
Neural, Parallel, and Scientific Computations 22 (2014) 609-622

Received May 19, 2014 1061-5369 $15.00 © Dynamic Publishers, Inc

PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON

UNIFIED DATAPATH

MOSTAFA I. SOLIMAN
1, 2

1
 Computer Science and Information Department, Community College,

Taibah University, Al-Madinah Al-Munawwarah 2898, Saudi Arabia.
2
 Computer and System Section, Electrical Engineering Department, Faculty of Engineering,

Aswan University, Aswan 81542, Egypt.

mossol@ieee.org and mossol@yahoo.com

Abstract. This paper extends our proposed processor VVSHP by

encryption/decryption/key-expansion units based on RC5 cryptographic algorithm to

process encrypted scalar/vector data. VVSHP has a modified five-stage pipeline for

executing multi-scalar/vector instructions by fetching 128-bit VLIW instruction,

decoding/reading operands of four individual instructions, executing four scalar/vector

operations, accessing memory to load/store 128-bit data, and writing back up to four 32-

bit results. The key-expansion unit accepts 96-bit user's secrete key to generate the

expanded key array needed for the encryption and decryption units. By extending the

execute stage with encryption unit and memory access stage by decryption unit,

CryptoVVSHP can process encrypted 32-bit data with lengths varying from 1 to 256.

Thus, before storing into memory, scalar/vector data are encrypted, and after loading

from memory, scalar/vector data are decrypted. Therefore, data only ever exists as

plaintext inside the processor itself. The design of the proposed CryptoVVSHP processor

is implemented using VHDL targeting the Xilinx FPGA Virtex-5, XC5VLX110T-

3FF1136 device. The number of LUT flip-flop pairs used for implementing

CryptoVVSHP is 109737, where the numbers of unused flip-flops, unused LUTs, and

fully used LUT flip-flop pairs are 65178, 40904, and 3655, respectively. The complexity

of CryptoVVSHP is about 23% higher than VVSHP.

Keywords - Encryption/decryption; RC5; vector processing; VLIW; unified datapath;

FPGA/VHDL implementation.

1. INTRODUCTION

Nowadays, many applications need security and privacy of data. Encryption

techniques are used for translating plain text data (plaintext) into something that appears

to be random and meaningless (ciphertext). Conversely, decryption is the process of

mailto:mossol@ieee.org
mailto:mossol@yahoo.com

610 MOSTAFA I. SOLIMAN

converting ciphertext back to plaintext. In contrast to public-key cryptography, a

symmetric key algorithm like RC5 [1] uses the same key for both encrypting plaintext

and decrypting ciphertext. Normally, encrypted data needs to be decrypted before

processing. However, hardware modifications can be made to a computer allowing the

data to exist in decrypted form inside its CPU, but such that the decrypted data is not

externally accessible [2]. Sagedy [3] proposed encrypted MIPS processor that can

execute encrypted instructions and can operate on encrypted scalar data. Structural

modifications necessary to execute encrypted instructions were identified. Moreover,

cryptographic modules based on the DES algorithm were incorporated into MIPS

pipeline to decrypt instructions, encrypt data being written to memory, and decrypt data

being read from memory. Ahituv et al. [4] presented three advantages for encrypted

processing: (1) strengthening of data security, (2) considerable savings in computer time,

and (3) savings in the costs of handling part of the security problems of the operating

system. They developed an algorithm to prove the feasibility of the processing data that

are in an encrypted mode. Thus, one can perform arithmetic operations on encrypted data

without the need to convert the data back to its non-encrypted origin before performing

the required operations. On the other hand, many algorithms based on homomorphic

functions have been proposed for processing encrypted data [5, 6]. Such functions enable

the processing of the operation in an encrypted way and even the decryption of the result,

but are lacking in terms of the encryption strength [4].

This paper follows the direction of modifying the processor architecture to allow the

data to exist in decrypted form internally; however, decrypted data is not externally

accessible. The proposed processor architecture processes not only encrypted scalar but

also encrypted vector data. The main idea behind our proposed processor is that

load/store instructions will automatically cause the appropriate decryption/encryption

operations to be performed on scalar/vector data. Thus, after loading encrypted data from

memory, they are decrypted and then stored in the register file. Conversely, before

storing data from register file to memory, they are encrypted.

This paper extends our proposed processor VVSHP [7] by encryption/decryption/key-

expansion units based on RC5 encryption algorithm to process encrypted scalar/vector

data. VVSHP merges VLIW and vector processing techniques for a simple, high-

performance processor architecture. On unified parallel datapaths, VVSHP processes

multiple scalar instructions packed in VLIW and vector instructions by issuing up to four

scalar/vector operations in each cycle. However, it cannot issue more than one memory

operation at a time, which loads/stores 128-bit scalar/vector data from/to data memory.

Four 32-bit results can be written back into VVSHP register file per clock cycle.

The CryptoVVSHP presented in this paper loads/decrypts or encrypts/stores 128-bit

scalar/vector data from/to data memory. The encryption and decryption are based on the

well-know RC5 algorithm [1]. By extending the execute stage with encryption unit and

memory access stage by decryption unit, CryptoVVSHP can process 32-bit encrypted

data with lengths varying from 1 (scalar) to 256 (vector). The design of our proposed

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 611

CryptoVVSHP processor is implemented using VHDL targeting the Xilinx FPGA

Virtex5, XC5VLX110T-3FF1136 device [8].

The rest of this paper is organized as follows. Section II describes in detail RC5 since

the extended encryption/decryption/key-expansion units to VVSHP are based on RC5

cryptographic algorithm. In addition, it presents the FPGA implementation of

encryption/decryption/key-expansion units. The architecture of our proposed

CryptoVVSHP processor is described in details in Section III. Section IV presents the

FPGA implementation of the CryptoVVSHP on Xilinx Virtex-5. Finally, Section V

concludes this paper and gives directions for future work.

2. FPGA IMPLEMENTATION OF RC5 ALGORITHM

RC5 is designed by Rivest, which is a symmetric-key block cipher notable for its

simplicity [1]. A key feature of RC5 is the heavy use of data-dependent rotations. RC5

has a variable word size, a variable number of rounds, and a variable length secret key.

For encrypting/decrypting scalar/vector data on CryptoVVSHP, this section presents the

FPGA implementation of the encryption, decryption, and key-expansion units based on

RC5 algorithm with the following parameters:

 the number of rounds (r) equals 8,

 the size of the expanded key table (t = 2*(r+1)) equals 18,

 the word size in bits (w) equals 16,

 the word size in bytes (u = w /8) equals 2,

 the number of bytes in the secrete key (b) equals 12,

 the number of words in the secrete key (c = b/u) equals 6,

 the number of iterations of the key-expansion module (n = 3*max(t, c)) equals 54,

 the constant P16 used in the key-expansion module equals (b7e1)16 or

(1011011111100001)2, where Pw = Odd((e – 2)*2
w
 and e = 2.718281828459, and

 the constant Q16 used in the key-expansion module equals (9e37)16 or

(1001111000110111)2, where Qw = Odd(( – 1)*2
w
 and  = 1.618033988749.

2.1 RC5 Encryption: Description and FPGA Implementation

The encryption module of RC5 accepts a block of data in two w-bit inputs A0 and B0,

as shown in Figure 1. Moreover, it accepts the expanded key array S[0:t-1], which stores

the round keys generated by the key-expansion module. After r rounds, the encryption

module generates an encrypted block in two w-bit outputs Ar and Br. Listing 1 presents

the pseudo-code of the RC5 encryption algorithm, where the main operations are addition

(+), XOR () and shift-left (<<<).

612 MOSTAFA I. SOLIMAN

Listing 1: RC5 encryption algorithm

A0 = A0 + S[0]

B0 = B0 + S[1]

for i = 1 to r

 Ai = ((Ai-1  Bi-1) <<< Bi-1) + S[2*i]

 Bi = ((Bi-1  Ai) <<< Ai) + S[2*i+1]

Figure 1 shows the block diagram of the unrolled encryption module of RC5

algorithm, where a single clock cycle is required for encrypting 2×w-bit. It is clear that

(2r+2)×w-bit adders, 2r×w-bit shift-left, and 2r×w-bit XOR are needed for implementing

the encryption module with unrolling r rounds. Figure 2 shows the number of LUTs and

operating frequencies of the RC5 encryption as increasing the number of unrolled rounds

from 5 to 15. To compromise between hardware complexity, frequency, and security, the

A0 B0

A1

B1

 +

<<<

+
S[4]

<<<

+
S[5]

A2 B2

 +

+
S[0]

 +

<<<

+
S[2]

<<<

+
S[3]

A1 B1

 +

+
S[1]

A2

B2

 +

<<<

+
S[6]

<<<

+
S[7]

A3 B3

 +

Ar-1

Br-1

 +

<<<

+
S[2r]

<<<

+
S[2r+1]

Ar Br

 +

Round 1 Round 2 Round 3 Round r

…………………

…………………

…………………

Fig. 1. Unrolled RC5 encryption algorithm with r rounds.

Fig. 2. FPGA implementation of the RC5 encryption algorithm with r rounds.

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 613

number of rounds (r) is selected to be eight. Moreover, Table 1 presents the statistics of

hardware implementation of the encryption unit with unrolling eight rounds on Virtex-5

XC5VLX110T. The number of LUT flip-flop pairs used is 954, where the numbers with

unused flip-flops, unused LUTs, and fully used LUT-FF pairs are 954, 0, and 0,

respectively.

2.2 RC5 Decryption: Description and FPGA Implementation

By reversing the operations, the decryption process can be easily derived from the

encryption algorithm. Listing 2 presents the pseudo-code of the RC5 decryption

algorithm, where the main operations are subtraction (–), XOR () and shift-right (>>>).

Listing 2: RC5 decryption algorithm

for i = r downto 1

 Bi-1 = ((Bi – S[2*i+1] >>> Ai)  Ai

 Ai-1 = ((Ai – S[2*i] >>> Bi-1)  Bi-1

B0 = B0 – S[1]

A0 = A0 – S[0]

Like encryption, the unrolled decryption of RC5 algorithm is implemented to decrypt

2×w-bit in a single clock cycle. (2r+2)×w-bit subtractors, 2r×w-bit shift-right, and 2r×w-

bit XOR are needed for implementing the decryption module with unrolling r rounds.

Figure 3 shows the number of LUTs and operating frequency of the RC5 decryption

module as increasing the number of unrolled rounds from 5 to 15. Like encryption

module, the number of rounds is selected to be eight to compromise between hardware

complexity, frequency, and security. In addition, Table 2 presents the statistics of

hardware implementation of the decryption unit with unrolling eight rounds on Virtex-5

XC5VLX110T. The number of LUT flip-flop pairs used is 1062, where the numbers with

Table 1: HDL synthesis report of the RC5 encryption unit

Macro

Statistics

16-bit adder: 18
1-bit register: 1
32-bit register: 1
16-bit xor2: 16

Slice Logic
Utilization

Number of Slice LUTs: 954
 Number used as Logic: 954

Slice Logic
Distribution

Number of LUT Flip Flop pairs used: 954
 Number with an unused Flip Flop: 954
 Number with an unused LUT: 0
 Number of fully used LUT-FF pairs: 0

IO
Utilization

Number of IOs: 356
 Number of bonded IOBs: 356
 IOB Flip Flops/Latches: 33

Timing (ns)
Summary

Minimum period: No path found
Minimum input arrival time before clock: 54.863
Maximum output required time after clock: 2.775
Maximum combinational path delay: No path found

614 MOSTAFA I. SOLIMAN

unused flip-flops, unused LUTs, and fully used LUT-FF pairs are 1062, 0, and 0,

respectively.

2.3 RC5 Key-Expansion: Description and FPGA Implementation

The key-expansion module expands the user's secret key K to fill the expanded key

array S, where S resembles an array of t = 2*(r +1) random binary words determined by

K. The key-expansion algorithm uses two "magic constants": Pw = Odd((e – 2)*2
w
 and

Qw = Odd(( – 1)*2
w
, where e is the base of natural logarithms (2.718281828459),  is

the golden ratio (1.618033988749), and Odd(x) is the odd integer nearest to x. For w =

16, P16 equals (b7e1)16 or (1011011111100001)2, and Q16 equals (9e37)16 or

(1001111000110111)2.

As discussed in [1], the key-expansion algorithm consists of three simple algorithmic

parts, see Listing 3. The first step is to copy the secret key K[0: b-1] into an array L[0: c-

1], where b is the number of bytes in the secrete key, c is the number of words in the

secrete key (c = b/u), and u is the number of bytes per word. Note that any unfilled byte

Fig. 3. FPGA implementation of decryption algorithm with r rounds.

Table 2: HDL synthesis report of the RC5 decryption unit

Macro

Statistics

16-bit subtractor: 18
1-bit register: 1
32-bit register: 1
16-bit xor2: 16

Slice Logic
Utilization

Number of Slice LUTs: 1062
 Number used as Logic: 1062

Slice Logic
Distribution

Number of LUT Flip Flop pairs used: 1062
 Number with an unused Flip Flop: 1062
 Number with an unused LUT: 0
 Number of fully used LUT-FF pairs: 0

IO
Utilization

Number of IOs: 356
 Number of bonded IOBs: 356
 IOB Flip Flops/Latches: 33

Timing (ns)
Summary

Minimum period: No path found
Minimum input arrival time before clock: 38.704
Maximum output required time after clock: 2.775
Maximum combinational path delay: No path found

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 615

positions of L are zeroed. The second step is to initialize array S to a particular fixed

(key-independent) pseudo-random bit pattern, using an arithmetic progression modulo 2
w

determined by the "magic constants" Pw and Qw, where S[0] = Pw and S[i] = S[i – 1] + Qw,

for i = 1 to t – 1. Finally, the third step of key-expansion is to mix in the user's secret key

in three passes over the arrays S and L. More precisely, due to the potentially different

sizes of S and L, the larger array will be processed three times, and the other may be

handled more times.

Listing 3: Key-expansion algorithm

 // First step
 for i = b – 1 downto 0
 L[i / u] = (L[i / u] <<< 8) + K[i];
 // Second step
 S[0] = Pw
 for i = l to t – l
 S[i] = S[i – 1] + Qw
 // Third step
 i = j = 0
 A = B = 0
 do 3*max(t, c) times
 A = S[i] = (S[i] + A + B) <<< 3
 B = L[j] = (L[j] + A + B) <<< (A + B)
 i = (i + 1) mod(t)
 j = (j + 1) mod(c)

In contrast to encryption and decryption modules, the key-expansion module is

implemented as rolled since it is expanded only once regardless on the size of data. In

this paper, the key-expansion unit accepts 96-bit user's secrete key to generate round keys

needed for encrypting/decrypting data. According to the key-expansion module shown in

Listing 3, the number of iterations for the key-expansion module equals 56 since t (=18)

is greater than c (=6) and the number of iterations for the key-expansion module equals

3*t (=56). Thus, uploading new secrete key requires 56 clock cycles for filling the

expanded key array S. Table 3 presents the statistics of hardware implementation of the

key-expansion module on Virtex-5 XC5VLX110T. The number of LUT flip-flop pairs

used is 1172, where the numbers with unused flip-flops, unused LUTs, and fully used

LUT-FF pairs are 450, 577, and 145, respectively.

616 MOSTAFA I. SOLIMAN

Fig. 4. Block diagram of CryptoVVSHP.

 I
D

/E
X

Execute Stage

 I
F

/I
D

M
E

M
/W

B

E
X

/M
E

M

Writeback Stage

Memory Stage

Data

Memory

128×128-bit

Write

Data

ExOut

MemOut

Fetch Stage

Instruction

Memory

128×128-bit

Adder

Program

Counter
NPC

VLIW

Decodes Stage

Hazard

Detection

Control Unit

ImVal

RtVal

RsVal

F
o

r
w

a
r
d

 U
n

it

Shared Reg.
64×32-bit

Vector Reg.

48×4×32-bit

ExOut

Multiplexers

Parallel

Execution

Units

Encryption

Unit

Decryption

Unit

 Key-Expansion Unit

3. THE ARCHITECTURE OF CryptoVVSHP

VVSHP has a modified five-stage pipeline for executing multi-scalar/vector

instructions by: (1) fetching 128-bit VLIW instruction, (2) decoding/reading operands of

four individual instructions, (3) executing four scalar/vector operations, (4) accessing

memory to load/store 128-bit data, and (5) writing back up to four results [7]. Figure 4

shows that CryptoVVSHP extends VVSHP by encryption/decryption/key-expansion

units based on RC5 cryptographic algorithm to process encrypted scalar/vector data.

CryptoVVSHP uses 128-bit (4×32-bit) VLIW for encoding scalar/vector instructions. All

instructions are fixed length VLIW, which simplifies the instruction decoding hardware.

CryptoVVSHP instruction formats (R-format, I-format, and J-format), which are very

close to MIPS [9]. The first instruction in VLIW can be either scalar or vector instruction.

However, the remaining slots in VLIW must be scalar instructions. This simplifies the

Table 3: HDL synthesis of the key-expansion unit

Macro

Statistics

16-bit adder: 4
3-bit up counter: 1
5-bit up counter: 1
7-bit up counter: 1
1-bit register : 1
16-bit register: 44

Slice Logic
Utilization

Number of Slice Registers: 722
Number of Slice LUTs: 595
 Number used as Logic: 595

Slice Logic
Distribution

Number of LUT Flip Flop pairs used: 1172
 Number with an unused Flip Flop: 450
 Number with an unused LUT: 577
 Number of fully used LUT-FF pairs: 145

IO
Utilization

Number of IOs: 388
 Number of bonded IOBs: 388

Timing (ns)
Summary

Minimum period: 8.422 (Maximum Frequency: 118.733MHz)
Minimum input arrival time before clock: 2.724
Maximum output required time after clock: 2.775

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 617

implementation of CryptoVVSHP and does not effect on the performance since a vector

instruction can encode multiple operations. In addition to load (LW) and store (SW)

instructions, CryptoVVSHP adds new instructions called load-with-decryption (LWD),

store-with-encryption (SWE), and key-expansion (KeyEx) for processing encrypted

scalar/vector data.

In more details, Figure 5 shows the CryptoVVSHP datapath for processing encrypted

scalar/vector data. The VLIW instruction pointed by the program counter (PC) is read

from the instruction memory of the fetch stage and stored in the instruction fetch/decode

(IF/ID) pipeline register. The control unit in the decode stage reads the fetched VLIW

instruction from IF/ID pipeline register and vector length register (VLR) to generate the

proper control signals needed for processing multi-scalar/vector data. Three new control

signals called EncVld, DecVld, and KeyVld are generated by decoding SWE, LWD, and

KeyEx instructions to activate the encryption, decryption, and key-expansion units,

respectively. Like VVSHP, the register file of the CryptoVVSHP has two parts: (1)

shared scalar-vector part with eight-read/four-write ports 64x32-bit registers (64 scalar or

16×4 vector registers) for storing scalar/vector data, and (2) vector part with two-

read/one-write ports 48 vector-registers, each stores 4×32-bit vector data. It can process

vector data stored in multiple registers with lengths vary from 1 to 256. The register file

can be seen as 64×32-bit scalar registers or 64×4×32-bit vector registers.

The execution units of CryptoVVSHP operate on the 128-bit operands prepared in the

decode stage (RsVal, RtVal, and ImVal) and perform operations specified by the control

unit, which depends on opcode/function fields of each individual instruction in VLIW.

For load/store instructions, the first execution unit adds 32-bit RsVal1 and 32-bit ImVal1

to form the effective address. In addition, the RtVal1, RtVal2, RtVal3, and RtVal4 are

encrypted when EncVld control signal is asserted by SWE instruction. For register-

register instructions, the execution units perform the operations specified by the control

unit on the operands fed from the register file (RsVal1/RtVal1, RsVal2/RtVal2,

Fig. 5. CryptoVVSHP datapath for executing encrypted scalar/vector data.

RT

F
et

ch
/D

ec
o
d

e
P

ip
el

in
e

R
eg

is
te

r

Register File

Signed/
unsigned
Extension

RsRtRdIm

Generation

W
b
D

es
t

RS

V
L

IW

NPC

W
b
R

es
u
lt

s

W
b
W

rE
n

RsVal

RS, RT, RD

ImVal

Forward Unit

M
em

o
ry

/W
ri

te
 B

a
ck

 P
ip

el
in

e
R

eg
is

te
r

Scalar/Vector

Data Memory

128×128-bit

E
x
ec

u
te

/M
em

o
ry

 P
ip

el
in

e
R

eg
is

te
r

A
ls

O
p
r

AluOut

W
b
R

es
u
lt

R
d
E

n

RtVal
RsVal

Function

 Units

PC

16

Instruction

Memory

128×128-bit

RdEn

NPC

Addr

P
cE

n

B
rN

P
C

VLIW

BrAddr

WrEn

VLIW
128-bit

Control Unit

D
ec

o
d

e/
E

x
ec

u
te

 P
ip

el
in

e
R

eg
is

te
r

AluOut

Shared Reg.

64×32-bit

Vector Reg.

48×4×32-bit

Key-Expansion Unit

ImVal

RS&RT

Dest.

Dest.

IsImInst

WrEn

Enc. Unit 1
Enc. Unit 3
Enc. Unit 2

Enc. Unit 4 M
em

O
u
t

Dec. Unit1
Dec. Unit 3
Dec. Unit 2

Dec. Unit 4

W
rD

at
a

R
tV

al

R
sV

al

D
ec

V
ld

M
em

W
rE

n

M
em

R
d
E

n

E
n
cV

ld

Key Array

Inst

Adder

RtVal

Hazard
Detection

Forward RS
Branch

Unit
RdRt

Dest.

RD RT

Dest

Dest Dest

AluOut

Dest

RS RT

VLR

Shift Amount

S
h
ft

A
m

t

ShftAmt
User Key

 KeyVld

Dest.

AlsFunc

EncVld

DecVld

618 MOSTAFA I. SOLIMAN

RsVal3/RtVal3, and RsVal4/RtVal4) through ID/EX pipeline register. For register-

immediate instructions, the execution units perform the operations on the source values

(RsVal1, RsVal2, RsVal3, and RsVal4) and the extended immediate values (ImVal1,

ImVal2, ImVal3, and ImVal4). In all cases, the results of the execution units are placed in

the EX/MEM pipeline register.

The CryptoVVSHP registers can be loaded/stored individually using load/store

instructions. Displacement addressing mode is used for calculating the effective address

in the execute stage. Four contiguous elements (128-bit) can be loaded/stored per clock

cycle from/to data memory. The output of data memory (4×32-bit MemOut) are

decrypted when DecVld control signal is asserted by LWD instruction.

Finally, the writeback stage of CryptoVVSHP stores the 4×32-bit results that come

from the decryption units or from the execution units into the CryptoVVSHP register file.

Depending on the effective opcode of each individual instruction in VLIW, the register

destination field is specified by either RD or RT using RdRtDest unit. The control signals

4×1-bit WbWrEn are used for enabling the writing 4×32-bit results into the

CryptoVVSHP register file

Note that CryptoVVSHP has common datapaths for executing multi-scalar/vector

instructions. This increases the efficiency of hardware and makes efficient exploitation of

resources even though the percentage of data parallelism is low. Instruction memory of

size 128×128-bit stores 128-bit VLIW instructions of an application, where each VLIW

has four-scalar instructions or a vector instruction concatenating with three no-operations.

Data memory of size 128×128-bit loads/stores scalar/vector data needed for processing

multi-scalar/vector instructions. The first part of the register file (64×32-bit registers) is

used for both multi-scalar/vector elements. The control unit feeds the unified execution

units by the required operands (scalar/vector elements) and can produce up to four results

each clock cycle. The writeback stage writes into the register file up to 4×32-bit

scalar/vector results per clock cycle coming from the decryption units or from the

execution units. Besides, the encryption, decryption, and key-expansion units are used for

processing encrypted scalar/vector data.

4. FPGA IMPLEMENTATION OF CryptoVVSHP

The design of our proposed CryptoVVSHP processor is implemented using VHDL

targeting the Xilinx FPGA Virtex5, XC5VLX110T-3FF1136 device [8]. Virtex-5

XC5VLX110T has 160×54 array of configurable logic blocks (8640 CLBs). A single

Virtex-5 CLB comprises two slices, with each containing four 6-input look-up tables

(LUTs) and four flip-flops (FFs), for a total of eight 6-input LUTs and eight FFs per

CLB. Thus, Virtex-5 XC5VLX110T has 17280 slices (69120 6-input LUTs and 69120

FFs). For memory resources, it has 1120 Kbits distributed RAM and 148 block RAMs.

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 619

Fig. 6. Statistics of the FPGA implementation of CryptoVVSHP.

Each block RAM is 36 Kbits in size and can be used as two independent 18-Kbit blocks.

Moreover, Virtex-5 XC5VLX110T has 64 DSP48E slices, each contains a 25×18

multiplier, an adder, and an accumulator. Note that Virtex-5 family is the first FPGA

platform to offer a real 6-input LUT with fully independent (not shared) inputs. By

properly loading LUT, any 6-input arithmetic/logical/ROM function can be implemented.

In addition to this, some slices called SLICEM support two additional functions: storing

data using distributed RAM and shifting data with 32-bit registers. See [8] for more

details.

Figure 6 shows the statistics of the FPGA implementation of CryptoVVSHP, which

includes the following components.

 Fetch stage (program counter, instruction address adder, instruction memory, and

fetch outputs) requires 16576 slice registers and 9696 slice LUTs, where the total

number of LUT-FF pairs used is 26247: 9671 with unused FFs, 16551 with unused

LUTs, and 25 of fully used LUT-FF pairs.

 Decode stage (control unit, register file, hazard detection unit, forward RS, shift

amount, sign extension, RsRtRdIm generation, branch unit, and decode outputs)

requires 8910 slice registers and 20510 slice LUTs, where the total number of

LUT-FF pairs used is 28848: 19938 with unused FFs, 8338 with unused LUTs, and

572 of fully used LUT-FF pairs.

 Execute stage (four arithmetic/logical/shift units, four encryption units,

arithmetic/logical/shift functions, and execute outputs) requires 1830 slice registers

and 15592 slice LUTs, where the total number of LUT-FF pairs used is 16563:

14733 with unused FFs, 971 with unused LUTs, and 859 of fully used LUT-FF

pairs.

 Memory stage (data memory, four decryption units, and memory outputs) requires

16800 slice registers and 21578 slice LUTs, where the total number of LUT-FF

pairs used is 38122: 21322 with unused FFs, 16544 with unused LUTs, and 256 of

fully used LUT-FF pairs.

620 MOSTAFA I. SOLIMAN

Fig. 7. Percentage of complexity in each stage of CryptoVVSHP.

 Writeback stage (multiplexers) requires 159 slice LUTs, where the total number of

LUT-FF pairs used is 159 (159 with unused FFs).

 Others (key-expansion unit, forward unit, and RdRtDest unit) requires 722 slice

registers and 2240 slice LUTs, where the total number of LUT-FF pairs used is

2817: 2095 with unused FFs, 577 with unused LUTs, and 145 of fully used LUT-

FF pairs.

Figure 7 shows the percentage of fetch, decode, execute, memory, writeback, and

others in the overall implementation of CryptoVVSHP. Note that the complexity in LUT-

FF pairs of the memory stage is the highest because it has 128×128-bit data memory and

four decryption units. The order of CryptoVVSHP stages with respect to complexity are

memory access (33.8%), decode (25.6%), fetch (23.3%), execute (14.7%), writeback

(0.1%), and others (2.5%). Moreover, Figure 8 compares the implementation of

CryptoVVSHP with the baseline scalar (five-stage pipeline [10]) and VVSHP processors.

The complexity of the CryptoVVSHP is about 207% and 123% of the baseline scalar and

VVSHP processors, respectively.

 PROCESSING ENCRYPTED SCALAR/VECTOR DATA ON UNIFIED DATAPATH 621

5. CONCLUSION

This paper modifies the architecture of VVSHP to process encrypted scalar/vector

data. CryptoVVSHP allows scalar/vector data to exist in decrypted form internally,

however, decrypted data is not externally accessible. The load/store instructions

automatically cause the appropriate decryption/encryption operations to be performed on

scalar/vector data. Thus, after loading encrypted data from memory to register file, they

Fig. 8. Synthesizing CryptoVVSHP, VVSHP, and scalar pipelines on FPGA Virtex-5.

(a) Fetch stage (b) Decode stage

(c) Execute stage (d) Memory access stage

(e) Writeback stage (f) Overall pipeline

622 MOSTAFA I. SOLIMAN

are decrypted. Moreover, before storing data from register file to memory, they are

encrypted. In few words, data is decrypted only while in the pipeline for processing.

This paper shows the FPGA implementation of our proposed CryptoVVSHP on

Virtex-5 XC5VLX110T, which requires 44559 slice registers and 68833 slice LUTs,

where the total number of LUT-FF pairs used is 109737: 65178 with unused FFs, 40904

with unused LUTs, and 3655 of fully used LUT-FF pairs. The complexity of the

CryptoVVSHP is about 207% and 123% of the baseline scalar and VVSHP processors.

In the future, other cryptography algorithms like the advanced encryption standard

(AES) can be considered as a security extension to scalar/vector processors. Like

multimedia extensions, the instruction set architecture of scalar/vector processors can be

extended with security instructions that are executed on extended security hardware.

REFERENCES

[1] R. Rivest, "The RC5 Encryption Algorithm," MIT Laboratory for Computer

Science, http://people.csail.mit.edu/rivest/pubs/Riv94.pdf, 1997.

[2] R. Rivet, L. Adleman, and M. Dertouzos, "On Data Banks and Privacy

Homomorphisms," Foundation of Secure Computation, Academic Press. New York,

pp. 169-179, 1978.

[3] C. Sagedy, "ECEC 490: Processor Design Project Page,"

http://chris.sagedy.com/projects/ecec490_fa08/#encrypted, December 2008.

[4] N. Ahituv, Y. Lapid, and S. Neumann, "Processing Encrypted Data,"

Communications of the ACM, Vol. 30, No. 9, pp. 777-780, September 1987.

[5] C. Gentry, "A Fully Homomorphic Encryption Scheme," Ph.D. Thesis, Department

of Computer Science, Stanford University, September 2009

[6] B. Weir, "Homomorphic Encryption," Master Thesis, Combinatorics and

Optimization Department, University of Waterloo, Canada, 2013.

[7] M. Soliman "Merging VLIW and Vector Processing Techniques for a Simple, High-

Performance Processor Architecture," Submitted to Microelectronics Journal in May

2014, Revised in October 2014.

[8] Virtex-5 FPGA User Guide, UG190 (v5.4).

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf, March 2012,

[9] G. Kane, MIPS RISC Architecture (R2000/R3000), Prentice Hall, 1989.

[10] D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, Morgan Kaufman, San Francisco, CA, 5
th

 Edition,

October 2013.

http://people.csail.mit.edu/rivest/pubs/Riv94.pdf
http://chris.sagedy.com/projects/ecec490_fa08/#encrypted
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

