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ABSTRACT. Recently, we published results which includes the symbolic representation for the

linear Caputo fractional differential equations in the journal “Mathematics.” Also, we obtained

numerical results by iterative methods. In this paper, we derive numerical results by direct numerical

method using the symbolic representation we have obtained earlier. This direct numerical method

is useful in developing monotone method and quasilinearization method for nonlinear problems. As

an application of this result, we have obtained the numerical solution for a special Ricatti, type of

differential equation which blows up in finite time.
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1. Introduction

Dynamic systems with fractional derivative is known to be more useful, suitable

and economical when compared to integer derivative, see [1–5] and the references

there in for more details. In addition, the behavior of the solution of the fractional

dynamic systems is global in nature compared with dynamic systems with integer

derivatives. In the past three decades dynamic systems with fractional derivative has

gained importance due to its advantage in applications. See [2–6, 9, 12, 14–20] for

some applications. There are plenty of results available in literature for existence and

uniqueness of solutions of nonlinear fractional differential equations, a vast majority

of the results are via some kind of fixed point theorem methods. In order to compute

the solution of the nonlinear fractional dynamical system, the method of upper and

lower solution or the method of coupled lower and upper solution together with an

iterative method is more appropriate. The advantage of such a method is that the

interval of existence of the solution is guaranteed [6,10]. In order to develop such an

iterative method one of the important step is to compute the solution of the linear

equation with either constant coefficients or variable coefficients. The solution of the

Caputo linear fractional differential equation of order q, 0 < q < 1, with constant

coefficients will be in terms of the Mittag leffler function. The solution of the variable
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coefficients has been obtained symbolically in [8]. In addition, we have obtained the

approximate solution of the Caputo linear fractional differential equation of order q,

0 < q < 1, with variable coefficients by iterative method. In this paper we developed

a direct numerical method for the Caputo linear equation with variable coefficients.

Our direct numerical method is applicable when the coefficient term and the non

homogeneous term are of the form (t − t0)
q.

As an application of direct numerical method we have considered the example
cDqu = u2, u(0) = 1. Initially, we have developed Picards approximation as well as

Quasilinearization approximation. Our direct numerical method encounter a hurdle.

The hurdle is we do not have an explicit form of the iterate. Discrete values of the

iterates are only known. We plan to improve on our direct numerical method when

the initial iterates are known at discrete points. We have provided some numerical

examples for linear Caputo fractional differential equations of order q, 0 < q < 1, with

variable coefficients by iterative method and direct numerical approximation method.

The direct numerical approximations for q 6= 1 are developed in a way to provide the

exact solution for q = 1.

2. Preliminary Results

In this section, initially we recall basic definitions, results of fractional derivatives

and integrals. We also present symbolic representation for the linear Caputo fractional

differential equation with variable coefficients see [8].

Definition 2.1. The Caputo (left-sided) fractional derivative of u(t) of order q, n −

1 < q < n, is given by equation

(2.1) cDqu(t) =
1

Γ(n − q)

∫ t

t0

(t − s)n−q−1u(n)(s)ds, t ∈ [t0, t0 + T ],

and (right-sided)

(2.2) cDqu(t) =
(−1)n

Γ(n − q)

∫ t0+T

t

(s − t)n−q−1u(n)(s)ds, t ∈ [t0, t0 + T ],

where u(n)(t) = dn(u)
dtn

.

In particular, q = n, an integer, then cDqu = u(n)(t) and cDqu = u′(t) if q = 1.

Definition 2.2. The Caputo (left-sided) fractional derivative of order q, where 0 <

q < 1 is given by equation

(2.3) cDqu(t) =
1

Γ(1 − q)

∫ t

t0

(t − s)−qu′(s)ds,

where u′(t) = du/dt.
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Definition 2.3. The Riemann-Liouville (left-sided) fractional integral of order q is

defined as,

(2.4) D−qu(t) =
1

Γ(q)

∫ t

t0

(t − s)q−1u(s)ds, t < T, 0 < q < 1.

One can also define the right-sided Riemann-Liouville fractional integral. In this

work, we use only left sided integral. Note that q = 1 in definitions (2.1) and (2.2)

is the special case of the integer derivative. In order to compute the solutions, we

introduce the two-parameter Mittag-Leffler functions.

Definition 2.4. The Mittag-Leffler function is given by

(2.5) Eα,β(λ(t − t0)
α) =

∞
∑

k=0

(λ(t − t0)
α)k

Γ(αk + β)
,

where α, β > 0 and λ is a constant. Furthermore, for t0 = 0, α = q and β = q, it

reduces to

(2.6) Eq,q(λtq) =

∞
∑

k=0

(λtq)k

Γ(qk + q)
,

where q > 0. If α = q and β = 1, then

(2.7) Eq,1(λtq) =
∞

∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

If q = 1, then E1,1(λt) = eλt. See [2, 4, 5, 8, 12] for more details. The work in [12]

is exclusively for the study and application of the Mittag-Leffler function.

Consider the linear Caputo fractional differential equation

(2.8) cDqu(t) = p(t)u + f(t), t0 < t < t0 + T, T > 0, u(t0) = u0,

where p(t) and f(t) are continuous on [t0, t0 + T ].

In particular, if p(t) = λ, the analytical solution of (2.8) is given by

(2.9) u(t) = u0Eq,1(λ(t − t0)
q) +

∫ t

t0

(t − s)q−1Eq,q(λ(t − s)q)f(s)ds.

For details see [2, 4].

If p(t) is a function of t, p(t) ∈ C([t0, t0 + T ], R), the solution of (2.8) has been

obtained symbolically as follows,

(2.10) u(t) = u0e
cD−qp(t) +

1

Γ(q)

∫ t

t0

(t − s)q−1e
cD−qp(σ)|tsf(s)ds.

where

(2.11) cD−qp(σ)|ts = cD−qp(σ)|t0 −
cD−qp(σ)|s0
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Note that e in (2.10) is not the usual exponential function and it does not hold

the usual exponential properties.

For details see [8]. In our earlier work, we have obtained numerical solution for

Caputo linear equation with variable coefficients by iterative method which is the

same method adopted to obtain the symbolic representation. In this work, we have

developed direct numerical methods to compute the solution of (2.8). The direct

numerical approximations for q 6= 1 are developed in a way to provide the exact

solution for q = 1. This is our next result.

3. Main Results

3.1. Numerical results for linear Caputo fractional differential equations

with variable coefficients. Our main result consist of two parts. In section (3.1),

we develop direct numerical approximation methods for the computation of solution

of (2.8) for the special case when p(t) = A+B(t−t0)
q and f(t) = α(t−t0)

q. In section

(3.2), we apply the direct numerical approximations to develop numerical methods to

solve Ricatti type of Caputo fractional differential equation as an application of the

results of section (3.1).

Consider the linear Caputo fractional differential equations with variable coeffi-

cients of order q.

(3.1) cDqu = p(t)u + f(t), u(t0) = u0.

where p(t) and f(t) are continuous function on [t0, t0 + T ].

Here is the numerical examples for our explicit computation of solutions when

0 < q < 1 by iterative method.

Example 1: If p(t) = (t − t0)
q and f(t) = α ∗ (t − t0)

q, α = 1.5, then (3.1)

becomes

(3.2) cDqu(t) = (t − t0)
qu + 1.5(t − t0)

q, u(t0) = u0 on J = [t0, t0 + T ],

where 0 < q < 1. The solution is obtained in the form

u(t) = u0{1 +
∞

∑

k=1

((t − t0)
2q)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
}

+ 1.5

∞
∑

k=1

((t − t0)
2q)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
.
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Figure 1. p(t) = (t − t0)
q and f(t) = α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0

Example 2: When p(t) = −(t − t0)
q and f(t) = α ∗ (t − t0)

q, then (2.8) becomes

(3.3) cDqu(t) = −(t − t0)
qu + 1.5(t − t0)

q, u(t0) = u0 on J = [t0, t0 + T ],

where 0 < q < 1.

The solution is obtained in the form

u(t) = u0{1 +
∞

∑

k=1

((t − t0)
2q)k(−1)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
}

− 1.5

∞
∑

k=1

((t − t0)
2q)k(−1)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
.
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Figure 2. p(t) = −(t − t0)
q and f(t) = α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0

Example 3: When p(t) = (t − t0)
q and f(t) = −α ∗ (t − t0)

q, then (2.8) becomes

(3.4) cDqu(t) = (t − t0)
qu − 1.5(t − t0)

q, u(t0) = u0 on J = [t0, t0 + T ],

where 0 < q < 1.
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The solution is obtained in the form

u(t) = u0{1 +
∞

∑

k=1

((t − t0)
2q)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
}

− 1.5

∞
∑

k=1

((t − t0)
2q)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
.
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Figure 3. p(t) = (t − t0)
q and f(t) = −α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0

Example 4: When p(t) = −(t− t0)
q and f(t) = −α∗ (t− t0)

q, then (2.8) becomes

(3.5) cDqu(t) = −(t − t0)
qu − 1.5(t − t0)

q, u(t0) = u0 on J = [t0, t0 + T ],

where 0 < q < 1.

The solution is obtained in the form

u(t) = u0{1 +
∞

∑

k=1

((t − t0)
2q)k(−1)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
}

+ 1.5

∞
∑

k=1

((t − t0)
2q)k(−1)k

k
∏

r=1

Γ((2r − 1)q + 1)

Γ(2rq + 1)
.
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Figure 4. p(t) = −(t − t0)
q and f(t) = −α ∗ (t − t0)

q when q = 0.5, 0.7, 0.9, 1.0

Next we present the direct numerical approximation for symbolic representation

form.

The symbolic representation of (3.1) is

(3.6) u(t) = u0e
cD−qp(t) +

1

Γ(q)

∫ t

t0

(t − s)q−1e
cD−qp(σ)|tsf(s)ds,

where

(3.7) cD−qp(σ)|ts = cD−qp(σ)|t0 −
cD−qp(σ)|s0.

Our direct numerical approximation to solve (3.1) is by approximating the sym-

bolic representation (3.6). The approximations are given by,

(3.8)

u(ti) ≈ u0Eq,1((
p(ti) + p(t0)

Γ(2q + 1)
)(

(t(i) − t0)
q

Γ(q + 1)
))+α(Eq,1((

p(ti) + p(t0)

Γ(2q + 1)
)(

(t(i) − t0)
q

Γ(q + 1)
))−1)

provided α ∈ R \ {−1} and p(t) > 0.

(3.9)

u(ti) ≈ u0Eq,1((
p(ti) + p(t0)

Γ(2q + 1)
)(

(t(i) − t0)
q

Γ(q + 1)
))+α(1−Eq,1((

p(ti) + p(t0)

Γ(2q + 1)
)(

(t(i) − t0)
q

Γ(q + 1)
)))

provided α ∈ R \ {1} and p(t) < 0 where p(ti) is the value of p(t) at each ti and f(ti)

is the value of f(t) at each ti.

Next we present the graph for our explicit computation of solutions when 0 <

q < 1 by direct numerical method. Here we assume p(t) and f(t) are known and

continuous functions.

The red dotted lines in the following graph will represent the direct numeri-

cal graphs. Here we consider the same Example (1, 2, 3, 4) for the direct numerical

method. The graphs given below is the comparison of iterative and direct numerical

method. When q = 1, our direct numerical graph matches with the integer result.
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Figure 5. p(t) = (t − t0)
q and f(t) = α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0
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Figure 6. p(t) = −(t − t0)
q and f(t) = α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0
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Figure 7. p(t) = (t − t0)
q and f(t) = −α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0
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Figure 8. p(t) = −(t − t0)
q and f(t) = −α ∗ (t − t0)

q where q = 0.5, 0.7, 0.9, 1.0

We observe that our approximation (3.8) and (3.9) matches with the actual so-

lution for q = 1, when

(i) p(t) = A + B(t − t0)
q and f(t) ≡ 0

(ii) p(t) = (t− t0)
q and f(t) = α(t− t0)

q, where α changes depends on the behavior

of f(t).

3.2. Numerical results for nonlinear Caputo fractional differential equa-

tions. Consider the nonlinear Caputo fractional differential equations with initial

condition

(3.10) cDqu = f(t, u), u(t0) = u0,

where f ∈ C([t0, T ] × R, R).

The Picard’s approximation method to solve (3.10) is given by,

(3.11) un(t) = u0 +
1

Γ(q)

∫ t

t0

(t − s)q−1f(s, un−1(s))ds,

where n = 1, 2, 3, . . .

Here f(t, un−1(t)) are known function of t. Starting with u0 = u(t0),

let us consider an example of nonlinear fractional differential equation with initial

condition as follows,

Example 5:

(3.12) cDqu = u2, u(t0) = 1 = u0.

The Picard’s approximation method to solve (3.12) as follows,

(3.13) un(t) = u0 +
1

Γ(q)

∫ t

t0

(t − s)q−1f(s, un−1(s))ds.

Our initial approximation is u(t0) = u0 and the first approximation is given by,

(3.14) u1(t) = u0 +
1

Γ(q)

∫ t

t0

(t − s)q−1u0ds,



262 B. SAMBANDHAM AND A. S. VATSALA

where 0 < q < 1. Then the solution of (3.14) is given by

(3.15) u1(t) = 1 +
(t − t0)

q

Γ(q + 1)
.

Using the first approximation we develop the second approximation is as follows,

(3.16) u2(t) = 1 +
(t − t0)

q

Γ(q + 1)
+

2(t − t0)
2q

Γ(2q + 1)
+

Γ(2q + 1)

(Γ(q + 1))2

(t − t0)
3q

Γ(3q + 1)
.

Our third approximation will be as follows,

u3(t) = 1 +
(t − t0)

q

Γ(q + 1)
+

2(t − t0)
2q

Γ(2q + 1)
+

(

4 +
Γ(2q + 1)

(Γ(q + 1))2

)

(t − t0)
3q

Γ(3q + 1)

(3.17)

+

(

Γ(2q + 1)

Γ(q + 1)
+

4Γ(3q + 1)

Γ(q + 1)Γ(2q + 1)
+

2Γ(2q + 1)

(Γ(q + 1))2

)

(t − t0)
4q

Γ(4q + 1)

(3.18)

+

(

4Γ(4q + 1)

(Γ(2q + 1))2
+

Γ(2q + 1)Γ(4q + 1)

(Γ(q + 1))2Γ(3q + 1)

)

(t − t0)
5q

Γ(5q + 1)

(3.19)

+

(

4Γ(5q + 1)

Γ(3q + 1)(Γ(q + 1))2

)

(t − t0)
6q

Γ(6q + 1)
+

(

Γ(6q + 1)(Γ(2q + 1))2

(Γ(3q + 1))2(Γ(q + 1))4

)

(t − t0)
7q

Γ(7q + 1)
.

(3.20)

The graph for the Example 5 is as follows
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Figure 9. Picards Approximation method for q = 0.5, 0.7, 0.9, 1.0

However, the Picard’s approximation method yields linear convergence whereas,

the Quasilinearization method yields quadratic convergence.
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Hence we consider the Quasilinear method to linearize the nonlinear fractional

differential equations.

Let u0 be the initial approximation namely, u(t0) = u0. Then we construct the

sequence of iterates un(t) as the solutions of the linear differential equations.

(3.21) cDqun = f(t, un−1) + fu(t, un−1)(un − un−1), un(0) = u0.

Now we consider the same example(3.12) for Quasilinearization method as follows,

(3.22) cDqu = u2, u(0) = 1 = u0.

(3.23) cDqun(t) = u2
n−1 + 2un−1(un − un−1), u0 = u(t0) = 1,

where n = 1, 2, 3, . . .

For n = 1, (3.23) reduces to

cDqu1 = 1 + 2(u1 − 1),(3.24)

= 2u1 − 1, u0 = 1.(3.25)

The solution of the equation (3.25) is given by

(3.26) u1(t) =
1 + Eq,1(2(t − t0)

q)

2
.

Using u1(t), we can solve u2(t) as follows,

(3.27) cDqu2 = 2u1u2 − u2
1, u2(t0) = 1.

(3.28) cDqu2 = 2(
1 + Eq,1(2(t − t0)

q)

2
)u2 − (

1 + Eq,1(2(t − t0)
q)

2
)2, u2(t0) = 1.

Since we have Mittag Leffler function involved in our u1(t), it is difficult to find the

solution of u2(t) by iterative method, so we use our direct numerical approximation

method to solve u2, u3, u4, . . .

From (3.8) and (3.9) we can compute u2(t) by taking

p(t) = 1 + Eq,1(2(t − t0)
q) and f(t) =

(

1 + Eq,1(2(t − t0)
q)

2

)2

.

Similarly we can compute u3, u4, u5, . . .

Next, we present the graph for solution of (3.12) by Quasilinearization method.
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Figure 10. Quasilinearization method for u1, u2 when q = 0.9, 1.0

4. Conclusion

In this work we have developed direct numerical method for the computation of

solution of the Caputo linear fractional differential equation of order q, 0 < q < 1,

with variable coefficients and with initial conditions. We were able to obtain this in

the special case when the coefficient term and the non homogeneous term are of the

form (t − t0)
q only. We plan to take up in future when the coefficients are of general

polynomial form. In order to apply our direct numerical method we have considered

the example

(4.1) cDqu = u2, u(0) = 1.

Using the upper solution as w = tq, we can find the interval of existence of solution of

(4.1). The first iteration is relatively simple since the coefficient is constant whereas

second iterate is relatively difficult to compute since it involves exponential property

of Mittag Leffler function. The exponential property of the Mittag Leffler function is

yet to be explored in future.
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