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ABSTRACT.In this article, we have presented non uniform geometric step size exponential finite

difference method for the numerical solution of general two point boundary value problems with

Dirichlet’s boundary conditions. Under appropriate condition, we have discussed the local truncation

error and the convergence of the proposed method. Numerical experiments approves the use and

computational efficiency of the method in model problems. Numerical results showed that the

proposed method is convergent and has at least second order of accuracy which is in good agreement

with the theoretically established order of the method.
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1. Introduction

In this article we consider the following general two-point boundary value problem

of the form

(1.1) y′′(x) = f(x, y, y′), a < x < b,

subject to the boundary conditions

y(a) = α and y(b) = ξ,

where α and ξ are real constants and f is continuous on (x, y) for all x ∈ [a, b] and

y, y′ ∈ ℜ.

The general two-point boundary value problems are of common occurrence in

many areas of sciences and engineering. This class of problems has gained importance

in the literature for the variety of their applications. In most cases it is impossible to

obtain solutions of these problems using analytical methods which exactly satisfy the

given boundary conditions. In these cases we resort to approximate solution of the

problems and the last few decades have seen substantial progress in the development
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of approximate solutions of these problems. In the literature, there are many different

methods and approaches such as method of integration and discretization that are

used to derive the approximate solutions of these problems [1, 2, 3, 4].

The existence and uniqueness of the solution to problem (1.1) is assumed. We

further assumed that problem (1.1) is well posed with continuous derivatives and

that the solution depends differentially on the boundary conditions. The specific

assumption on f(x, y, y′) to ensure existence and uniqueness will not be considered

in this article [3, 4, 5].

Over the last few decades for the numerical solution this class of problems, the

higher order finite difference methods [6, 7, 8, 9] and references therein have generated

renewed interest. In recent years, variety of specialized techniques [12, 13] for the

numerical solution of boundary value problems in ODEs have been reported in the

literature. An exponential finite difference method uniform step size [14] and variable

step size [15] for the numerical solution of linear two-point boundary value problems

were proposed and generated impressive numerical results. Hence, the purpose of

this article is to propose an exponential finite difference method with non-uniform

geometric step size for problem (1.1).

The development of numerical method for the approximate solution of general

two-point boundary value problems with a small parameter affecting the highest

derivative of the differential equation invites special attention. It is a well known fact

that these boundary value problems possess a small interval in which the solution

varies rapidly. This small interval is known as the boundary layer in the literature

and a variable mesh method is well suited for solving boundary layer problem [10,

11]. Our proposed geometric step size exponential difference method for the solution

of general two-point boundary value problems is efficient in solving such boundary

layer problems without any difficulty. We hope that others may find the proposed

method as an improvement and appealing to those existing finite difference methods

for general two-point boundary value problems.

A new method of at least quadratic order is proposed for the numerical solu-

tion of boundary value problems (1.1). Our idea is to apply the exponential finite

difference method to discretize equation (1.1) in order to get a system of algebraic

equations. The simplicity of the proposed method lies in its three point discretization.

In addition, if we apply a linearization technique, the method results in a tri-diagonal

matrix of the nodal values at central and two adjacent nodes. The elements of this

tri-diagonal matrix depends on the source function i.e. right-hand side of the or-

dinary differential equation as well as on its partial derivatives with respect to the

dependent variable and its first-order derivative. To the best of our knowledge, no

similar method for the numerical solution of problem (1.1) has been discussed in the

literature so far.
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We have presented our work in this article as follows. In the next section we

presented variable mesh size exponential finite difference method. In Section 3, we

have presented derivation of the proposed method. In Section 4, local truncation

error and in Section 5, convergence of the new method are discussed. The application

of the proposed method to the problems in (1.1) has been presented and illustrative

numerical results have been produced to show the efficiency of the new method in

Section 6. Discussion and conclusion on the performance of the new method are

presented in Section 7.

2. Exponential Difference Method

We define N finite numbers of nodal points of the domain [a, b], in which the

solution of the problem (1.1) is desired, as a ≤ x0 < x1 < x2 < · · · < xN < xN+1 = b,

using nonuniform step length h such that xi+1 = xi + hi+1, i = 0, 1, 2, . . . , N and

ri = hi+1

hi

. Suppose that we wish to determine the numerical approximation of the

theoretical solution y(x) of the problem (1.1) at the nodal point xi, i = 1, 2, . . . , N .

We denote the numerical approximation of y(x) at node x = xi as yi . Let us denote

fi as the approximation of the theoretical value of the source function f(x, y(x), y′(x))

at node x = xi, i = 0, 1, 2, . . . , N + 1. We can define other notations used in this

article i.e. fi±1, and yi±1, in the similar way. Let us define following approximations

y′
i−1 =

(−ri(ri + 2)yi−1 + (ri + 1)2yi − riyi+1)

hiri(ri + 1)
(2.1)

y′
i =

(yi+1 + (r2
i − 1)2yi − ri(ri + 1)yi−1)

hiri(ri + 1)
(2.2)

y′
i+1 =

((2ri + 1)yi+1 − (ri + 1)2yi + r2
i yi−1)

hiri(ri + 1)
(2.3)

f
′

i−1 = f(xi−1, yi−1, y
′
i−1)(2.4)

f
′

i = f(xi, yi, y
′
i)(2.5)

f
′

i+1 = f(xi+1, yi+1, y
′
i+1).(2.6)

Then at each internal mesh point xi to discretize problem (1.1) and following the idea

in [14], we propose exponential finite difference method for an approximation to the

theoretical solution y(xi) of the problem (1.1) as,

(2.7) yi+1 − (1 + ri)yi + riyi−1 =
h2

i ri(ri + 1)

2
f i exp

(

(ri − 1)hif
′

i

3f i

)

.

For each nodal point xi, we will obtain the nonlinear system of equations given by

(2.7) or a linear system of equations if the source function is f(x). In the exponential

method (2.7), the exponential function exp
(

(ri−1)hif
′

i

3f
i

)

has the argument (ri−1)hif
′

i

3f
i

. If

f i in the denominator of the argument becomes zero in the domain of the solution,
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we take the series expansion of the function exp
(

(ri−1)hif
′

i

3f i

)

and neglecting the second

and higher order terms. Therefore method (2.7) becomes

(2.8) yi+1 − (1 + ri)yi + riyi−1 = h2
i ri(r1 + 1)

(

f i +
hi(ri − 1)

3
f
′

i

)

.

For the computational purpose in Section 6, we have used the following second order

finite difference approximation in place of hif
′

i in (2.7) and in (2.8):

(2.9) hif
′

i =
f i+1 + (r2

i − 1)f i − r2
i f i−1

ri(ri + 1)
.

3. Derivation of the method

In this section we outline the derivation of the method (2.7). From (2.1), expand

y′
i−1 in a Taylor series about the mesh point xi−1 and simplify the expansion, we have

(3.1) y′
i−1 = yi−1 + O(h2

i ).

Thus y′
i−1 provides an O(h2

i ) for yi−1. Similarly from (2.2) and (2.3), we have

y′
i = yi + O(h2

i ),(3.2)

y′
i+1 = yi+1 + O(r2

i h
2
i ).(3.3)

So from (2.4) and (3.1),

(3.4) f
′

i−1 = f(xi−1, yi−1, yi−1 + O(h2
i )) = fi−1 + O(h2

i ).

Thus f i−1 provides an O(h2
i ) for fi−1. Similarly from (2.5–3.2) and (2.6–3.3), we have

f
′

i = fi + O(h2
i ),(3.5)

f
′

i+1 = fi+1 + O(h2
i ).(3.6)

Thus following the idea in [15], neglecting the remainders in (3.4), (3.5) and (3.6),we

have

(3.7) yi+1 − (1 + ri)yi + riyi−1 =
h2

i ri(ri + 1)

2
fi exp

(

hi(ri − 1)f ′
i

3fi

)

≡
h2

i ri(ri + 1)

2
f i exp

(

(ri − 1)hif
′

i

3f i

)

.

which is the proposed second order exponential method for the numerical solution of

the problem (1.1).
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4. Local Truncation Error

We can write the following expression for the term in (3.7) with the help of (2.9):

(4.1) exp

(

(ri − 1)hif
′

i

3f i

)

= exp(
(ri − 1)(f i+1 + (r2

i − 1)f i − r2
i f i−1)

3ri(ri + 1)f i

).

Write the expansion for the exponential function in the (3.7) by neglecting the third

and higher order terms, so we will obtain,

(4.2)

exp

(

(ri − 1)hif
′

i

3f i

)

≡ 1 +
(ri − 1)(f i+1 + (r2

i − 1)f i − r2
i f i−1)

3ri(ri + 1)f i

+
1

2

(

(ri − 1)hif
′

i

3f i

)2

.

From (3.7) and (4.2), the truncation error Ti at the nodal point x = xi may be written

as [17, 18, 19],

Ti = yi+1 − (1 + ri)yi + riyi−1

−
h2

i

2
(r2

i + ri)f i



1 +
(ri − 1)(f i+1 + (r2

i − 1)f i − r2
i f i−1)

3ri(ri + 1)f i

+
1

2

(

hi(ri − 1)f
′

i

3f i

)2


 .

By the Taylor series expansion of y at nodal point x = xi and application of approx-

imations (3.4), (3.5) and (3.6) then we have y′′
i = fi, y

(3)
i = f ′

i and etc. Thus we

obtained

(4.3) Ti =

(

h4
i+1

24
+

rih
4
i

24

)

y
(4)
i −

ri(ri + 1)

36

(h2
i (ri − 1)y

(3)
i )2

fi

+ O(h5
i ).

(4.3) can be simplified and written as:

(4.4) Ti =
ri(ri + 1)h4

i

72

{

3(r2
i − ri + 1)y

(4)
i −

2

fi

((ri − 1)y
(3)
i )2

}

+ O(h5
i ),

Thus we have obtained a truncation error at each internal mesh point xi of O(h4
i ).

5. Convergence of the Method

Let us substitute (4.2) into (3.7) and then simplify (3.7), we have

yi+1 − (1 + ri)yi + riyi−1 =
h2

i

2
(r2

i + ri)f i

(

1 +
(ri − 1)(f i+1 + (r2

i − 1)f i − r2
i f i−1)

3ri(ri + 1)f i

)

=
h2

i

6
{3ri(ri + 1)f i + (ri − 1)(f i+1 + (r2

i − 1)f i − r2
i f i−1)}.

Thus

(5.1) −yi+1 + (1 + ri)yi − riyi−1 +
h2

i

6
(αif i + γif i+1 + βif i−1) = 0,

where αi = (ri + 1)(r2
i + ri + 1), βi = −r2

i (ri − 1) and γi = ri − 1.
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Let us define

φ1 =
h2

1

6
(α1f(x1, y1, y

′
1) + γ1f(x2, y2, y

′
2) + β1f(x0, y0, y

′
0)) + r1y0, i = 1

φi =
h2

i

6
(αif(xi, yi, y

′
i) + γif(xi+1, yi+1, y

′
i+1) + βif(xi−1, yi−1, y

′
i−1)),

2 ≤ i ≤ N − 1

φN =
h2

N

6
(αNf(xN , yN , y′

N) + βNf(xN−1, yN−1, y
′
N−1)

+ γNf(xN+1, yN+1, y
′
N+1)) + yN+1 i = N

Let us define column matrix φN×1 and yN×1 as

φ = [φ1, φ2, . . . , φN ]′1×N , y = [y1, y2, . . . , yN ]′1×N ,

where [. . . ]′ is the transpose of a column matrix.

The difference method (5.1) represents a system of nonlinear equations in un-

known yi, i = 1, 2, . . . , N . Let us write (5.1) in matrix form as,

(5.2) Dy + φ(y) = 0,

where

D =





















1 + r1 −1 0

−r2 1 + r2 −1

−r3 1 + r3 −1

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

0 −rN 1 + rN





















N×N

is a tridiagonal matrix. Let Y be the exact solution of (5.1), so it will satisfy the

matrix equation

(5.3) DY + φ(Y) + T = 0,

where Y is a column matrix of order N ×1 which can be obtained by replacing y with

Y in matrix y and T is a truncation error matrix in which each element has O(h4
i ).

Let us define

F i+1 = f(xi+1, Yi+1, Y
′

i+1), f i+1 = f(xi+1, yi+1, y
′
i+1), F i = f(xi, Yi, Y

′

i),

f i = f(xi, yi, y
′
i), F i−1 = f(xi−1, Yi−1, Y

′

i−1) and f i−1 = f(xi−1, yi−1, y
′
i−1).

After linearization of f i+1, we have

f i+1 = F i+1 + (yi+1 − Yi+1)Gi+1 + (y′
i+1 − Y

′

i+1)Hi+1,

where Gi+1 = ( ∂f

∂Y
)i+1 and Hi+1 = ( ∂f

∂Y
′ )i+1. Thus

(5.4) f i+1 − F i+1 = (yi+1 − Yi+1)Gi+1 + (y′
i+1 − Y

′

i+1)Hi+1.
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Similarly, we can linearize f i−1, and f i , to obtain the following results :

(5.5) f i−1 − F i−1 = (yi−1 − Yi−1)Gi−1 + (y′
i−1 − Y

′

i−1)Hi−1.

(5.6) f i − F i = (yi − Yi)Gi + (y′
i − Y

′

i)Hi.

By taking the Taylor series expansion of Gi±1 about x = xi, and from the difference

of (5.2) and (5.3), we can write

(5.7) φ(y) − φ(Y) = PE,

where P = (Plm)N×N is a tri-diagonal matrix defined as

Plm =
h2

i

6

(

αiGi −
(ri + 1)

hiri

(αi(ri − 1)2 + γi − βi)Hi

−
(riγi + βi)(ri + 1)

ri

(
∂H

∂x
)i

)

, i = l = m, l = 1, 2, . . . , N,

Plm =
h2

i

6
(γiGi +

(αi + γi(2ri + 1) − βiri)

hiri(1 + ri)
Hi +

γi(2ri + 1) + βi

ri + 1
(
∂H

∂x
)i

+ γihi+1(
∂G

∂x
)i), m = l + 1, i = l = 1, 2, . . . , N − 1,

Plm =
h2

i

6
(βiGi +

γiri − βi(ri + 2) − αi(ri + 1)

hi(ri + 1)
Hi +

γir
2
i + βi(ri + 2)

(ri + 1)

(

∂H

∂x

)

i

− βihi(
∂G

∂x
)i), i = l = m + 1, m = 1, 2, . . . , N − 1,

and E = [E1, E2, . . . . . . , EN ]′1×N , where Ei = (yi − Yi), i = 1, 2, . . . , N .

Let us assume that the solution of difference equation (3.7) has no roundoff error.

So from (5.2), (5.3) and (5.7) we have

(5.8) (D + P)E = JE = T.

Let us define G0 = {Gi : i = 1, 2, . . . , N},

G∗ = min
x∈[a,b]

∂f

∂Y
, and G∗ = max

x∈[a,b]

∂f

∂Y
,

such that

0 ≤ G∗ ≤ t ≤ G∗, ∀t ∈ G0.

and H0 = {Hi : i = 1, 2, . . . , N},

H∗ = min
x∈[a,b]

∂f

∂Y
′ , and H∗ = max

x∈[a,b]

∂f

∂Y
′ ,

such that

0 ≤ H∗ ≤ t0 ≤ H∗, ∀t0 ∈ H0.
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We further define

G0
x =

{(

∂G

∂x

)

i

, i = 1, 2, . . . , N

}

and H0
x =

{(

∂H

∂x

)

i

, i = 1, 2, . . . , N

}

.

Let there exist some positive constant W and W ′ such that |t0| ≤ W ∀ t0 ∈ G0
x

and |t′| ≤ W ′, ∀ t′ ∈ H0
x. So it is possible for very small hi, ∀ i = 1, 2, . . . , N ,

|Plm| ≤ 1 + ri, ∀ i = l = m l = 1, 2, . . . , N,

|Plm| ≤ 1, ∀ m = l + 1, i = l = 1, 2, . . . , N − 1,

|Plm| ≤ ri, ∀ i = l = m + 1, m = 1, 2, . . . , N − 2.

Let R = [R1, R2, . . . , RN ]′1×N , denote the row sum of the matrix J = (Jlm)N×N where

R1 = r1 +
h2

1

6

(

(α1 + γ1)G1 +
α1r

2
1(2 − r2

1) − r2
1γ1 − β1(r

2
1 + 3r1 + 1)

h1r1(1 + r1)
H1

+
γ1r

2
1 − β1

r1(r1 + 1)

(

∂H

∂x

)

1

+ γ1h2

(

∂G

∂x

)

i

)

, l = i = 1,

Rl =
h2

i

6

(

(αi + γi + βi)Gi +
αi(r

2
i − ri − r4

i ) + βi

hiri(1 + ri)
Hi +

βi

ri(r1 + 1)

(

∂H

∂x

)

i

+ hi(γiri − βi)

(

∂G

∂x

)

i

)

, l = i = k, and 2 ≤ k ≤ N − 1,

RN =

1 +
h2

N

6

(

(αN + βN )GN +
αN(r2

N − r4
N − rN − 1) − γN(r2

N + 3rN + 1) + βN

hNrN(1 + rN)
HN

−
γNrN(2rN + 1) + βN

rN(rN + 1)

(

∂H

∂x

)

N

− βNhN

(

∂G

∂x

)

N

)

, l = i = N.

On neglecting the higher order terms i.e. O(h2
i ) in Ri then it is easy to see that

J is irreducible [17]. By the row sum criterion and for sufficiently small hi, ∀i =

1, 2, . . . , N , J is monotone [19]. Thus J−1 exist and J−1 ≥ 0. For the bound of J, we

define [20, 21]

dl(J) = |Jll| −
N
∑

l 6=m

|Jlm| , l = 1, 2, . . . , N,
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where

d1(J) = r1 +
h2

1

6

(

(α1 + γ1)G1 +
α1r

2
1(2 − r2

1) − r2
1γ1 + β1(r

2
1 + r1 + 1)

h1r1(1 + r1)
H1

−
γ1r

3
1 + β1r1(1 + r1)

r1(r1 + 1)

(

∂H

∂x

)

1

+ γ1h2

(

∂G

∂x

)

1

)

, l = i = 1,

dl(J) =
h2

l

6

(

(αl + βl + γl)Gl +
αl(r

2
l − r4

l − rl) + βl(1 − rl)

hlrl(1 + rl)
Hl

+
γl(2r

3
l − 2r2

l − rl) + βl(rl − 1)

rl(rl + 1)

(

∂H

∂x

)

l

+ (γlhl+1 − βlhl)

(

∂G

∂x

)

i

)

,

l = i = k, and 2 ≤ k ≤ N − 1,

dN(J) =

1 +
h2

N

6

(

(αN + βN)GN +
αN(r2

N − r4
N − rN − 1) − γN(2rN + 1) + βN

hNrN(1 + rN)
HN

−
γNrN(2rN + 1) + βN

hN(rN + 1)

(

∂H

∂x

)

N

− βNhN

(

∂G

∂x

)

N

)

, l = i = N.

We observe the presence of the higher order terms i.e. O(h3
i ) in the above expressions.

Let dl(J) ≥ 0, ∀ l and

d∗(J) = min
1≤l≤N

dl(J).

Then

(5.9) ‖J−1‖ ≤
1

d∗(J)
.

Thus from (5.8) and (5.9), we have

(5.10) ‖E‖ ≤
1

d∗(J)
‖T‖.

It follows from (4.4) and (5.10) that ‖E‖ → 0 as hi → 0. Thus we conclude that

method (3.7) converges and the order of the convergence of method (3.7) is at least

quadratic.

6. Numerical Results

To illustrate our method and demonstrate its computational efficiency, we con-

sidered some model problems. In each model problem, we took non uniform step size

hi. In Table 1 - Table 5, we have shown the maximum absolute error (MAE) and root

mean square error (RMSE), computed for different values of N and is defined as

MAE = max
1≤i≤N

|y(xi) − yi|
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RMSE =

√

ΣN
i=1(y(xi) − yi)2

N

The starting value of the step length h1 is calculated by formula

h1 =







(b−a)(r−1)
rN−1

if r > 1

(b−a)(1−r)
1−rN if r < 1

where r = ri, ∀ i = 1, 2, . . . , N in computation. In case of uniform mesh r = 1 ,

the above formula for computation of step length becomes h = b−a
N

. The order of the

convergence (ON) of the method (3.7) is estimated by the formula

(ON) = logm

(

MAEN

MAEmN

)

,

where m can be estimated by considering the ratio of N .

We have used Newton-Raphson iteration method to solve the system of nonlinear

equations arise from equation (3.7). All computations were performed on a MS Win-

dow 2007 professional operating system in the GNU FORTRAN environment version

99 compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz PC. The solutions are computed

on N nodes and iteration is continued until either the maximum difference between

two successive iterates is less than 10−10 or the number of iteration reached 103.

Problem 1. The first model problem is linear given by

y′′(x) = λy′, y(0) = 1, y(1) = 0, x ∈ [0, 1].

The analytical solution is y(x) = 1−exp(λ(x−1))
1−exp(−λ)

. The MAE and RMSE computed by

method (3.7) for different values of N, ri and λ are presented in Table 1 and Table 2.

Problem 2. The second model problem is a nonlinear problem given by

y′′(x) = β(y(x) − A)y′(x), y(0) = A, y(1) = A

(

1 − tanh

(

βA

2

))

, x ∈ [0, 1].

The analytical solution is y(x) = A(1− tanh(βAx

2
)). The MAE and RMSE computed

by method (3.7) for different values of N, β, ri and A = .5 are presented in Table 3

and Table 4.

Problem 3. The third model problem is a nonlinear problem given by

y′′(x) = y3(x) − y(x)y′(x), y(1) =
1

2
, y(2) =

1

3
, x ∈ [1, 2],

where f(x) is calculated so that y(x) = 1
1+x

is the analytical solution. The MAE and

RMSE computed by method (3.7) for different values of N and ri are presented in

Table 5.
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Table 1. Maximum absolute and root mean square errors (Problem 1).

Error

ri N λ = 1
5 λ = 1

2

MAE RMSE MAE RMSE

4 .51856041(-5) .43565792(-5) .80227852(-4) .67814253(-4)

1.0

8 .11324883(-5) .88156457(-6) .19848347(-4) .15570105(-4)

16 .59604645(-7) .24934412(-7) .45299530(-5) .33803201(-5)

32 .29802322(-7) .59844503(-8) .11920929(-6) .50656173(-7)

64 .29802322(-7) .42044808(-8) .59604645(-7) .20565556(-7)

4 .52452087(-5) .44867757(-5) .80227852(-4) .68902875(-4)

1.06

8 .12814999(-5) .94384478(-6) .21666288(-4) .16474240(-4)

16 .11920929(-6) .52893874(-7) .56028366(-5) .37998784(-5)

32 .59604645(-7) .29832350(-7) .15497208(-5) .76230248(-6)

64 .59604645(-7) .24657236(-7) .71525574(-6) .23258180(-6)

Table 2. Maximum absolute and root mean square errors (Problem 1).

Error

ri N λ = 2 λ = 5

MAE RMSE MAE RMSE

4 .45045912(-2) .38031123(-2) .53083181(-1) .34218341(-1)

8 .11489391(-2) .86355786(-3) .11424065(-1) .73574879(-2)

1.0

16 .28461218(-3) .20671070(-3) .28715730(-2) .17305844(-2)

32 .69081783(-4) .49064751(-4) .70977211(-3) .42099375(-3)

64 .57816505(-5) .32492633(-5) .16701221(-3) .96714764(-4)

128.59604645(-7) .21272125(-7) .17851591(-4) .26822090(-5)

4 .49441755(-2) .39151483(-2) .57824194(-1) .36301401(-1)

8 .13208389(-2) .93901559(-3) .15277922(-1) .86171133(-2)

1.06

16 .40006638(-3) .25886981(-3) .48831105(-2) .24562438(-2)

32 .16370416(-3) .89868263(-4) .21458864(-2) .91063540(-3)

64 .10362267(-3) .41623971(-4) .15016794(-2) .47723393(-3)

128.96023083(-4) .27330037(-4) .14093518(-2) .31848496(-3)
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Table 3. Maximum absolute and root mean square errors for A = 0.5

(Problem 2).

Error

ri N β = 10 β = 20

MAE RMSE MAE RMSE

1.0

10 .40723383(-2) .26633504(-2) .19166492(-1) .10014023(-1)

20 .99445879(-3) .63442264(-3) .47840476(-2) .22599460(-2)

40 .24610758(-3) .15507486(-3) .11704564(-2) .54811692(-3)

80 .57488680(-4) .36033434(-4) .29011071(-3) .13514442(-3)

1.1

10 .40757805(-2) .28871789(-2) .13311431(-1) .77447360(-2)

20 .13484955(-2) .91870409(-3) .30689538(-2) .18740752(-2)

40 .79128146(-3) .46120372(-3) .13497695(-2) .78995252(-3)

80 .71993470(-3) .30763954(-3) .11662990(-2) .51750842(-3)

Table 4. Maximum absolute and root mean square errors for A = 0.5

(Problem 2).

Error

ri N β = 1
10

β = 1
20

MAE RMSE MAE RMSE

1.0

10 .14613867(-2) .11299137(-2) .73072314(-3) .56498824(-3)

20 .28319657(-2) .21121933(-2) .14156699(-2) .10558445(-2)

40 .50392747(-2) .36413758(-2) .25184751(-2) .18198452(-2)

80 .75264573(-2) .52004759(-2) .37604868(-2) .25984163(-2)

1.1

10 .29802322(-7) .14048950(-7) ***** *****

20 .29802322(-7) .96691499(-8) .29802322(-7) .13674243(-7)

40 .29802322(-7) .10670943(-7) .29802322(-7) .95443813(-8)

80 .29802322(-7) .10059070(-7) .29802322(-7) .11615213(-7)

*****: Computational results either overflow or exact.
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Table 5. Maximum absolute and root mean square errors (Problem 3).

Error

ri = 1.0 ri = 1.01 ri = 1.06

N MAE RMSE MAE RMSE MAE RMSE

4 .80442427(-4) .69733680(-4) .80807979(-4) .69732094(-4) .82333179(-4) .70011636(-4)

8 .21132984(-4) .16370834(-4) .20745851(-4) .16212709(-4) .20314470(-4) .15892289(-4)

16 .50099275(-5) .37548225(-5) .48018824(-5) .36072279(-5) .49892456(-5) .37118384(-5)

32 .27685925(-6) .14303454(-6) .58990622(-7) .29212892(-7) .77840133(-6) .37706067(-6)

64 .20193923(-7) .88874659(-8) .27518832(-7) .11322014(-7) .23545212(-6) .70097087(-7)

128 .29415279(-7) .98746957(-8) .40079282(-7) .13548161(-7) .13728150(-6) .24566976(-7)

We have described a numerical method for solving general two-point boundary

value problems. Linear and non-linear model problems considered to demonstrate the

computational performance of the proposed method. Numerical results for problem 1

which is presented in table 1 and table 2, for different values of ri, N and λ show

if we consider uniform and non-uniform step size, maximum absolute error and root

mean square error in our method increased as λ increases. On the other hand both

maximum absolute error and root mean square errors decreases with increase in N.

The numerical results for problem 2 show in both MAE and RMSE less accurate in

uniform than non-uniform mesh size. The results for problem 3 are uniformly accurate

in both uniform and nonuniform mesh size. Over all method (3.7) is convergent and

the convergence of the method depends on choice of mesh ratio ri.

7. Conclusion

A method to find the numerical solution of general two point boundary value

problems has been developed. The decision to use a certain difference scheme depends

on computational efficiency of the method for the accurate solution and complexity of

the problem. Thus is obvious that special method required for some special problem

where the solution is not regular and varies rapidly or presence of more parameters

in a problem. But on the other hand, the proposed method produces good numerical

approximate solutions for variety of model problems without any modification either

in method or in problem and its rate of convergence is quadratic. The numerical

results of the model problems showed that the proposed method is computationally

efficient and plays an important role to obtain accurate numerical solutions. The idea

presented in this article leads to the possibility to develop difference methods to solve
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higher order boundary value problems in ordinary differential equations. Works in

these directions are in progress.
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