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QUENCHING BEHAVIOR OF INITIAL-BOUNDARY VALUE
PROBLEM FOR A GENERALIZED EULER-POISSON-DARBOUX

EQUATION
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ABSTRACT. We consider a generalization of the Euler-Poisson-Darboux equation with initial and
boundary conditions. Criteria under which week solutions of the initial-boundary value problem for
the generalized Euler-Poisson-Darboux equation quench in finite time are obtained. Also, criteria
under which the first derivative of a weak solution of the problem blows up in finite time are given.
Furthermore, numerical results for one-dimensional problems are discussed.
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1. INTRODUCTION

The concept of quenching was introduced in 1975 by Kawarada [5] through a first

initial-boundary value problem for a semilinear heat equation. Chang and Levine [4]

extended the concept to hyperbolic equations through a first initial-boundary value

problem for a semilinear wave equation in 1981. For the one-dimensional semilinear

Euler-Poisson-Darboux equations, Chan and Nip [1, 2] studied the critical length, and

the blow-up of the second derivative of the solution with respect to time at quenching.

Chan and Zhu [3] furthered the study of quenching for an initial-boundary value

problem involving the n-dimensional semilinear Euler-Poisson-Darboux equations.

Let a and b be any real numbers with b greater than 0, ∆ be the n-dimensional

Laplace operator, f : (−∞, c) → (0,∞) for some positive constant c such that f is

convex, and lims→c− f(s) =∞, Ω be a bounded domain in Rn with a piecewise smooth

boundary ∂Ω, and u0(x) ∈ C(Ω). Let us consider the initial-boundary problem,

(1.1) utt +

(
a+

b

t

)
ut −∆u = f(u), (x, t) ∈ Ω× (0, T ),

(1.2) u(x, 0) = u0(x), ut(x, 0) = 0, x ∈ Ω,

(1.3) u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ).
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In this paper, we give criteria under which a weak solution of the problem (1.1)–(1.3)

quenches. For a = 0, the case when b = 0, u0(x) = 0 and f ′ ≥ 0 was discussed by

Chang and Levine [4] , the case when b ≤ 1, u0(x) ≥ 0, and f ′ ≥ 0 was investigated

by Chan and Nip [1] for one spatial dimension; and for multi-dimensional case, it was

studied by Chan and Zhu [3]. Furthermore, we obtain criteria under which the first

derivative of a weak solution of the problem (1.1)–(1.3) blows up in finite time and

numerical results for one-dimensional initial-boundary value problems.

2. QUENCHING RESULTS FOR SOLUTIONS

Definition 2.1 The function u : Ω × [0, T ) → R is called a weak solution of the

problem (1.1)–(1.3) if u and ut are continuous in Ω× [0, T ), u satisfies (1.2) and (1.3),

and for all ϕ : Ω× [0, T )→ R which are twice continuously differentiable in t, satisfy

(1.3) and

(2.1)

∫ T

0

∫
Ω

|ϕ(x, t)|
t2

dxdt+

∫ T

0

∫
Ω

|ϕt(x, t)|
t

dxdt <∞,

we have

(2.2)∫
Ω

utϕdx+(a+
k

t
)

∫
Ω

uϕdx =

∫ t

0

∫
Ω

[
ϕηuη + u∆ϕ+ ϕf +

b

η
ϕηu+ (

2a

η
− b

η2
)ϕu

]
dxdη.

Let λ be the first eigenvalue of the eigenvalue problem,

∆φ+ λφ = 0, x ∈ Ω; φ = 0, x ∈ ∂Ω,

and φ(x) denote the corresponding eigenfunction. Then, λ > 0 , and φ(x) > 0, x ∈ Ω

with
∫

Ω
φ(x)dx = 1. Let

(2.3) w (t) =

∫
Ω

φ(x)u(x, t)dx,

where u is a weak solution of the problem (1.1)–(1.3).

Lemma 2.1. Assume that

(i) f(s)− λs ≥ 0 for s ∈ (0, c),

(ii) f
(∫

Ω
φ(x)u0 (x) dx

)
> λ

∫
Ω
φ(x)u0 (x) dx, and

(iii) w (t) < c for t > 0.

Then w′(t) > 0 for t > 0.

Proof. From (2.3), we have

w′ (t) =

∫
Ω

φ(x)ut(x, t)dx.
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Let ϕ(x, t) = t2φ(x). It is obvious that (2.1) is satisfied with the definition of φ(x).

From (2.2), we have

t2w′ (t) + at2w (t) + btw (t) =

∫ t

0

[2η2w′ (η) +
(
b− λη2

)
w (η)

+η2

∫
Ω

φ (x) f (u (x, η)) dx

]
dη.

Therefore,

w
′′

(t) +

(
a+

b

t

)
w′ (t) = −λw (t) +

∫
Ω

φ (x) f (u) dx.

Since f is positive and convex, by Jensen’s inequality (Wheeden and Zygmund [6]),

we have the following inequality

(2.4) w
′′

(t) +

(
a+

b

t

)
w′ (t) ≥ f (w (t))− λw (t) .

Define

g (t) = tbeat, t ≥ 0,

then, g (t) is continuous on [0,∞) and differentiable on (0,∞).

Since
dg (t)w′ (t)

dt
= g′ (t)w′ (t) + g (t)w′′ (t) ,

it follows from f (s)− λs ≥ 0 on (0, c), g (t) > 0 for t > 0, f (s) > 0 on (−∞, c), and

λ > 0 that

(2.5)
dg (t)w′ (t)

dt
= g (t)

[
w′′ (t) +

(
a+

k

t

)
w′ (t)

]
≥ g (t) [f (w (t))− λw (t)] , t > 0.

It follows that f
(∫

Ω
φ(x)u0 (x) dx

)
> λ

∫
Ω
φ(x)u0 (x) dx and g (t) > 0 for t > 0 that

there exists a positive constant ε such that

dg (t)w′ (t)

dt
> 0, t ∈ (0, ε) .

Since g (0)w′ (0) = 0, then g (t)w′ (t) > 0 for t ∈ (0, ε). It follows from g (t) > 0 for

t > 0 that w′ (t) > 0 for t ∈ (0, ε).

To prove that w′ (t) > 0 for t > 0, we suppose that there exists some τ ≥ ε such

that w′ (τ) = 0 and w′ (t) > 0 for t ∈ (0, τ). Define

P (t) = (w′ (t))
2
,

then

P (τ) = 0,

and

P (t) > 0, t ∈ (0, τ) .

Define

Q (t) = t2be2at, t ≥ 0,
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then, Q (t) > 0 for t > 0.

By the definitions of P (t) and Q (t), we know that for t ∈ (0, τ)

(2.6)
dP (t)Q(t)

dt
=

(
2a+

2b

t

)
Q (t)P (t) +Q (t)P ′ (t) .

It follows from (2.4) and w′ (t) > 0 for t ∈ (0, τ) that

(2.7) P ′ (t) ≥
(
−a− 2b

t

)
P (t) + 2w′ (t) (f (w (t))− λw (t)) .

From (2.6) and (2.7), we have

d (P (t)Q (t))

dt
≥ Q (t)

[(
−a− 2b

t

)
P (t) + 2w′ (t) (f (w (t))− λw (t))

]
+

(
2a+

2b

t

)
P (t)Q (t)

≥ 2Q (t)w′ (t) (f (w (t))− λw (t)) .

Therefore,

(2.8)
d (P (t)Q (t))

dt
≥ 2Q (t)w′ (t) (f (w (t))− λw (t)) .

By integrating (2.8) from t0 to τ for some constant t0, 0 < t0 < τ , we have

P (τ)Q (τ) ≥ 2

∫ τ

t0

Q (t)w′ (t) (f (w (t))− λw (t)) dt+ P (t0)Q (t0) .

It follows from Q (t) > 0, w′ (t) > 0, f (w (t)) − λw (t) ≥ 0, and P (t0)Q (t0) > 0

that P (τ)Q (τ) > 0. Since Q (τ) > 0, then P (τ) > 0, which is a contradiction to

P (τ) = 0. Therefore, w′ (t) > 0 for t > 0.

Theorem 2.1. For the problem (1.1)–(1.3), assume that

(i) f(s)− λs ≥ 0 for s ∈ (0, c),

(ii) f
(∫

Ω
φ(x)u0 (x) dx

)
> λ

∫
Ω
φ(x)u0 (x) dx, and

(iii) a ≤ 0 and b ≤ 1.

Then a weak solution of the problem (1.1)–(1.3) must quench in finite time.

Proof. Suppose that u (x, t) < c for (x, t) ∈ Ω× [0,∞). By the definition of w (t), we

know that w (t) < c for t > 0. Since all conditions in Lemma 2.1 are satisfied, then

w′(t) > 0 for t > 0. It follows from (2.4) and f (s)− λs ≥ 0 in (0, c) that

w′′ (t) +
b

t
w′ (t) ≥ 0.

Integrating this over (t1, t), t1 > 0, we have

w′ (t) ≥ tb1w
′ (t1)

tb
.
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Integrating this over (t1, t), we have

w (t) ≥

 w (t1) +
tb1w

′ (t1)

1− k
(
t1−b − t1−b1

)
, 0 < b < 1,

w (t1) + t1w
′ (t1) ln t

t1
, b = 1.

Since w′ (t1) > 0, there exists some t2 > t1 such that w (t) ≥ c for t > t2. This

contradiction shows that u must quench in finite time.

Theorem 2.2. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii) f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0, and

(iii) a ≤ 0 and b > 1.

Then a weak solution of the problem (1.1)–(1.3) must quench in finite time.

Proof. Suppose that u (x, t) < c for (x, t) ∈ Ω × [0,∞). By the definition of w (t),

we know that w (t) < c for t > 0. It follows from f (s) − (1 + α)λs ≥ 0 in (0, c)

that f (s) − λs > 0 in (0, c). Since all conditions in Lemma 2.1 are satisfied, then

w′ (t) > 0 for t > 0.

Assume that w (0) =
∫
D
φ(x)u0(x)dx > 0. Then 0 < w (t) < c, and f (s)− λs ≥

αλs in (0, c). Since w′(t) > 0, it follows from w (t) > w (0), and (2.4) that

d

dt

(
tbw′(t)

)
≥ (αλw (0)) tb, t > 0.

Integrating this from 0 to t, we have

w′ (t) ≥ αλw (0)

b+ 1
t.

Another integration gives

w (t) ≥ αλw (0)

2 (b+ 1)
t2 + w (0) .

It follows from α > 0, and w (0) > 0 that there exists some t2 > 0 such that w (t2) ≥ c.

This contradiction proves that u must quench in finite time.

Assume that w (0) =
∫
D
φ(x)u0(x)dx ≤ 0. We claim that there exists some

t3 > 0 such that w (t3) ≥ 0. Suppose this is not true. Then, w (t) < 0 for t > 0. Since

w′(t) > 0, and −b/t > −1 for any t > b > 1. It follows from (2.4) that,

w′′ (t) > −w′ (t) + f (w (t))− λw (t) .

Since w (t) < 0, f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0, f > 0 is convex and w′ (t) > 0, we have

f (w (t))− λw (t) > f (w (t)) ≥ f (w (0)) > 0.

Hence,

w′′ (t) > −w′ (t) + f (w (0)) .
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Integrating this inequality twice over (b, t), it follows from w (t) < 0 that

w (t) ≥ 1

2
f (w (0)) t2 + + [w′ (b) + w (b)− bf (w (0))] t+ w (b) .

Since f (w (0)) > 0, then there exists t4 > 0 such that w (t4) ≥ 0. This proves our

claim.

Since w (t4) ≥ 0 and w′ (t) > 0, we have w (t) > 0 for t > t4. For any t5 > t4 such

that w (t5) < c, it follows from (7) and f (s)− λs ≥ αλs in (0, c) that

d

dt

(
tbw′(t)

)
> αλw (t) tb > αλw (t5) tb,

where w (t5) > 0. An argument similar to the above case in which w (0) > 0 shows

that u must quench in finite time.

Theorem 2.3. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii)
∫

Ω
φ(x)u0(x)dx > 0, and

(iii) a > 0.

Then a weak solution of the problem (1.1)–(1.3) must quench in finite time.

Proof. Suppose that u (x, t) < c for (x, t) ∈ Ω × [0,∞). By the definition of w (t),

we know that w (t) < c for t > 0. It follows from f (s) − (1 + α)λs ≥ 0 in (0, c)

that f (s) − λs > 0 in (0, c). Since all conditions in Lemma 2.1 are satisfied, then

w′ (t) > 0 for t > 0.

Since w′ (t) > 0, it follows from (2.5) and g (t) > 0 that

(2.9)
d (g (t)w′(t))

dt
≥ (αλw (0)) g (t) , t > 0.

It follows from (2.9), g (t) > 0, g′ (t) > 0 for t > 0 and g (t) → ∞ as t → ∞ that

w′ (t) ≥ αλβw (0) for some positive constant β. Integrating the inequality over [0, t]

gives

(2.10) w (t) ≥ αλβw (0) t+ w (0) .

It follows from (2.10), α > 0, and w (0) > 0 that there exists some t6 > 0 such that

w (t6) = c. This contradiction proves that u must quench in finite time.

Theorem 2.4. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii) f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0,

(iii)
∫

Ω
φ(x)u0(x)dx ≤ 0, and

(iv) a > 0.

Then a weak solution of the problem (1.1)–(1.3) must quench in finite time.

Proof. Suppose that u (x, t) < c for (x, t) ∈ Ω × [0,∞). By the definition of w (t),

we know that w (t) < c for t > 0. We claim that there exists some t6 > 0 such that
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w (t6) ≥ 0. Suppose this is not true. Then, w (t) < 0 for t > 0. It follows from

f (s) − (1 + α)λs ≥ 0 in (0, c) that f (s) − λs > 0 in (0, c). Since all conditions in

Lemma 2.1 are satisfied, then w′ (t) > 0 for t > 0. Since w′(t) > 0, and −b/t > −1

for any t > b > 1. It follows (2.4) that,

w′′ (t) > − (1 + a)w′ (t) + f (w (t))− λw (t) .

Since w (t) < 0, f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0, f > 0 is convex and w′ (t) > 0, we have

f (w (t))− λw (t) > f (w (t)) ≥ f (w (0)) > 0.

Hence,

w′′ (t) > − (1 + a)w′ (t) + f (w (0)) .

Multiplying this inequality by e(1+a)t, and integrating twice over (b, t), we have

w (t) ≥ w (b) +
1

1 + a
[w′ (b)− f (w (0))]

(
1− e(1+a)(b−t))+ f (w (0)) (t− b) .

It follows from 0 < 1− e(1+a)(b−t) < 1 for t > b and a > 0 that

w (t) ≥ w (b)− 1

1 + a
|w′ (b)− f (w (0))|+ f (w (0)) (t− b) .

It follows from f (w (0)) > 0 that w (t6) ≥ 0 for some t6 > 0. This proves our claim.

Since w′ (t) > 0, we have w (t) > 0 for t > t6. For any t7 > t6 such that w (t7) < c,

it follows from (2.5) and f (s)− λs ≥ αλs in (0, c) that

(2.11)
d

dt
(g (t)w′(t)) ≥ αλw (t) g (t) ≥ αλw (t7) g (t) ,

where w (t7) > 0. It follows from (2.11), g (t) > 0, g′ (t) > 0 for t > 0 and g (t)→∞
as t → ∞ that w′ (t) ≥ αλβw (0) for some positive constant β. Integrating the

inequality over [t7, t] gives

(2.12) w (t) ≥ αλβw (t7) t+ w (t7) .

It follows from (2.12), α > 0, and w (t7) > 0 that there exists some t8 > 0 such that

w (t8) = c. This contradiction proves that u must quench in finite time.

3. BLOW-UP RESULTS FOR DERIVATIVES OF SOLUTIONS

We have the following conclusions.

Theorem 3.1. For the problem (1.1)–(1.3), assume that

(i) f(s)− λs ≥ 0 for s ∈ (0, c),

(ii) f
(∫

Ω
φ(x)u0 (x) dx

)
> λ

∫
Ω
φ(x)u0 (x) dx,

(iii) a ≤ 0 and b ≤ 1, and

(iv)
∫ c

0
f (u) du =∞.
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Then the first derivative of a weak solution of the problem (1.1)–(1.3) blows up in

finite time.

Proof. Since all conditions in Theorem 2.1 are satisfied, we know that there exists a

positive number t∗ such that limt→t∗ w (t) = c, and w′ (t) > 0 for t > 0.

By the definition of P (t) we know that P (t) > 0 for t > 0. Similar to (2.8), we

have

(3.1)
d (P (t)Q (t))

dt
≥ 2Q (t)w′ (t) (f (w (t))− λw (t)) , t > 0.

Integrating (3.1) over (γ, t) for some γ > 0, we have

P (t)Q (t) ≥ P (γ)Q (γ) + 2

∫ t

γ

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ

= Q (γ) (w′(γ))
2

+ 2

∫ t

γ

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ.(3.2)

From (3.2) and Q (t) > 0, we have

(3.3) P (t) ≥ Q (γ) (w′(γ))2

Q (t)
+

2

Q (t)

∫ t

γ

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ.

Applying the fact that 0 < Q (t) ≤ t2b, Q′ (t) > 0 and a ≤ 0 to (3.3), we obtain

(3.4) P (t) ≥ γ2b (w′(γ))2

t2b
+

2γ2b

t2b

∫ t

γ

(f(w (τ))− λw (τ))w′ (τ) dτ.

It follows from (3.4), w′ (γ) > 0, P (t) = (w′(t))2 and t > γ > 0 that

w′(t) >

√
2γb

tb

[∫ w(t)

w(γ)

(f(s)− λs) ds

] 1
2

.

From
∫ c

0
f (u) du =∞, we have limt→t∗ w

′ (t) =∞. Since

w′ (t) =

∫
Ω

φ(x)ut(x, t)dx ≤ max
x∈Ω

ut(x, t),

it follows that ut blows up in finite time.

Theorem 3.2. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii) f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0,

(iii) a ≤ 0 and b > 1, and

(iiv)
∫ c

0
f (u) du =∞.

Then the first derivative of a weak solution of the problem (1.1)–(1.3) blows up in

finite time.
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Proof. Since all conditions in Theorem 2.2 are satisfied, we know that there exists a

positive number t∗ such that limt→t∗ w (t) = c, and w′ (t) > 0 for t > 0. Similar to

Theorem 3.1, upon integrating (3.1) over (δ, t) for some δ > 0, we have

w′(t) >

√
2δb

tb

[∫ w(t)

w(δ)

(f(s)− λs) ds

] 1
2

.

From
∫ c

0
f (u) du =∞, we have limt→t∗ w

′ (t) =∞. Since

w′ (t) =

∫
Ω

φ(x)ut(x, t)dx ≤ max
x∈Ω

ut(x, t),

it follows that ut blows up in finite time.

Theorem 3.3. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii)
∫

Ω
φ(x)u0(x)dx > 0,

(iii) a > 0, and

(iv)
∫ c

0
f (u) du =∞.

Then the first derivative of a weak solution of the problem (1.1)–(1.3) blows up in

finite time.

Proof. Since all conditions in Theorem 2.3 are satisfied, we know that there exists a

positive number t∗ such that limt→t∗ w (t) = c, and w′ (t) > 0 for t > 0.

By the definition of P (t), we know that P (t) > 0 for t > 0. Similar to (2.8), we

have

(3.5)
d (P (t)Q (t))

dt
≥ 2Q (t)w′ (t) (f (w (t))− λw (t)) , t > 0.

Integrating (3.5) over (η, t) for some η > 0, we have

P (t)Q (t) ≥ P (η)Q (η) + 2

∫ t

η

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ

= Q (η) (w′(η))
2

+ 2

∫ t

η

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ.(3.6)

From (3.6) and Q (t) > 0, we have

(3.7) P (t) ≥ Q (η) (w′(η))2

Q (t)
+

2

Q (t)

∫ t

η

Q (τ) (f(w (τ))− λw (τ))w′ (τ) dτ.

Applying the fact that Q (t) > 0, and Q′ (t) > 0 to (3.7), we obtain

(3.8) P (t) ≥ Q (η) (w′(η))2

Q (t)
+

2Q (η)

Q (t)

∫ t

η

(f(w (τ))− λw (τ))w′ (τ) dτ.

It follows from (3.8), w′ (η) > 0, P (t) = (w′(t))2 and t > η > 0 that

w′(t) >

√
2Q (η)

Q (t)

[∫ w(t)

w(γ)

(f(s)− λs) ds

] 1
2

.
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From
∫ c

0
f (u) du =∞ and Q (t) <∞ on (0, t∗), we have limt→t∗ w

′ (t) =∞. Since

w′ (t) =

∫
Ω

φ(x)ut(x, t)dx ≤ max
x∈Ω

ut(x, t),

it follows that ut blows up in finite time.

Theorem 3.4. For the problem (1.1)–(1.3), assume that

(i) f(s)− (1 + α)λs ≥ 0 in (0, c) for any positive constant α,

(ii) f ′
(∫

Ω
φ(x)u0(x)dx

)
≥ 0,

(iii)
∫

Ω
φ(x)u0(x)dx ≤ 0,

(iv) a > 0, and

(v)
∫ c

0
f (u) du =∞.

Then the first derivative of a weak solution of the problem (1.1)–(1.3) blows up in

finite time.

Proof. Since all conditions in Theorem 2.4 are satisfied, we know that there exists a

positive number t∗ such that limt→t∗ w (t) = c, and w′ (t) > 0 for t > 0.

By the definition of P (t) we know that P (t) > 0 for t > 0. Similar to Theo-

rem 3.3, we have

(3.9)
d (P (t)Q (t))

dt
≥ 2Q (t)w′ (t) (f (w (t))− λw (t)) , t > 0.

Upon integrating (3.9) over (ρ, t) for some ρ > 0, we have

w′(t) >

√
2Q (ρ)

Q (t)

[∫ w(t)

w(ρ)

(f(s)− λs) ds

] 1
2

.

From
∫ c

0
f (u) du =∞ and Q (t) <∞ on (0, t∗), we have limt→t∗ w

′ (t) =∞. Since

w′ (t) =

∫
Ω

φ(x)ut(x, t)dx ≤ max
x∈Ω

ut(x, t),

it follows that ut blows up in finite time.

4. NUMERICAL RESULTS

In this section, quenching phenomena of various initial-boundary value problems

for the generalized Euler-Poisson-Darboux equation are discussed with application of

theorems stated in Section 2. The numerical solutions of these problems before the

quenching time are obtained. Let us consider the one-dimensional initial-boundary

problem,

(4.1) utt +

(
a+

b

t

)
ut −∆u = f(u), (x, t) ∈ (0, L)× (0, T ),

(4.2) u(x, 0) = u0(x), ut(x, 0) = 0, x ∈ (0, L) ,

(4.3) u(0, t) = 0, u(L, t) = 0, t ∈ [0, T ).
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Considering the problem (4.1)–(4.3) with a = −1, b = 0.5, L = 2, f (s) = 1
1−s , and

the initial condition u0 (x) = 0. With a < 0, b ≤ 1, and u0 (x) = 0, it is obvious that

conditions (ii) and (iii) are satisfied, and if L ≥ π
2
, then the condition (i) is satisfied.

According to the Theorem 2.1, a solution of the one-dimensional initial-boundary

problem (4.1)–(4.3) quenches in finite time. Figure 1.1 shows the behavior of the

solution u (x, t), x ∈ [0, 2] before the quenching time; Figure 1.2 shows the solution at

different times t = 0.0, 0.2, 0.4, 0.8, 1.0, 1.2, and 1.31. The numerical results indicate

that the quenching time is approximately 1.311.

For the problem (4.1)–(4.3) with given a = 1, b = 1, L = 2, f (s) = 1
1−s , and the

initial condition u0 (x) = x(2−x)
5

; since a < 0, b ≤ 1, and u0 (x) > 0, for x ∈ (0, 2), it is

obvious that conditions (ii) and (iii) are satisfied, and if L > π
2
, then the condition (i)

is satisfied, it follows the Theorem 2.3 that a solution of the one-dimensional initial-

boundary problem (4.1)–(4.3) quenches in finite time. Figure 2.1 shows the behavior

of the solution u (x, t), x ∈ [0, 2] before the quenching time; Figure 2.2 shows the

solution at different times t = 0.0, 0.4, 0.8, 1.2, 1.6, 1.8 and 1.97. The numerical

results indicate that the quenching time is approximately 1.971.

For the problem (4.1)–(4.3) with given a = 1, b = 1, L = 2, f (s) = 1
1−s , and the

initial condition u0 (x) = −x(2−x)
5

, since a < 0, b ≤ 1, and u0 (x) > 0, for x ∈ (0, 2),

then conditions (ii) and (iii) are satisfied, and if L > π
2
, then the condition (i) is

satisfied, therefore, according to the Theorem 2.4, a solution of the one-dimensional

initial-boundary problem (4.1)–(4.3) quenches in finite time. Figure 3.1 shows the

behavior of the solution u (x, t), x ∈ [0, 2] before the quenching time; Figure 3.2

shows the solution at different times t = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4 and 2.489. The

numerical results indicate that the quenching time is approximately 2.490.

We investigate the effect of the length of the interval on the behavior of solutions

of the problem (4.1)–(4.3). Let us consider the problem (4.1)–(4.3) with a = −1,
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b = 0.5, f (s) = 1
1−s , and the initial condition u0 (x) = 0, also L = 1.6 > π

2
. Figure

4.1 shows the behavior of the solution u (x, t), x ∈ [0, 1] and t ∈ [0, 1.45]; Figure 4.2

shows the solution at different times t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.45. The

numerical results indicate that the quenching time is approximately 1.451. Figures 1.1

and 1.2 and Figures 4.1 and 4.2 contrast the behavior of a solution of u of (4.1)–(4.3)

for different values of L, and the numerical results for L = 2 and L = 1 show that

with the same a, b and the initial condition u0 (x), the length of the interval plays an

important role in determining the quenching time.
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