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ABSTRACT. This article introduces a four species compartmental delayed differential HIV model

assuming intracellular and immune response delay. The local stability analysis are performed to

ascertain the local behaviour of solutions. The existence of Hopf bifurcation assuming the delay

parameter as the bifurcation parameter is also discussed for this model and has been verified through

numerical simulations. The model being non-linear in nature, should possess strange attractors and

hence the existence of chaotic solutions are also explored through numerical simulations.
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1. INTRODUCTION

The spread of HIV infection process is a very complex process but can be broadly

described by three distinct phases viz. the acute infection phase followed by chronic

infection phase and at last AIDS. Once a person get infected with HIV, the person

remains in acute infection phase for the first few weeks. This phase is generally identi-

fied by flu-like symptoms. In this phase, HIV multiplies manifold thereby destroying

the CD4+ T cells and wrecking havoc on the body’s immune system [12]. The next

stage is the Chronic Infection, also called the latency stage; during this stage the

rapid progress of HIV is slowed down. Infected individuals may not exhibit HIV-

related symptoms. This stage can last up to 10 to 12 years. The final stage of HIV

infection is the AIDS (Acquired Immuno Deficiency Syndrome). During this period

the body’s immune response has plummeted and so its ability to fight the oppor-

tunistic infections reduces drastically. AIDS is said to be diagnosed when the count

of CD4+ T cells falls below 200 cells mm−3. Without treatment, people with AIDS

can generally survive for 3 years. With treatment, the survival rate depends on the

effectiveness of the drug being used and the response of the body to the treatment.

In HIV infection, various types of delay occurs but the most important delays

that have been categorised are Intracellular Delay, Pharmacological Delay and Im-

munological Delay. In this particular study, a four dimensional delayed differential
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equation model of HIV infection on human is proposed. The intracellular and im-

munological delay has been incorporated in this model. The proposed model has

been studied in theoretical as well as numerical aspect. It has been proved in many

references that delays can have very pronounced effects on stability of mathematical

models [9, 16] and sometime can lead to very strange dynamics of the system. In

literature, the delayed model of HIV infection on human are many [5, 6, 1, 14, 10]. It

has been shown in many articles that delay can sometimes have no impact on the as-

ymptotic stability of infected equilibrium state. The purpose of the present model is

therefore to discuss a new delayed differential equation model of HIV infection where

delay parameter plays a very important role in the overall dynamics of model.

2. MODEL DISCRIPTION

In mathematical modelling of HIV infection, the most important component of

human body is CD4+T cell which are also known as helper T cell [4, 8, 18, 1, 2, 7,

13, 11, 15]. These cell are basically the backbone of human immune system. If T

cell count falls below a threshold number, the person infected with HIV is said to be

diagnosed as having AIDS. The effector cell is also another component in the body

which governs the growth of T cell and virus. Assume that u(t), v(t), w(t) and x(t)

denotes the density per unit volume of uninfected T cell, infected T cell, virus and

effector cell respectively.

For a model of T cells in absence of virus, it is assumed that T cell is added to

the body at a constant rate. It is also assumed that there is a constant natural death

rate of T cell. In presence of virus, it is further assumed that interaction between

T cell and HIV follows the law of mass action. Hence growth of healthy T cell is

assumed to be governed by the following dynamical model

du

dt
= s − du(t) − bu(t)w(t)

For the infected T Cell, intracellular delay, τ1 which is the time span between

the instant of interaction between the healthy T cell and virus and production of new

virus particle by way of bursting of infected T cell is assumed. During this time lag,

some of the T cell will actually die out and only those T cell which remains alive

after this time from the instant of infection will take part in the dynamics of the

infected T cell. In this time span, it is assumed that number of infected T cell follows

exponential distribution i.e. if µ is the natural death rate of infected T cell then the

total number of infected T cell at any time ‘t’ is the sum of all the infected cell at

previous time [3] i.e.

v(t) =

∫ τ1

0

be−µT u (t − T )w (t − T ) dT
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For the dynamics of the virus, it is assumed that after infection, the helper T cell

produces n copies of virus which will infect other helper T cells. The death rate of

healthy T cell is equal to e−µT bu(t− T )w(t− T ) and total number of virus produced

with this death is

ne−µT bu(t − T )w(t− T ).

The natural mortality rate q of virus is assumed to be constant. The virus is

also cleared by immune response at rate proportional to number of virus particle and

immune response mechanism.

dw

dt
= nbe−µT u(t − τ)w(t − τ) − qw − b1wx

The second lag of length τ2 is assumed for immune response to get activated in the

body. In literature, the effector cell growth has been assumed to be dependent on

u(t), v(t) and x(t) i.e. f(u, v, x) where f represents the growth function. In this

present model, immune response growth is assumed to be proportional to density of

virus and effector cell density i.e. f(w, x) = gw(t)x(t). The effector cells are also

assumed to die out at a constant per capita rate c.

dx

dt
= gw(t− τ2)x(t − τ2) − cx(t)

Hence overall dynamics of infection is assumed to be governed by the following coupled

delay differential model

u′(t) = s − du(t) − bu(t)w(t)

v′(t) = bu(t)w(t) − be−µτ1u(t − τ1)w(t− τ1) − µv(t),

w′(t) = bne−µτ1u(t − τ1)w(t − τ1) − b1w(t)x(t) − qw(t)

x′(t) = gw(t− τ2)x(t − τ2) − cx(t)

(2.1)

where n ≥ 1, τ = max {τ1, τ2}, τ ∈ (0,∞), s, b, b1, d, c, g, q ∈ R+ with initial condi-

tions

u(0) = φ1(θ)

v(0) =

∫ 0

−τ1

be−µφu1 (φ)u3 (φ) dφ

w(0) = φ2(θ)

x(0) = φ3(θ)

with φi(θ) ∈ [0,∞), θ ∈ [−τ, 0], τ = max{τ1, τ2} for i = 1, 2, 3. By the fundamental

theorem of functional differential equations, it can be easily proved that there is

a unique solution (u(t), v(t), w(t), x(t)) to the system (2.1) with initial conditions

defined as above.
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3. Theoretical Analysis

(a) Basic Properties of Model

The proposed model being a biological model should be positively invariant which

can be stated as the following Lemma

Lemma 1. All solutions of the system (2.1) together with initial conditions stated

above are positively invariant and ultimately bounded.

Proof. In order to prove positive invariance of the solutions, denote

U(t) = (u(t), v(t), w(t), x(t))T ∈ R
4

such that the original system can be put into the form

(3.1) ˙U(t) = H(U(t))

where

H(U(t)) =




H1(U(t))

H2(U(t))

H3(U(t))

H4(U(t))




=




s − du(t) − bu(t)w(t)

bu(t)w(t) − be−µτ1u(t − τ1)w(t − τ1) − µv(t),

nbe−µτ1u(t− τ1)w(t− τ1) − b1w(t)x(t) − qw(t)

gw(t− τ2)x(t − τ2) − cx(t)




Now if R
4
+ = [0,∞)× [0,∞)× [0,∞)× [0,∞) with H : R

4
+ → R

4, then it is clear that

H ∈ C∞(R4) and so H is locally Lipschitz and satisfies the conditions

Hi(U(t)) ≥ 0 for all u(t) = v(t) = w(t) = x(t) = 0

Hence applying Theorem A.4 on page 423 of [17], on the positivity of the solutions,

all solutions with positives initial conditions remains positive for all time t. To prove

boundedness of the solution, consider the non-negative function V defined by

V (t) = nu(t) + nv(t) + w(t) +
b1

g
x(t + τ2).

Then, by simple differentiation,

dV (t)

dt
= nu′(t) + nv′(t) + w′(t) +

b1

g
x′(t + τ2)

= n [s − du(t) − bu(t)w(t)] + n
[
bu(t)w(t) − be−µτ1u(t − τ1)w(t − τ1) − µv(t)

]

+
[
nbe−µτ1u(t − τ1)w(t − τ1) − b1w(t)x(t) − qw(t)

]

+

[
b1w(t)x(t) −

b1c

g
x(t + τ2)

]

= ns −

(
ndu(t) + nµv(t) + qw(t) +

b1c

g
x(t + τ2)

)

Take δ = min{nd, nµ, q, b1c
g
}, then above relation simplifies to

dV (t)

dt
≤ns − δV (t)
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Which gives 0 ≤ V (t) ≤ ns/δ, i.e. V (t) is ultimately bounded and so are the solutions

{u(t), v(t), w(t), x(t)} of the system (2.1)

In the following section, the local stability analysis is performed to ascertain the

local behaviour of the solutions.
(b) Local behaviour of the Solutions

The proposed system (2.1) permits three equilibrium points which are

1. E0 : (u, 0, 0, 0) =
(s

d
, 0, 0, 0

)
exists for all values of parameters.

2. E1 : (ũ, ṽ, w̃, 0) =

(
qeµτ1

bn
,
(1 − e−µτ1) (bns − dqeµτ1)

bµn
,
bnse−µτ1 − dq

bq
, 0

)
exists if

qd < bnse−µτ1

3. E2 : (û, v̂, ŵ, x̂) =

(
gs

bc + dg
,
bcs (1 − e−µτ1)

µ(bc + dg)
,
c

g
,

ngbse−µτ1

b1(bc + dg)
−

q

b1

)
exists if

qd < bnse−µτ1 and q(bc + dg) < bgnse−µτ1

From these existence conditions, it is clear that existence of E2 implies the existence

of E1 and existence of E2 and E1 depends on τ1 only but not on τ2 which is im-

mune response delay. In order to determine the nature of solution around all these

equilibrium points, the characteristic equation of Jacobian Matrix are needed.
Stability of Infection Free State

We have for E0, the characteristic equation

(λ + c)(λ + d)(λ + µ)

(
q −

bnse−µτ1

d
e−λτ1 + λ

)
= 0

On using stability switching criteria, the following theorem for stability behaviour of

disease free equilibrium point can be stated.

Theorem 1. The disease free equilibrium (ū1, 0, 0, 0) is stable for all values of τ1 if

q >
nbs

d
.

Stability of Effector Free State

Again characteristic equation for E1 is given by

(λ + µ)
(
λ + α11 + e−λτ2β11

) (
λ2 + α21λ + α22 + e−λτ1(β21λ + β22)

)
= 0

where coefficients are

α11 = c, β11 =
dg

b
−

gns

q
e−µτ1

α21 = q +
bns

q
e−µτ1 , α22 = bnse−µτ1 , β21 = −q, β22 = −dq
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Therefore stability of E1 dependent on the conditions that the transcendental equa-

tions

λ + α11 + e−λτ2β11 = 0

λ2 + α21λ + α22 + e−λτ1(β21λ + β22) = 0
(3.2)

have all roots with negative real parts. Since the coefficients of the above two equa-

tions explicitly depends upon the delay parameters τ1, so it is impossible to obtain the

stability conditions and hence critical value of the parameter τ1 for Hopf bifurcation

in usual way.
Stability of Endemic State

Finally the characteristic equation for E2 can be calculated as

P0 + e−λτ1P1 + e−λτ2P2 + e−λ(τ1+τ2)P3 = 0

and

P0(λ, τ1) = λ3 + α1λ
2 + α2λ + α3

P1(λ, τ1) = β1λ
2 + β2λ + β3

P2(λ, τ1) = γ1λ
2 + γ2λ + γ3

P3(λ, τ1) = δ1λ + δ2

where αi, βi, γi, i = 1, 2, 3 and δ1, δ2 depends upon the model parameters and delay

parameter τ1. The form of the characteristic equation is such that it is almost im-

possible to get analytical results on stability of nontrivial equilibrium points. Similar

arguments holds for the case of Hopf Bifurcation analysis if τ1 is chosen as bifurcation

parameter. Although, the Hopf bifurcation point can be calculated if τ2 = 0 and in

this case, the equation becomes somewhat simpler.

In this model, stability of the equilibrium point and bifurcation be can be easily

verified using numerical simulation as can be seen in the next section. The other

important nonlinear properties which are explored in this model are chaotic behaviour

of the solutions.

4. Numerical Simulations

In this section, numerical simulations have been performed to ascertain local

stability behaviour and periodic oscillation of the model. The following model pa-

rameters have been taken for this simulations wherever possible but to explore the

chaotic behaviour of the solution, some parameters were randomly chosen.

In first set of figure, Figure 1(a)–(d) shows the stability behaviour of the endemic

equilibrium point. In second set of figure, the unstable behaviour is obvious from

Figure 2(a)–(d).
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Table 1. Values of the Parameters

Parameters Descriptions Value

s T Cell production rate 5 mm−3 day−1

b Rate of Infection of T Cell 0.00025 mm3day−1

b1 Virus Clearance Rate of due to Effector Cell 0.00025 mm3day−1

d Healthy T Cell Death Rate 0.01 day−1

µ Infected T Cell Death Rate 0.01 day−1

q Viral Death Rate 1.5 day−1

n Number of Virion Produced 300

c Effector Cell death rate 28 day−1

g Activation rate of Effector Cell 12.0 mm3day−1

τ1 Intracellular Delay 0.11 days

τ2 Immunological Delay 79.1 days

The third figure, Figure 3 depicts the chaotic behaviour of the solution. As can

be seen in the figure that the solutions are very sensitive to initial perturbation, hence

proving the existence of chaotic solution.

It has been observed in general, in HIV infection that the people show symptoms

after about a year or so i.e. once latent period of the infection is over. The same

behaviour of the infection is somewhat obvious in Figure 4 where number of helper

cell initially maintaining a level which is regarded as latency phase. In this phase,

the viral load remains minimum, but viral concentration gradually shoots up with

the decrease in CD4+ T cell count and keeps on oscillating. In this oscillation, there

are times where CD4+ cell count falls below 200 cells mm−3 which is a clear sign of

full blown AIDS and the patient can succumb to HIV infection finally.

5. Discussion

This article introduces a two delay model of HIV infection assuming the delay

due to intracellular and immune response. The resulting model as a result posses

three unique equilibrium points namely a disease free equilibrium point, effector cell

free equilibrium point and an endemic equilibrium point. Analysis suggests that there

exists a Hopf bifurcation w.r.t. delay parameters for effector free equilibrium point

and endemic equilibrium points.The numerical simulation of this model suggest that

the proposed model can give rise to a variety of dynamics which other model lacks.

The proposed model also explains the emergence of AIDS in later phage of HIV cycle

where helper T cell counts decreases to a value around 200 cells mm−3.



364 S. K. SAHANI

(a) Time Series Plot for u (b) Time Series Plot for v

(c) Time Series Plot for w (d) Time Series Plot for x

Figure 1. Time Series Plot Showing Stability Behaviour

(a) Time Series Plot for u (b) Time Series Plot for v

(c) Time Series Plot for w (d) Time Series Plot for x

Figure 2. Time Series Showing Instability Behaviour
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Figure 3. Sensitivity towards Initial Conditions

(a) (b)

Figure 4. Time Series Plot for u and w
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