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ABSTRACT. The purpose of this work is to develop two Monotone Iterative Techniques for a

nonlinear integro-differential initial value problem with Caputo derivative.

Before proving the main results we will define different types of coupled lower and upper

solutions. In the first theorem we will construct two natural sequences which converge uniformly and

monotonically to coupled minimal and maximal solutions. In the second theorem we will construct

two intertwined sequences which converge uniformly and monotonically to coupled minimal and

maximal solutions. We also establish conditions for uniqueness of the solution.

Finally, we present two examples that illustrate the results obtained.
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1. INTRODUCTION

Fractional Calculus is as old as the “conventional” Calculus, however the study of

fractional differential equations was not a popular subject until the last few decades

when it was discovered that differential equations involving fractional derivatives fre-

quently provide more accurate models than those with integer derivatives, see the

books [4, 5, 7, 16, 17] for more information. A well known technique in the theory

of nonlinear ordinary differential equations with initial or boundary conditions is the

method of upper and lower solutions, see [6] for further details. In recent years these

methods have been applied to fractional differential equations, as it can be found in

the book [7] and the papers [2, 3, 9, 10, 11, 12, 13, 18, 19, 20, 21].

On the other hand, the basic theory and several methods for integro-differential

equations, including the study of upper and lower solutions, are provided in the

book [8], as well as several applications. Moreover, a monotone method was first

introduced in [8] for first order ordinary integro-differential equations with periodic

boundary conditions and the result was extended in [22].
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In this paper we establish a comparison theorem similar to the one developed

in [7] for a Caputo fractional integro-differential equation of order q, 0 < q < 1,

with initial condition. We will define and use coupled lower and upper solutions

combined with a generalized monotone iterative technique to prove the existence of

coupled minimal and maximal solutions. The results developed provide either natural

or intertwined sequences which converge uniformly and monotonically to coupled

minimal and maximal solutions of the integro-differential initial value problem.

2. PRELIMINARIES

In this section we state the definitions and results concerning the Riemann–

Liouville and Caputo derivatives of fractional order that are required to prove our

main result.

We start by stating the definition of the Mittag–Leffler function.

Definition 2.1. The two parameter Mittag–Leffler function is defined as

Eα,β(t) =

∞
∑

k=0

tk

Γ(αk + β)
,

and the one parameter Mittag–Leffler function is defined as

Eα(t) = Eα,1(t).

In particular E1(t) = et, and Eα,β(t) is also called the generalized exponential

function.

Let J = [a, b] be a finite interval in the real axis R. The definition of Caputo and

Riemann–Liouville fractional derivatives are given in [4, 5, 7, 17] as follows.

Definition 2.2. The Riemann-Liouville fractional derivative of order α, where n−1 ≤

α < n and n ∈ N, is denoted by Dα and defined by

Dαf(t) =
1

Γ(n − α)

(

d

dt

)n ∫ t

a

(t − s)n−α−1f(s)ds.

Definition 2.3. The Caputo derivative of order n− 1 ≤ α < n for t ∈ [a, b], denoted

by cDα, is defined as

cDαf(t) =
1

Γ(n − α)

∫ t

a

(t − s)n−α−1f (n)(s)ds.

Consider the nonlinear initial value problem of the form

(2.1)
cDqu(t) = f (t, u(t)) ,

u(a) = u0.

Throughout this work we will consider the Caputo derivative of order q, where

0 < q < 1.

We recall the following definition.
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Definition 2.4. Let 0 < q < 1 and p = 1 − q. If G is an open set in R, then we

denote by Cp ([a, b], G) the function space

Cp ([a, b], G) =
{

u ∈ C ((a, b], G)
∣

∣(t − a)pu(t) ∈ C ([a, b], G)
}

.

If u ∈ Cp ([a, b], G), then u is said to be Cp continuous in [a, b].

Remark 2.5. In [5] it is shown that if 0 < q < 1, G is an open set of R, and

f : (a, b] × G → R is such that for any u ∈ G, f ∈ Cp ([a, b], G), then u satisfies (2.1)

if and only if it satisfies the Volterra fractional integral equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

a

(t − s)q−1f(s, u(s))ds.

In particular, this relationship is true if f : [a, b] × G → R is continuous.

In [7], it was shown that the solution to (2.1) for f(t, u(t)) = Mu(t)+ f(t) where

M is a real number and f ∈ C ([a, b], R), i.e., the solution of a non homogeneous

linear fractional differential equation, is given by

(2.3) u(t) = u0Eq (M(t − a)q) +

∫ t

a

(t − s)q−1Eq,q (M(t − s)q) f(s)ds t ∈ [a, b],

where Eq(t) and Eq,q(t) are the one parameter and two parameter Mittag–Leffler

functions, respectively.

Suppose that u ∈ C1[J, R], Tu(t) =
∫ t

a
K(t, s)u(s)ds, and K ∈ C ([a, b] × [a, b], R)

is a positive function. Since K is continuous, then Tu is continuous and Remark 2.5

can be generalized as follows:

Remark 2.6. The nonlinear integro-differential initial value problem

(2.4)
cDqu = f (t, u(t), Tu(t)) ,

u(a) = u0,

is equivalent to the Volterra fractional integral equation

(2.5) u(t) = u0 +
1

Γ(q)

∫ t

a

(t − s)q−1f (s, u(s), Tu(s))ds.

That is, every solution of (2.4) is a solution of (2.5) and viceversa.

Now we are ready to state some comparison results relative to initial value prob-

lems with the Caputo derivative. First we state a lemma that was proven in [3] for

Riemann–Liouville derivatives.

Lemma 2.7. Let m ∈ Cp([a, b], R) and for any t1 ∈ (a, b] we have that on (a, t1),

m(t) ≤ 0, m(t1) = 0 and m(t)(t − a)1−q|t=a ≤ 0. Then Dqm(t1) ≥ 0.

The above lemma allows us to prove an equivalent result for Caputo derivatives.
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Lemma 2.8. Let m(t) ∈ C1([a, b], R). If there exists t1 ∈ [a, b] such that m(t1) = 0

and m(t) ≤ 0 on [a, t1], then it follows that

cDqm(t1) ≥ 0.

Proof. Let t1 ∈ [a, b], then using the relation between the Caputo derivative and

Riemann–Liouville derivative for n − 1 < α ≤ n given by

cDαu(t) = Dα

[

u(s) −

n−1
∑

k=0

u(k)(a)

k!
(s − a)k

]

(t),

we have for 0 < q ≤ 1 that

cDqm(t1) = Dq [m(t1) − m(a)] = Dqm(t1) −
m(a)

Γ(1 − q)
(t − a)−q ≥ Dqm(t1).

From Lemma 2.7 we have that Dqm(t1) ≥ 0, therefore cDqm(t1) ≥ 0 and the

proof is complete.

Remark 2.9. In [7] the authors proved the above result by assuming that m(t) is

Hölder continuous of order λ > q. Although the proof is correct, it is not useful in

the monotone method or any iterative method because we will not be able to prove

that each of those iterates are Hölder continuous of order λ > q.

We finish this section with a comparison theorem and an important consequence.

Theorem 2.10. Let J = [a, b], and suppose that there exist two functions

v0(t), w0(t) ∈ C[J, R] with v0(t) < w0(t) such that the following conditions hold

(a) f, g ∈ C (J × [v0(t), w0(t)] × [Tv0(t), Tw0(t)]),

(b) f is increasing in u and Tu, g is decreasing in u and Tu, and

(c) For v(t), w(t) ∈ C1[J, R] such that v0(t) ≤ v(t), w(t) ≤ w0(t) the following

inequalities are true for t ∈ [a, b],

(2.6)
cDqv(t) ≤ f(t, v(t), T v(t)) + g(t, w(t), Tw(t)), v(a) ≤ u0, and
cDqw(t) ≥ f(t, w(t), Tw(t)) + g(t, v(t), T v(t)), w(a) ≥ u0.

Suppose further that f(t, u, Tu) and g(t, u, Tu) satisfy the following Lipschitz con-

dition for L1, L2 > 0, M1, M2 ≥ 0, and x ≥ y,

(2.7)
f(t, x, Tx) − f(t, y, Ty) ≤ L1(x − y) + M1T (x − y),

g(t, x, Tx) − g(t, y, Ty) ≥ −L2(x − y) − M2T (x − y),

then v(a) ≤ w(a) implies that

v(t) ≤ w(t), for a ≤ t ≤ b.
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Proof. Assume first without loss of generality that one of the inequalities in (2.6) is

strict, say cDqv(t) < f(t, v(t), T v(t))+g(t, w(t), Tw(t)), and v0 < w0 where v(a) = v0

and w(a) = w0. We will show that v(t) < w(t) for t ∈ [a, b].

Suppose, to the contrary, that there exists t1 such that a < t1 ≤ b for which

v(t1) = w(t1), and v(t) < w(t), for t < t1.

Setting m(t) = v(t)−w(t) it follows that m(t1) = 0 and m(t) < 0 for a ≤ t < t1.

Also, if a ≤ s ≤ t1 then v(s) ≤ w(s) and

Tv(t1) =

∫ t1

a

K(t1, s)v(s)ds ≤

∫ t1

a

K(t1, s)w(s)ds = Tw(t1).

Then by Lemma 2.8 we have that cDqm(t1) ≥ 0. Thus

f (t1, v(t1), T v(t1)) + g (t1, w(t1), Tw(t1))

> cDv(t1) ≥
cDw(t1)

≥ f (t1, w(t1), Tw(t1)) + g (t1, v(t1), T v(t1)) ,

which is a contradiction to the assumption v(t1) = w(t1). Therefore v(t) < w(t) for

t > a.

Now assume that the inequalities in (2.6) are non strict. We will show that

v(t) ≤ w(t).

Set vε(t) = v(t)−εEq (λ(t − a)q) and wε(t) = w(t)+ εEq (λ(t − a)q) where ε > 0,

and λ > 1 is a constant that will be determined later.

This implies that vε(a) = v0 − ǫ < v0, wε(a) = w0 + ε > w0, vε(t) < v(t), and

wε(t) > w(t) for a < t ≤ b.

Hence,

Tvε(t) =

∫ t

a

K(t, s)vε(s)ds ≤

∫ t

a

K(t, s)v(s)ds = Tv(t),

and

Twε(t) =

∫ t

a

K(t, s)wε(s)ds ≥

∫ t

a

K(t, s)w(s)ds = Tw(t),

for t > a.

Using (2.6) and the Lipschitz condition (2.7), we find for t > a that

cDqvε(t)

= cDqv(t) − ελEq (λ(t − a)q)

≤ f (t, v(t), T v(t)) + g (t, w(t), Tw(t))− ελEq (λ(t − a)q)

= f (t, v(t), T v(t)) + g (t, w(t), Tw(t)) − f (t, vε(t), T vε(t)) − g (t, wε(t), Twε(t))

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) − ελEq (λ(t − a)q)

≤ L1 (v(t) − vε(t)) + M1T (v(t) − vε(t)) + L2 (wε(t) − w(t))
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+ M2T (wε(t) − w(t)) + f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))

− ελEq (λ(t − a)q)

= εL1 (Eq (λ(t − a)q)) + εM1T (Eq (λ(t − a)q))

+ εL2 (Eq (λ(t − a)q)) + εM2T (Eq (λ(t − a)q))

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) − ελEq (λ(t − a)q)

= ε (L1 + L2) (Eq (λ(t − a)q)) + ε (M1 + M2) T (Eq (λ(t − a)q))

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) − ελEq (λ(t − a)q) .

Now consider the expression

T (Eq (λ(t − a)q)) =

∫ t

a

K(t, s)Eq (λ(s − a)q) ds,

and let K0 = max
a≤s≤t≤b

{Γ(q)K(t, s)(t − s)1−q}. Clearly K0 > 0.

Then,

T (Eq (λ(t − a)q)) =

∫ t

a

K(t, s)Eq (λ(s − a)q)

(

Γ(q)(t − s)q−1

Γ(q)(t − s)q−1

)

ds

≤
K0

Γ(q)

∫ t

a

(t − s)q−1Eq (λ(s − a)q) ds

=
K0

λ
Eq (λ(s − a)q)

∣

∣

∣

t

a

=
K0

λ
[Eq (λ(t − a)q) − 1]

≤
K0

λ
Eq (λ(t − a)q) .

We have now obtained that

cDqvε(t) ≤ ε (L1 + L2) (Eq (λ(t − a)q)) + ε

{

K0 (M1 + M2)

λ

}

Eq (λ(t − a)q)

+f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) − ελEq (λ(t − a)q)

≤ ε

(

L1 + L2 +
K0 (M1 + M2)

λ
− λ

)

(Eq (λ(t − a)q))

+f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) .

Choose λ = 2 [(L1 + L2) + K0(M1 + M2)] + 1, then

L1 + L2 +
K0 (M1 + M2)

λ
− λ < 0,

and
cDqvε(t) < f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) .

By a similar argument we can show that

cDqwε(t) > f (t, wε(t), Twε(t)) + g (t, vε(t), T vε(t)) .
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Applying now the result for strict inequalities to vε(t), wε(t), we get that vε(t) <

wε(t) for t ∈ J and for every ε > 0. That is v(t) − εEq (λ(t − a)q) < w(t) +

εEq (λ(t − a)q), or v(t) < w(t) + 2εEq (λ(t − a)q).

Consequently, making ε → 0, we get that v(t) ≤ w(t) for t ∈ J .

We now state the following corollary that will be useful in our main results.

Corollary 2.11. Let m ∈ C1[J, R] be such that

cDqm(t) ≤ Lm(t) + MTm(t),

m(a) ≤ 0,

where L > 0, M ≥ 0. Then we have from the previous theorem that

m(t) ≤ 0,

for a ≤ t ≤ b.

Similarly, if m ∈ C1[J, R] is such that

cDqm(t) ≥ −Lm(t) − MTm(t),

m(a) ≥ 0,

for L > 0, M ≥ 0, then we have from the previous theorem that

m(t) ≥ 0,

for a ≤ t ≤ b.

The result of Corollary 2.11 is still true even if L = M = 0, which we state

separately.

Corollary 2.12. Let cDqm(t) ≤ 0 on [a, b]. Then m(t) ≤ 0, if m(a) ≤ 0.

3. MAIN RESULTS

In this section we will give the definition of coupled lower and upper solutions

in order to develop two generalized monotone iterative techniques for the nonlinear

integro-differential initial value problem (3.1), given below.

For that purpose consider the problem

(3.1)
cDqu(t) = f (t, u(t), Tu(t)) + g (t, u(t), Tu(t)) ,

u(a) = u0,

where J = [a, b], f, g ∈ C[J ×R×R, R], u ∈ C1[J ×R], and Tu(t) =
∫ t

a
K(t, s)u(s)ds,

where K ∈ C (J × J, R) is a positive function.

If u ∈ C1[a, b] satisfies the fractional differential equation

cDqu(t) = f (t, u(t), Tu(t)) + g (t, u(t), Tu(t)) ,
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and u is such that u(a) = u0 for t ∈ J , then u is said to be a solution of (3.1).

Throughout the rest of this paper, we will assume that f is increasing in u and

Tu, and g is decreasing in u and Tu for t ∈ J .

Here below we provide the definition of coupled lower and upper solutions of

(3.1).

Definition 3.1. Let v0, w0 ∈ C1[J, R]. Then v0 and w0 are said to be,

• Natural lower and upper solutions of (3.1) if

(3.2)
cDqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, v0(t), T v0(t)), v0(a) ≤ u0,

cDqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, w0(t), Tw0(t)), w0(a) ≥ u0.

• Coupled lower and upper solutions of Type I of (3.1) if

(3.3)
cDqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t)), v0(a) ≤ u0,

cDqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t)), w0(a) ≥ u0.

• Coupled lower and upper solutions of Type II of (3.1) if

(3.4)
cDqv0(t) ≤ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t)), v0(a) ≤ u0,

cDqw0(t) ≥ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t)), w0(a) ≥ u0.

• Coupled lower and upper solutions of Type III of (3.1) if,

(3.5)
cDqv0(t) ≤ f(t, w0(t), Tw0(t)) + g(t, w0(t), Tw0(t)), v0(a) ≤ u0,
cDqw0(t) ≥ f(t, v0(t), T v0(t)) + g(t, v0(t), T v0(t)), w0(a) ≥ u0.

We will state the following theorem related to coupled lower and upper solutions

of the form (3.3). Next, we develop a generalized monotone iterative technique for the

integro-differential initial value problem. Finally, we obtain natural sequences which

converge uniformly and monotonically to coupled minimal and maximal solutions of

(3.1).

Theorem 3.2. Assume that

(A1) v0, w0 are coupled lower and upper solutions of type I for (3.1) with v0(t) ≤

w0(t) in J ; and

(A2) f, g ∈ C (J × [v0(t), w0(t)] × [Tv0(t), Tw0(t)], R), where f (t, u(t), Tu(t)) is

increasing in u and Tu and g (t, u(t), Tu(t)) is decreasing in u and in Tu.

If u(t) is a solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t) for all t ∈ J , then the

sequences defined by

(3.6)
cDqvn+1(t) = f (t, vn(t), T vn(t)) + g (t, wn(t), Twn(t)) ,

vn+1(a) = u0,

and

(3.7)
cDqwn+1(t) = f

(

t, wn(t), Twn(t)
)

+ g
(

t, vn(t), T vn(t)
)

,

wn+1(a) = u0,
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are such that

v0 ≤ v1 ≤ · · · ≤ vn ≤ vn+1 ≤ u ≤ wn+1 ≤ wn ≤ · · · ≤ w1 ≤ w0,

where vn(t) → ρ(t) and wn(t) → r(t) uniformly and monotonically in C1[J, R], and

ρ, r are coupled minimal and maximal solutions of (3.1), respectively; i.e., ρ and r

satisfy the coupled system

cDqρ(t) = f (t, ρ(t), Tρ(t)) + g (t, r(t), T r(t)) ,

ρ(a) = u0 on J,

and

cDqr(t) = f (t, r(t), T r(t)) + g (t, ρ(t), Tρ(t)) ,

r(a) = u0 on J,

with ρ ≤ u ≤ r.

Proof. By hypothesis, v0 ≤ u ≤ w0. We will show that v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

It follows from (3.3) that

cDqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t)), v0(a) ≤ u0,
cDqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t)), w0(a) ≥ u0,

and by (3.6), we get that

cDqv1 = f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)) ,

v1(a) = u0.

Therefore, v0(a) ≤ u0 = v1(a). If we let p = v0 − v1, then p(a) ≤ 0 and,

cDqp = cDqv0 −
cDqv1

≤ f (t, v0, T v0) + g (t, w0, Tw0) − f (t, v0, T v0) − g (t, w0, Tw0)

= 0.

Since cDqp ≤ 0 and p(a) ≤ 0, by an application of Corollary 2.12 we have that

p(t) ≤ 0 and, consequently, v0(t) ≤ v1(t) on J .

Suppose that u is a solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t). In order to

prove that v1(t) ≤ u(t), observe that since v0(t) ≤ u(t) for each t in [a, b] and K > 0,

then

Tv0(t) =

∫ t

a

K(t, s)v0(s)ds ≤

∫ t

a

K(t, s)u(s)ds = Tu(t)

for each t ∈ [a, b]. Similarly we have that Tu(t) ≤ Tw0(t) for each t ∈ [a, b].

Letting p(t) = v1(t) − u(t), we have that p(a) = v1(a) − u(a) = u0 − u0 = 0.

Moreover, by the increasing nature of f and the decreasing nature of g we have that

cDqp = cDqv1 −
cDqu
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= f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t))

−f (t, u(t), Tu(t))− g (t, u(t), Tu(t))

≤ 0,

and by Corollary 2.12 we have that v1(t) ≤ u(t). By a similar argument we can show

that u(t) ≤ w1(t) and w1(t) ≤ w0(t). Thus, v0(t) ≤ v1(t) ≤ u(t) ≤ w1(t) ≤ w0(t).

Now we will show that vk ≤ vk+1 for k ≥ 1.

Assume that

vk−1(t) ≤ vk(t) ≤ u(t) ≤ wk(t) ≤ wk−1(t),

for k > 1.

If a ≤ s ≤ t ≤ b, we have that x1(s) ≤ x2(s) implies that

Tx1(t) =

∫ t

a

K(t, s)x1(s)ds ≤

∫ t

a

K(t, s)x2(s)ds = Tx2(t).

Thus

Tvk−1(t) ≤ Tvk(t) ≤ Tu(t) ≤ Twk(t) ≤ Twk−1(t).

Let p = vk − vk+1. Then

vk(a) = u0 = vk+1(a),

so p(a) = 0. By the increasing nature of f and the decreasing nature of g it follows

that

cDqp = cDqvk −
cDqvk+1

= f (t, vk−1, T vk−1) + g (t, wk−1, Twk−1) − f (t, vk, T vk) − g (t, wk, Twk)

≤ 0.

Similarly, by Corollary 2.12 we have that p(t) ≤ 0 and consequently vk(t) ≤

vk+1(t).

Using the hypothesis that v0(t) ≤ u(t) ≤ w0(t) on J , the above argument and

induction we can also show that wk+1 ≤ wk, vk+1 ≤ u, and u ≤ wk+1. Therefore for

n > 0,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ u ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0.

Now we have to show that the sequences converge uniformly. We will use the

Arzela-Ascoli Theorem by showing that the sequences are uniformly bounded and

equicontinuous.

First we show uniform boundedness. By hypothesis both v0(t) and w0(t) are

bounded on [a, b], then there exists M > 0 such that for any t ∈ [a, b], |v0(t)| ≤ M

and |w0(t)| ≤ M . Since v0(t) ≤ vn(t) ≤ wn(t) ≤ w0(t) for each n > 0, it follows that

0 ≤ vn(t) − v0(t) ≤ wn(t) − v0(t) ≤ w0(t) − v0(t),
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and consequently {vn(t)} and {wn(t)} are uniformly bounded.

To prove that {vn(t)} is equicontinuous, let a ≤ t1 ≤ t2 ≤ b. Then for n > 0,

|vn(t1) − vn(t2)| =

=

∣

∣

∣

∣

∣

u0 +
1

Γ(q)

∫ t1

a

(t1 − s)q−1 [f (s, vn−1(s), T vn−1(s)) + g (s, wn−1(s), Twn−1(s))] ds

− u0 −
1

Γ(q)

∫ t2

a

(t2 − s)q−1 [f (s, vn−1(s), T vn−1(s)) + g (s, wn−1(s), Twn−1(s))] ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

Γ(q)

∫ t1

a

[(t1 − s)q−1 − (t2 − s)q−1]
[

f (s, vn−1(s), T vn−1(s))

+g (s, wn−1(s), Twn−1(s))
]

ds

−
1

Γ(q)

∫ t2

t1

(t2 − s)q−1 [f (s, vn−1(s), T vn−1(s)) + g (t, wn−1(s), Twn−1(s))] ds

∣

∣

∣

∣

∣

≤
1

Γ(q)

∫ t1

a

∣

∣

∣
[(t1 − s)q−1 − (t2 − s)q−1]

[

f (s, vn−1(s), T vn−1(s))

+g (s, wn−1(s), Twn−1(s))
]

∣

∣

∣
ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1
∣

∣

∣
[f (s, vn−1(s), T vn−1(s)) + g (t, wn−1(s), Twn−1(s))]

∣

∣

∣
ds.

Since {vn(t)} and {wn(t)} are uniformly bounded and f (t, u(t), Tu(t)) and

g (t, u(t), Tu(t)) are continuous on [a, b], there exists M̄ independent of n such that

|f (t, vn(t), T vn(t))| ≤ M̄,

|f (t, wn(t), Twn(t))| ≤ M̄,

|g (t, vn(t), T vn(t))| ≤ M̄ , and

|g (t, wn(t), Twn(t))| ≤ M̄.

Thus,

1

Γ(q)

∫ t1

a

∣

∣

∣
[(t1 − s)q−1 − (t2 − s)q−1]

[

f (s, vn−1(s), T vn−1(s))

+g (s, wn−1(s), Twn−1(s))
]

∣

∣

∣
ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1
∣

∣

∣
[f (s, vn−1(s), T vn−1(s)) + g (t, wn−1(s), Twn−1(s))]

∣

∣

∣
ds

≤
M̄

Γ(q)

∫ t1

a

[(t1 − s)q−1 − (t2 − s)q−1]ds +
M̄

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

= −
M̄

qΓ(q)
(t1 − s)q

∣

∣

∣

t1

a
+

M̄

qΓ(q)
(t2 − s)q

∣

∣

∣

t1

a
−

M̄

qΓ(q)
(t2 − s)q

∣

∣

∣

t2

t1
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=
M̄

Γ(q + 1)
(t1 − a)q +

M̄

Γ(q + 1)
(t2 − t1)

q −
M̄

Γ(q + 1)
(t2 − a)q +

M̄

Γ(q + 1)
(t2 − t1)

q

≤
2M̄

Γ(q + 1)
(t2 − t1)

q =
2M̄

Γ(q + 1)
|t1 − t2|

q.

Thus, for any ε > 0 there exists δ =
Γ(q + 1)

2M̄
ε1/q > 0 independent of n such that

for each n,

|vn(t1) − vn(t2)| < ε,

provided that |t1 − t2| < δ. This finishes the proof that {wn(t)} is equicontinuous.

Similarly we can prove that {wn(t)} is equicontinuous.

We have obtained that {vn(t)} and {wn(t)} are uniformly bounded and equicon-

tinuous on [a, b]. Hence by the Arzela-Ascoli Theorem there exist subsequences

{vnk
(t)} and {wnk

(t)} which converge uniformly to ρ(t) and r(t), respectively. Since

the sequences are monotone, the entire sequences converge uniformly.

We have shown that the sequences converge in C[a, b]. In order to show that they

converge in C1[a, b], observe that since each vn is constructed as follows

cDqvn = f(t, vn−1, T vn−1) + g(t, wn−1, Twn−1),

vn(a) = u0,

and we get that

vn(t) = u0 +
1

Γ(q)

∫ t

a

(t − s)q−1[f(s, vn−1(s), T vn−1(s)) + g(s, wn−1(s), Twn−1(s))]ds.

Taking limits when n → ∞, we obtain by the Lebesgue Dominated Convergence

theorem that

ρ(t) = u0 +
1

Γ(q)

∫ t

a

(t − s)q−1 [f (s, ρ(s), Tρ(s)) + g (s, r(s), T r(s))] ds.

Hence vn(t) → ρ(t) in C1[a, b]. Furthermore, the above expression is equivalent

to
cDqρ = f(t, ρ, Tρ) + g(t, r, T r) on J ,

ρ(a) = u0.

By a similar argument wn(t) → r(t) in C1[a, b] and it can be shown that

cDqr = f(t, r, T r) + g(t, ρ, Tρ) on J ,

r(a) = u0.

Since vn ≤ u ≤ wn on [a, b] for all n, we get that ρ ≤ u ≤ r on [a, b] which shows

that ρ and r are coupled minimal and maximal solutions of (3.1), respectively. This

completes the proof.
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Finding coupled lower and upper solutions of Type I as in (3.3) can be itself a

challenge, see the recent papers [1, 14, 15] for methods to construct lower wand upper

solutions of the form (3.3) for different types of initial value problems. However, with

an additional assumption on the first two iterates we can use coupled lower and upper

solutions of Type II (3.4) to construct intertwined sequences that converge uniformly

and monotonically to minimal and maximal solutions. Furthermore, these sequences

converge to a unique solution. The proof is similar to the one in Theorem 3.2, so we

state the result without a proof. We state the conditions for uniqueness separately.

Theorem 3.3. Assume that

(B1) v0, w0 are coupled lower and upper solutions of type II for (3.1) with v0(t) ≤

w0(t) in J ; and

(B2) f, g ∈ C (J × [v0(t), w0(t)] × [Tv0(t), Tw0(t)], R), where f (t, u(t), Tu(t)) is

increasing in u and Tu and g (t, u(t), Tu(t)) is decreasing in u and Tu.

Define the following sequences,

(3.8)
cDqvn+1(t) = f (t, wn(t), Twn(t)) + g (t, vn(t), T vn(t)) ,

vn+1(a) = u0,

and

(3.9)
cDqwn+1(t) = f

(

t, vn(t), T vn(t)
)

+ g
(

t, wn(t), Twn(t)
)

,

wn+1(a) = u0.

If u(t) is a solution of (3.1) such that v0(t) ≤ w1(t) ≤ u(t) ≤ v1(t) ≤ w0(t), then

(3.8) and (3.9) provide intertwined sequences of the form

v0 ≤ w1 ≤ v2 ≤ · · · ≤ v2n ≤ w2n+1 ≤ u

≤ v2n+1 ≤ w2n ≤ · · · ≤ w2 ≤ v1 ≤ w0,

where {v2n(t), w2n+1(t)} → ρ(t) and {w2n(t), v2n+1(t)} → r(t) uniformly and mono-

tonically in C1[J, R], and ρ, r are coupled minimal and maximal solutions of (3.1),

respectively; i.e., ρ and r satisfy the coupled system

cDqρ(t) = f (t, ρ(t), Tρ(t)) + g (t, r(t), T r(t)) ,

ρ(a) = u0 on J,

and

cDqr(t) = f (t, r(t), T r(t)) + g (t, ρ(t), Tρ(t)) ,

r(a) = u0 on J,

with ρ ≤ u ≤ r.

Remark 3.4. In addition to conditions (A1)–(A2) of Theorem 3.2 or (B1)-(B2) of

Theorem 3.3, suppose that there exist positive constants M1, M2, and non negative
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constants N1, N2 such that f and g satisfy the following one–sided Lipschitz conditions

for x ≥ y,

(3.10)
f (t, x, Tx) − f (t, y, Ty) ≤ M1(x − y) + N1T (x − y),

g (t, x, Tx) − g (t, y, Ty) ≥ −M2(x − y) − N2T (x − y),

then ρ = r = u; i.e., the sequences converge to a unique solution.

We already proved that ρ ≤ r. In order to show that r ≤ ρ, let p(t) = r(t)−ρ(t).

Clearly, p(a) = r(a) − ρ(a) = u0 − u0 = 0. Since ρ ≤ r we have from the conclusion

of Theorem 3.2 and (3.10) that

cDqp = cDqr − cDqρ

= f (t, r, T r) + g (t, ρ, Tρ) − f (t, ρ, Tρ) − g (t, r, T r)

≤ M1(r − ρ) + N1T (r − ρ) + M2(r − ρ) + N2T (r − ρ)

= (M1 + M2)(r − ρ) + (N1 + N2)T (r − ρ)

= (M1 + M2)p + (N1 + N2)Tp.

We obtain from Corollary 2.11 that p(t) ≤ 0 and, consequently, r(t) ≤ ρ(t).

Therefore ρ(t) = r(t) = u(t), and the sequences converge to the same solution.

4. NUMERICAL RESULTS

In this section we present two examples that illustrate the result from Theo-

rem 3.3.

Example 4.1. Consider the following integro-differential initial value problem of

order q = 1
2

on J = [0, 1],

(4.1)
cD1/2u = 1

5
u(t) + 1

4

[

∫ t

0
(1 + s2)u(s)ds

]2

− 1
3
u2(t) − 1

8

∫ t

0
(1 + s2)u(s)ds,

u(0) = 1
2
.

Here

Tu(t) =

∫ t

0

(1 + s2)u(s)ds.

Then the function

f (t, u(t), Tu(t)) =
1

5
u(t) +

1

4
[Tu(t)]2

is increasing in u and Tu, and

g (t, u(t), Tu(t)) = −
1

3
u2(t) −

1

8
Tu(t)

is decreasing in u and Tu for all t ∈ J . We will show graphically that v0 ≡ 0 and

w0 ≡ 1 are coupled lower and upper solutions of type II that satisfy (3.4) on the

interval J = [0, 1]. Clearly cD1/2v0(t) = cD1/2w0(t) = 0. In Figure 1 we show the
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graph of f (t, w0(t), Tw0(t)) + g (t, v0(t), T v0(t)) and in Figure 2 we show the graph

of f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)).

Figure 1. 0 = cD1/2v0(t) ≤ f (t, w0(t), Tw0(t)) + g (t, v0(t), T v0(t)) .

Figure 2. 0 = cD1/2w0(t) ≥ f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)) .

We construct the sequences according to Theorem 3.3, in Figure 3 we show five

iterates of {vn} and five iterates of {wn} on [0, 1].

Figure 3. Dashed: v0 ≤ w1 ≤ v2 ≤ w3 ≤ v4 ≤ w5. Solid: v5 ≤ w4 ≤

v3 ≤ w2 ≤ v1 ≤ w0.
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Table 1. Table of ten points in [0, 1] of v5(t) and w5(t) for equation (4.1).

t v5(t) w5(t)

0.0 0.500000 0.500000

0.1 0.504411 0.504369

0.2 0.504670 0.504420

0.3 0.504343 0.503619

0.4 0.504077 0.502500

0.5 0.504332 0.501368

0.6 0.505581 0.500474

0.7 0.508398 0.500046

0.8 0.513551 0.500303

0.9 0.522111 0.501422

1.0 0.535633 0.503454

Example 4.2. Consider the integro-differential initial value problem of order q = 1
2

on J = [0, 1],

(4.2)
cD1/2u = 1

5
u(t) + 1

5

∫ t

0
(1 + s)u(s)ds − 1

10
u2(t) − 1

10

[

∫ t

0
(1 + s)u(s)ds

]2

,

u(0) = 1.

Here

Tu(t) =

∫ t

0

(1 + s)u(s)ds,

the function

f (t, u(t), Tu(t)) =
1

5
u(t) +

1

5
Tu(t)

is increasing in u and Tu, and

g (t, u(t), Tu(t)) = −
1

10
u2(t) −

1

10
[Tu(t)]2

is decreasing in u and Tu for all t ∈ J . We will show graphically that v0 ≡ 0 and

w0 ≡ 2 are coupled lower and upper solutions of type II that satisfy (3.4) on the

interval J = [0, 1]. Observe that cD1/2v0(t) = cD1/2w0(t) = 0. In Figure 4 we show

the graph of f (t, w0(t), Tw0(t))+g (t, v0(t), T v0(t)) and in Figure 5 we show the graph

of f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)).
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Figure 4. 0 = cD1/2v0(t) ≤ f (t, w0(t), Tw0(t)) + g (t, v0(t), T v0(t)) .

Figure 5. 0 = cD1/2w0(t) ≥ f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)) .

In Figure 6 we show five iterates of {vn} and five iterates of {wn} on [0, 1], which

were constructed according to Theorem 3.3.

Figure 6. Dashed: v0 ≤ w1 ≤ v2 ≤ w3 ≤ v4 ≤ w5. Solid: v5 ≤ w4 ≤

v3 ≤ w2 ≤ v1 ≤ w0.

We have used Mathematica to compute the iterates, the graphs and the tables.
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Table 2. Table of ten points in [0, 1] of v5(t) and w5(t) for equation (4.2).

t v5(t) w5(t)

0.0 1.00000 1.00000

0.1 1.04049 1.04048

0.2 1.06408 1.06394

0.3 1.08654 1.08609

0.4 1.10863 1.10758

0.5 1.13017 1.12799

0.6 1.15062 1.14649

0.7 1.16929 1.16192

0.8 1.18545 1.17274

0.9 1.19836 1.17702

1.0 1.2075 1.17235
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