτ

)

n−1
= 1

h2 (un − 2un−1 + un−2) ,

un = u
∞

(τ) (the value at right boundary).

Solving the above problem, we obtain the approximation for u(xi, τ).

Collecting the ui’s together (excluding the left and the right boundary values),

equation (3.4b) can be written in a vector form as

(3.5)
d

dt
u(t) = Cu.

where

(3.6) u(t) =













u1(t)

u2(t)
...

un−1(t)













and

(3.7) C =
1

h2























−2 1

1 −2 1 0

1 −2 1
. . .

. . .
. . .

0 1 −2 1

1 −2























.
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The initial condition u(x, 0) = f(x) now takes the form

(3.8) u(0) =













f1

f2

...

fn−1













.

Equations (3.5)–(3.8) represents a standard IVP. Furthermore, we can see that the

system is strictly diagonally dominant and hence non-singular. This guarantee the

uniqueness of the solution. We can now use a variety of IVP solvers to solve the

system for u and recover the solution by using the transformation (2.7). To this end,

in this work, we have used MATLAB solvers ode45, ode15s and ode23s.

4. Solving option pricing problem by cubic splines

In this section, we present a numerical method which is based on implicit Euler for

temporal semi-discretization and then the use of a cubic spline for the discretization

in space.

We consider a two-dimensional grid as follows: Let ∆τ and ∆x, be the mesh step-

sizes in the τ and x-directions. The step-size in τ -direction is given by ∆τ = τmax/m

with τmax = σ2T/2 where m is an integer. The calculation of the step-size for the x-

discretization is done as in the previous section where the method of lines was applied.

Note that the equidistant grid is defined in terms of x and τ , and not for S and t.

Transforming the (x, τ)-grid via the transformation in (2.7) back to the (S, t)-plane,

leads to a nonuniform grid with unequal distances of the grid lines S = Si = Eexi.

Time semi-discretization. Now for temporal discretization, we use finite difference

technique with uniform step-size ∆τ , for discretizing equation (2.8) and obtain the

following system of linear ordinary differential equations:

(4.1a) u0 = f(x), −∞ < x < ∞,

(4.1b)
um+1 − um

∆τ
= um+1

xx , −∞ < x < ∞, τ > 0,

with the boundary conditions,

(4.1c) um+1(x
−∞

) = u
−∞

(τm+1), um+1(x
∞

) = u
∞

(τm+1),

where um+1 is the solution of Eq. (4.1) at (m+1)th time level. Here um = u(x, τm), ∆τ

is the time step-size and the superscript m denotes mth time level, i.e., τm = m∆τ .

At time level m = 0, we can rewrite Eq.(4.1) as

(4.2a) u0 = f(x), −∞ < x < ∞,

(4.2b) δu1
xx + u1 = u0, −∞ < x < ∞, τ > 0 ,
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with the boundary conditions,

(4.2c) u1(x
−∞

) = u
−∞

(τ 1), u1(x
∞

) = u
∞

(τ 1),

where δ = −∆τ .

The same can be done at all levels. Then at each of these levels, we will use cubic

spline approximations to solve the problem in spatial direction. This is explained

below.

Spatial discretization. In this section, we describe the derivation of the cubic

spline, in general, as well as in context of our problems.

Cubic spline in general. Suppose we have n + 1 points x0, x1, . . . , xn in the segment

[a, b] which satisfy a grid a = x0 < x1 < · · · < xn = b. These points are called

knots. The points x0 and xn are called end (boundary) knots. The grid above is

called uniform if a distance between every two neighboring knots is the same [15].

A function S(x) given on segment [a, b] is called a spline of type p + 1 (degree p)

if this function consists of piecewise polynomial which are p − 1 times continuously

differentiable on every segment △j = [xj , xj+1], j = 0, 1, . . . , n − 1, that is, we can

write S(x) in the form

(4.3) S(x) = Sj(x) =

p
∑

k=0

a
(j)
k (x − xj)

k, j = 0, 1, . . . , n − 1,

where S(x) ∈ Cp−1[a, b]. The condition S(x) ∈ Cp−1[a, b] means that the function

S(x) and its derivatives S
′

(x), S
′′

(x), . . . , Sp−1(x) at the points x1, x2, . . . , xn−1 are

continuously differentiable. There is a separate cubic polynomial for each interval:

(4.4) Sj(x) = a
(j)
0 + a

(j)
1 (x − xj) + a

(j)
2 (x − xj)

2 + a
(j)
3 (x − xj)

3.

Note that the index (j) of coefficient a
(j)
k indicates a system of numbers of the function

S(x), see, e.g., [15], for every partial segment △j.

Given a function y(x) defined on [a, b] and a set of knots a = x0 < x1 < · · · <

xn = b, a cubic spline interpolant, S, for y(x) is a function that satisfies the following

conditions [2]:

(a) S is a cubic polynomial denoted by Sj on the subinterval [xj , xj+1] for j =

0, 1, . . . , n − 1,

(b) S(xj) = y(xj) for j = 0, 1, . . . , n,

(c) Sj+1(xj+1) = Sj(xj+1) for j = 0, 1, . . . , n − 2,

(d) S
′

j+1(xj+1) = S
′

j(xj+1) for j = 0, 1, . . . , n − 2,

(e) S
′′

j+1(xj+1) = S
′′

j (xj+1) for j = 0, 1, . . . , n − 2,

(f) one of the following set of end (boundary) conditions is satisfied

1. S
′′

(x0) = S
′′

(xn) = 0, (free or natural boundary),
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2. S
′

(x0) = y
′

(x0) and S
′

(xn) = y
′

(xn), (clamped boundary).

When the free boundary conditions occur, the spline is called a natural spline,

and it approximately takes the shape of a long elastic rod if forced to go through the

data points. In general clamped splines are more accurate approximations since they

include more information about the function.

Why do we need the end conditions? In each interval we need to find 4 coefficients

to specify the cubic polynomials, and we have n intervals. We therefore have a total

of 4n unknowns to find. The conditions (b) give n + 1 independent equations, and

the conditions (c), (d) and (e) give 3× (n− 1) independent equations. So we have 4n

unknowns and 4n − 2 equations. There are two missing equations, and that is why

the end (boundary) conditions (f) are required. The conditions (b) are called the

interpolation conditions, and the conditions (c), (d) and (e) are called the continuity

conditions.

Now we drive the equation for Sj(x) on the interval [xj , xj+1]. First we define the

numbers zj = S
′′

(xj). These zj exist for 0 ≤ j ≤ n and satisfy

(4.5) lim
x→x−

j

S
′′

(x) = zj = lim
x→x+

j

S
′′

(x), (1 ≤ j ≤ n − 1),

because S
′′

(x) is continuous at each interior knots [11].

Since Sj(x) is a cubic polynomial on [xj , xj+1], S
′′

(x) is a linear function satisfying

S
′′

j (xj) = zj and S
′′

j (xj+1) = zj+1 and therefore it is given by the straight line between

zj and zj+1, i.e.,

(4.6) S
′′

j (x) =
zj

hj

(xj+1 − x) +
zj+1

hj

(x − xj),

where hj = xj+1 − xj . Integrating twice, we obtain

(4.7) Sj(x) =
zj

6hj

(xj+1 − x)3 +
zj+1

6hj

(x − xj)
3 + C(x − xj) + D(xj+1 − x),

where C and D are the integration constants. The interpolation conditions Sj(xj) =

yj and Sj(xj+1) = yj+1 can be imposed on Sj to determine C and D; where we use

the notation y(xj) = yj. Further simplification leads to

Sj(x) =
zj

6hj

(xj+1 − x)3 +
zj+1

6hj

(x − xj)
3 +

(

yj+1

hj

−
zj+1hj

6

)

(x − xj)

+

(

yj

hj

−
zjhj

6

)

(x − xj).(4.8)

To determine z1, z2, . . . , zn−1, we use the continuity conditions for S
′

. At the interior

knots xj , we should have S
′

j−1(xj) = S
′

j(xj). Equation (4.8) at x = xj gives

(4.9) S
′

j(xj) = −
hj

3
zj −

hj

6
zj+1 −

yj

hj

+
yj+1

hj

,
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and

(4.10) S
′

j−1(xj) =
hj−1

6
zj−1 +

hj−1

3
zj −

yj−1

hj−1
+

yj

hj−1
.

The continuity condition therefore implies

(4.11) hj−1zj−1 + 2(hj + hj−1)zj + hjzj+1 =
6

hj

(yj+1 − yj) −
6

hj−1
(yj − yj−1),

where 1 ≤ j ≤ n − 1. It then gives a system of n − 1 linear equations for the

n + 1 unknowns z0, z1, . . . , zn. Also z0 = 0 and zn = 0 corresponds to placing simple

supports at the end [1], and then we solve the resulting system of equations to obtain

z1, z2, . . . , zn−1. The resulting spline function is called a natural cubic spline [11]. The

linear system of equations (4.11) with z0 = 0 and zn = 0 is symmetric, tridiagonal,

diagonally dominant, and of the form

(4.12)























u1 h1

h1 u2 h2

h2 u3 h3

. . .
. . .

. . .

hn−3 un−2 hn−2

hn−2 un−1













































z1

z2

z3

...

zn−2

zn−1























=























v1

v2

v3

...

vn−2

vn−1























where

hj = xj+1 − xj , uj = 2(hj + hj−1), bj =
6

hj

(yj+1 − yj), vj = bj − bj−1.

Application of cubic spline to option pricing problem. The approximate solu-

tion of problem (4.2) is given in the form of a cubic spline S(x), which is denoted by

Sj(x) on each subinterval [xj , xj+1] for j = 0, 1, . . . , n − 1, and satisfies the equation

(4.13)







δS
′′

(xj) + S(xj) = fj , x
−∞

6 xj 6 x
∞

S(x
−∞

) = u
−∞

(τ), S(x+∞
) = u

∞
(τ),

where fj = f(xj). Then we have

(4.14) zj = S
′′

j (xj) =
1

δ
[fj − Sj(xj)] =

1

δ
[fj − uj] ,

where S ≈ u. We substitute zj in equations (4.11) and obtain

1

δ
hj−1 [fj−1 − uj−1] +

2

δ
(hj + hj−1) [fj − uj] +

1

δ
hj [fj+1 − uj+1]

=
6

hj

uj+1 −
6

hj

uj −
6

hj−1

uj +
6

hj−1

uj−1,(4.15)
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which upon simplifications leads to

[

−hj−1

δ
−

6

hj−1

]

uj−1 +

[

−2(hj + hj−1)

δ
+

6

hj

+
6

hj−1

]

uj +

[

−hj

δ
−

6

hj

]

uj+1

= −
hj−1

δ
fj−1 −

−2(hj + hj−1)

δ
fj −

hj

δ
fj+1.

Multiplying by −δ, we have for 1 ≤ j ≤ n − 1:

[

hj−1 +
6δ

hj−1

]

uj−1 +

[

2(hj + hj−1) −
6δ

hj

−
6δ

hj−1

]

uj +

[

hj +
6δ

hj

]

uj+1

= hj−1fj−1 + 2(hj + hj−1)fj + hjfj+1.(4.16)

By choosing a uniform mesh spacing h, equation (4.16) becomes

[

h +
6δ

h

]

uj−1 +

[

4h −
12δ

h

]

uj +

[

h +
6δ

h

]

uj+1

= hfj−1 + 4hfj + hfj+1,(4.17)

or

(4.18) γ−

j yj−1 + γc
jyj + γ+

j yj+1 = q−j fj−1 + qc
jfj + q+

j fj+1,

where

γ−

j = h +
6δ

h
, γc

j = 4h −
12δ

h
, γ+

j = h +
6δ

h
; q−j = h, qc

j = 4h, q+
j = h.

Equation (4.18) gives a system of n−1 linear equations for the unknowns u1, u2, . . . , un−1

with u0 = u
−∞

(τ) and un = u
∞

(τ) of the form

(4.19) Au = q,

where

(4.20) A =























γc
1 γ+

1

γ−

2 γc
2 γ+

2

γ−

3 γc
3 γ+

3

. . .
. . .

. . .

γ−

n−2 γc
n−2 γ+

n−2

γ−

n−1 γc
n−1























,
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(4.21) u =























u1

u2

u3

...

un−2

un−1























,

and

(4.22) q =























q−1 f0 + qc
1f1 + q+

1 f2 − γ−

1 u0

q−2 f1 + qc
2f2 + q+

2 f3

q−3 f2 + qc
3f3 + q+

3 f4

...

q−n−2fn−3 + qc
n−2fn−2 + q+

n−2fn−1

q−n−1fn−2 + qc
n−1fn−1 + q+

n−1fn − γ+
n−1un























.

We can see that the system is strictly diagonally dominant and hence non-singular.

Hence this method applied to the problem above using a basis of cubic splines has a

unique solution. Note that at each time level we solve the system (4.19) to get the

solution of equation (2.8).

5. Numerical simulations and results

In this section, we present some numerical results for the solution of Black-Scholes

equation for pricing a European put option. The values V (S, t) can be interpreted as

a piece of surface over the subset S > 0, 0 ≤ t ≤ T of the (S, t)-plane. We use the

following parameters that are used for numerical simulations:

Expiration date T = 0.5 (year)

Exercise price E = 10.0

Risk free interest rate r = 0.05

Volatility σ = 0.2

Number of equations m = 100

Figure 1 illustrates the surface for the European put option (obtained by using

MOL) for the fixed values of E, T, r and σ. Through Figure 2, we explain that the

European put option (obtained by using MOL) can take values above the lower bound

Ee−r(T−t) − S. For small values of S, the value V approaches its lower bound. The

similar observation is made when we used cubic spline and the results are presented

in Figures 3 and 4, respectively.

In Table 1, we have tabulated some comparative results. It contains the exact,

Quasi-RBFs and MOL solutions for the European put option.
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In Table 2, we have tabulated the exact solution, B-spline solution and the solu-

tion obtained by method of lines along with MATLAB solver ode45 for a European

put option. We compute results using B-splines with the parameters given above

along with ∆t = 10−5 and ∆x = 0.005.

In Table 3 we have tabulated the exact solution and those obtained by using

method of lines along with MATLAB solvers ode45, ode15s and ode23s.
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Figure 1. Values of European put option obtained by using method

of lines for T = 6/12, E = 10, r = 0.05, σ = 0.20 with ∆x = 0.05,

x ∈ (−10, 1).

Table 4 contains the exact, B-spline and cubic spline solutions for the European

put option for E = 10, r = 0.05, T = 0.5, and σ = 0.20, with ∆t = 10−5 and

∆x = 0.005. Note that the results obtained by cubic spline and B-spline are exactly

the same. In Table 5, we have tabulated the exact, B-spline and cubic spline solutions

for the European put option for E = 10, r = 0.05, T = 0.5, and σ = 0.20, with

∆t = 10−5 and ∆x = 0.008. Once again the results obtained by cubic spline and

B-spline are exactly the same.

6. Summary and scope for future research

In this paper we studied two classes of numerical methods for a European option

pricing problem which is represented by a time-dependent parabolic partial differential

equation. The first method is based on the semi-discretization by the Method of Lines

and then using a finite difference approximation in space where several MATLAB

ode solvers are used to perform the time integration. The second one is based on
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Figure 2. Values of European put option at t = 0 using method of

lines for T = 6/12, r = 0.05, σ = 0.20 with ∆x = 0.05. The curve

with ‘*’ shows payoff whereas the solid curve represents the value of

the option.

Table 1. Comparison between the exact solution, Quasi-RBF solution

[10] and solution obtained by method of lines along with MATLAB

solver ode45 for a European put option for two different space step-sizes.

MOL solutions

S Exact solution Quasi-RBF solution [10] ∆x = 0.01 ∆x = 0.005

2.00 7.7531 7.7531 7.7531 7.7531

4.00 5.7531 5.7531 5.7531 5.7531

6.00 3.7532 3.7532 3.7532 3.7532

7.00 2.7568 2.7568 2.7569 2.7568

8.00 1.7987 1.7988 1.7988 1.7987

9.00 0.9880 0.9881 0.9881 0.9880

10.00 0.4420 0.4420 0.4416 0.4419

11.00 0.1606 0.1606 0.1607 0.1606

12.00 0.0483 0.0483 0.0484 0.0484

13.00 0.0124 0.0124 0.0124 0.0124

14.00 0.0028 0.0028 0.0028 0.0028

15.00 0.0006 0.0006 0.0006 0.0006

16.00 0.0001 0.0001 0.0001 0.0001
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Table 2. Comparison between the exact solution, B-spline solution

and solution obtained by method of lines along with MATLAB solver

ode45 for a European put option for two different space step-sizes.

MOL solutions

S Exact solution B-spline solution ∆x = 0.01 ∆x = 0.005

2.00 7.7531 7.7531 7.7531 7.7531

4.00 5.7531 5.7531 5.7531 5.7531

6.00 3.7532 3.7532 3.7532 3.7532

7.00 2.7568 2.7568 2.7569 2.7568

8.00 1.7987 1.7987 1.7988 1.7987

9.00 0.9880 0.9880 0.9881 0.9880

10.00 0.4420 0.4419 0.4416 0.4419

11.00 0.1606 0.1606 0.1607 0.1606

12.00 0.0483 0.0484 0.0484 0.0484

13.00 0.0124 0.0124 0.0124 0.0124

14.00 0.0028 0.0028 0.0028 0.0028

15.00 0.0006 0.0006 0.0006 0.0006

16.00 0.0001 0.0001 0.0001 0.0001

Table 3. Comparison between the exact solution and solution ob-

tained by method of lines along with different MATLAB solvers for the

European put option.

MOL solutions with ∆x = 10−3

S Exact solution ode45 ode15s ode23s

2.00 7.7531 7.7531 7.7531 7.7531

4.00 5.7531 5.7531 5.7531 5.7531

6.00 3.7532 3.7532 3.7532 3.7532

7.00 2.7568 2.7568 2.7568 2.7569

8.00 1.7987 1.7987 1.7987 1.7987

9.00 0.9880 0.9880 0.9880 0.9880

10.00 0.4420 0.4419 0.4419 0.4419

11.00 0.1606 0.1606 0.1606 0.1606

12.00 0.0483 0.0484 0.0484 0.0483

13.00 0.0124 0.0124 0.0124 0.0124

14.00 0.0028 0.0028 0.0028 0.0028

15.00 0.0006 0.0006 0.0006 0.0006

16.00 0.0001 0.0001 0.0001 0.0001
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Figure 3. Values of European put option obtained by using cubic

spline for T = 6/12, E = 10, r = 0.05, σ = 0.20 with ∆τ = 0.001, and

∆x = 0.05, x ∈ (−10, 1).
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Figure 4. Values of European put option at t = 0 using cubic spline

for T = 6/12, r = 0.05, σ = 0.20 with ∆τ = 0.001, and ∆x = 0.05.

The curve with ‘*’ shows payoff whereas the solid curve represents the

value of the option.

the temporal semi-discretization by implicit Euler and a cubic spline discretization in
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Table 4. Comparison between the exact, B-spline and the cubic spline

solutions for the European put option for E = 10, r = 0.05, T = 0.5,

and σ = 0.2. With ∆x = 0.005 and ∆t = 10−5.

S Exact solution B-spline solution Cubic spline solution

2.00 7.7531 7.7531 7.7531

4.00 5.7531 5.7531 5.7531

6.00 3.7532 3.7532 3.7532

7.00 2.7568 2.7568 2.7568

8.00 1.7987 1.7987 1.7987

9.00 0.9880 0.9880 0.9880

10.00 0.4420 0.4419 0.4419

11.00 0.1606 0.1606 0.1606

12.00 0.0483 0.0484 0.0484

13.00 0.0124 0.0124 0.0124

14.00 0.0028 0.0028 0.0028

15.00 0.0006 0.0006 0.0006

16.00 0.0001 0.0001 0.0001

Table 5. Comparison between the exact, B-spline and the cubic spline

solutions for the European put option for E = 10, r = 0.05, T = 0.5,

and σ = 0.2. With ∆x = 0.008 and ∆t = 10−5.

S Exact solution B-spline solution Cubic spline solution

2.00 7.7531 7.7531 7.7531

4.00 5.7531 5.7531 5.7531

6.00 3.7532 3.7532 3.7532

7.00 2.7568 2.7568 2.7568

8.00 1.7987 1.7987 1.7987

9.00 0.9880 0.9880 0.9880

10.00 0.4420 0.4418 0.4418

11.00 0.1606 0.1606 0.1606

12.00 0.0483 0.0483 0.0483

13.00 0.0124 0.0124 0.0124

14.00 0.0028 0.0028 0.0028

15.00 0.0006 0.0006 0.0006

16.00 0.0001 0.0001 0.0001

space (asset) direction. As is seen from the tabular results, for each case, we obtained

the results that are comparable with those seen in the literature.
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Currently, we are investigative whether we can extend the two approaches pro-

posed in this paper to solve the nonlinear Black-Scholes partial differential equation

modelling European and American option pricing problems for multi assets.
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