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boundary value problems in a collocation approach.
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1. INTRODUCTION

The traditional methods for partial differential equations (PDEs), such as finite

difference and finite element methods, are mesh-based methods since they require

domain discretization with a mesh. The mesh generation and refinement can be ex-

pensive, especially for domains of higher dimension and irregular shape. To overcome

these difficulties different basis functions have been used for solving PDEs due to their

meshfree feature and their flexibility in handling scattered data. The most commonly

used basis is the radial basis functions (RBFs), the applications of which can be found

in various areas in science and engineering during the past three decades.

Let Rd denote a space of dimension d. A few examples of RBFs are the multi-

quadrics ϕ (r) = (r2 + c2)
1/2

, inverse multiquadrics ϕ (r) = (r2 + c2)
−1/2

, thin plate

splines ϕ (r) = r2 log(r), and Gaussians ϕ (r) = e−cr2

. Here r = ‖x‖ for x ∈ Rd, ‖·‖

is the Euclidean norm, and c > 0 is a selected constant. These RBFs are globally

supported and referred to as classical RBFs [5]. They have found many applications

[10, 11, 17]. Despite the meshless feature and other advantages such as that Gaus-

sians and multiquadrics possess spectral convergence properties, one major drawback

in all globally supported RBFs (GS-RBFs) is that the GS-RBFs often generate dense
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and highly ill-conditioned matrices for a complex problem with a large set of scat-

tered data. For the computational advantage of a matrix that is sparse and less

ill-conditioned, the compactly supported RBFs (CS-RBFs) [20, 21, 22] have been

used for various problems [1, 2, 7, 13].

Although the Delta-shaped basis functions (DBFs) are approximately compactly

supported, they have shown excellent performances [15, 16, 18, 19]. In this article,

we would like to demontrate the effectiveness of the DBFs by comparing the results

of DBFs and CS-RBFs in solving elliptic boundary value problems in the context of

Kansa’s method [8, 9].

We consider the elliptic boundary value problem,

L [u] = f(x), x ∈ Ω,(1.1)

u = g (x) , x ∈ ∂Ω,(1.2)

where Ω ⊂ R2 is a simply connected domain bounded by a simple closed curve ∂Ω,

L is a linear elliptic differential operator of the form,

L =

q∑

k1,k2=0

Ak1,k2

∂k1+k2

∂xk1

1 ∂xk2

2

, Ak1,k2
are constants,

and f and g are continuous functions.

In [1, 2], the CS-RBFs are used under the dual reciprocity method (DRM) [12, 14]

to handle the inhomogeneous term f . In their approach, a particular solution of (1.1)

is represented by the particular solutions corresponding to the CS-RBFs. In this

paper, the CS-RBFs are used in the context of Kansa’s method for the problem

(1.1)–(1.2). Instead of approximating the source term, we approximate the solution

of (1.1)–(1.2) directly. The organization of the paper is as follows: In Section 2, we

describe the Wendland CS-RBFs and the approximation of the solution of (1.1)–(1.2).

In Section 3, we describe the characteristics of DBFs. In Section 4, numerical results

by CS-RBFs and DBFs are presented. Better results are observed from using DBFs.

Concluding remarks are given in Section 5.

2. THE CS-RBF APPROXIMATE SOLUTION

In [20], a class of CS-RBFs are constructed using the operator I and the univariate

function φl which are defined respectively as

I (f) (r) =

∫
∞

r

tf(t)dt,

and

φl (r) = (1 − r)l
+ =

{
(1 − r)l, if 0 ≤ r ≤ 1,

0, if r > 1.
.
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The Wendland CS-RBFs ϕl,k = Ikφl with l > 0 have support in [0, 1] . Several optimal

Wendland’s CS-RBFs for d = 2, 3 are listed in Table 1. These functions ϕl,k represent

Wendland CS-RBFs with diferentiability 2k for some l ∈ N.

Table 1. Wendland’s CS-RBFs with various degrees of smoothness

C0 ϕ2,0(r) = (1 − r)2
+

C2 ϕ3,1(r) = (1 − r)4
+(4r + 1)

C4 ϕ4,2(r) = (1 − r)6
+(35r2 + 18r + 3)

C6 ϕ5,3(r) = (1 − r)8
+(32r3 + 25r2 + 8r + 1)

The CS-RBFs can be scaled with a shape parameter α. Since the CS-RBF ϕl,k (r)

has a support of radius 1, the basis function ϕl,k

(
r
α

)
has a support of radius α. Similar

to the trade-off principle between accuracy and ill-conditioning for GS-RBFs, there is

a trade-off principle between computational efficiency and convergence for CS-RBFs

as noted in [3, 4].

Here we use CS-RBFs in Kansa’s collocation approach for the problem (1.1)–(1.2).

We choose N1 collocation points
{
x(i)
}N1

i=1
in Ω and Nb collocation points

{
x(N1+i)

}Nb

i=1

on ∂Ω. In a one-level approach, the solution of (1.1)–(1.2) is approximated by the basis

functions ϕl,k of the same scaling factor α. In a multi-level approach, the solution

is approximated by the basis functions of different scaling factors αs, s = 1, · · · , S,

with S > 1. For each αs, Ks center points ξ(s, j) ∈ Ω, j = 1, · · · , Ks are chosen. The

approximate solution ũ (x) of (1.1)–(1.2) is written in the form of

(2.1) ũ (x) =

S∑

s=1

Ks∑

j=1

cs,jϕl,k

(∥∥x − ξ(s,j)
∥∥ /αs

)
.

When S = 1, (2.1) becomes a one-level case. We collocate at the interior and bound-

ary collocation points. With L(x) denoting the operator on ϕl,k (‖x − ξ‖ /α) viewed

as a function of x, we obtain the following linear system of cs,j,

S∑

s=1

Ks∑

j=1

cs,jL(x)

[
ϕl,k

(∥∥x(i) − ξ(s,j)
∥∥ /αs

)]
= f

(
x(i)
)
, i = 1, · · · , N1,

S∑

s=1

Ks∑

j=1

cs,j

[
ϕl,k

(∥∥x(N1+i) − ξ(s,j)
∥∥ /αs

)]
= g

(
x(N1+i)

)
, i = 1, · · · , Nb,

The total number of variables in the above system is K =
∑S

s=1 Ks. We require that

the total number of collocation points N = N1 + Nb be larger than K. The system is

solved by least squares method.
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3. THE APPROXIMATELY SUPPORTED DELTA-SHAPED BASIS

The delta-shaped basis [15, 16, 19] for 1D is in the form of,

(3.1) IM,χ(x, ξ) =

M∑

n=1

cn (ξ)φn (x) ,

where φn (x) are solutions of some Sturm-Liouville problem. For example, one choice

of φn (x) is

(3.2) φn (x) = sin

(
nπ

x + 1

2

)
,

which are solutions of

−φ′′(x) = λφ, − 1 < x < 1,

φ (−1) = φ (1) = 0.

In this paper, the coefficients cn (ξ) are chosen to be

(3.3) cn (ξ) =

[
1 −

(
n

M + 1

)2
]l

ϕn(ξ),

with l being the regularizing parameter. In general, l is coupled with the shape pa-

rameter M. The DBFs are approximately compactly supported and are not identically

equal to zero on any domain. By ploting IM,l(x, ξ) defined by (3.1), (3.2) and (3.3)

for coupled pairs of (M, l) , we list the approximate radius of support in Table 2.

Table 2. Approximate radius of support of Delta-shaped basis

(M, l) (10, 4) (20, 6) (30, 9) (40, 12) (50, 14) (80, 16) (100, 18)

R 0.473 0.319 0.286 0.268 0.243 0.170 0.150

The 2D delta-shaped basis functions are of the form,

IM,l(x, y; ξ, η) =
M∑

m=1

M∑

n=1

cn (ξ) cm (η)ϕn (x) ϕm (y) .

We note that the 1D basis IM,χ(x, ξ) in (3.1) vanishes on the boundary of [−1, 1] and

its 2D basis vanishes on the boundary of [−1, 1]2 . Hence we ask that the domain

of the function to be approximated be imbeded in the interval [−0.5, 0.5] for 1D or

Ωs = [−0.5, 0.5]2 for 2D. There is no domain restriction by CS-RBFs. For comparison

purpose, we assume the domain Ω satisfies Ω ⊆ Ωs. If a function is not originally

defined on such a domain, proper translation and scaling can make it so.

The DBFs are infinitely differentiable. However, the CS-RBFs ϕl,k (r/α) possess

continuous derivatives up to order 2k. Thus, any DBFs are applicable to a 2p-th order

differential operator L. When using CS-RBF approach, we should choose CS-RBFs

with at least the C2p smoothness.
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4. NUMERICAL EXAMPLES

Numerical examples are presented in this section. The mean square root error

(4.1) E =

√√√√ 1

Nt

Nt∑

t=1

[ũ (xt, yt) − u (xt, yt)]
2,

is used to measure the solution error. In (4.1), u and ũ are repectively the exact

and approximate solutions, and Nt is the number of test points that are randomly

distributed in the domain. We let Nt = 200. For all examples, the interior center and

collocation points are randomly distributed in the domain.

Example 4.1. We consider the problem,

∆u = 1, for (x, y) ∈ D = [0, 1] × [0, 2] ,

u = 0, for (x, y) ∈ ∂D,

for which the exact solution is

(4.2) u (x, y) =
∞∑

n,m=1

−
4 (cos nπ − 1) (cos mπ − 1)

nmπ4 [n2 + m2/4]
sin (nπx) sin

(mπy

2

)
.

We use N1 = 1317 interior collocation points produced by the Matlab Poisson solver

and Nb = 300 collocation points evenly distributed on ∂Ω. The number of center

points in Ω and on ∂Ω are 900 and 150 respectively. The exact solution is computed

by using n = m = 300 in (4.2). The errors of the numerical solutions in the one-level

approach by the basis functions ϕ3,1, ϕ4,2, and ϕ5,3 with scaling factors α = 0.6, 1.0,

and 1.4 are provided in Table 3. The error by the finite element method is 4.3E-05 and

the error by the DBFs I30,9 with the approximate radius of support 0.286 is 7.0E-07

[18].

Table 3. Example 1 results by CS-RBFs of different scaling factors

α = 0.6 α = 1.0 α = 1.4

ϕ3,1 5.3E-03 1.1E-03 8.5E-04

ϕ4,2 2.0E-03 3.9E-04 1.8E-04

ϕ5,3 1.1E-03 1.6E-04 6.3E-05

Example 4.2. We consider the problem,

∆u (x, y) − 10u (x, y) = f (x, y) , (x, y)∈Ω,(4.3)

u (x, y) = g (x, y) , (x, y)∈ ∂Ω,(4.4)

where Ω = [−0.5, 0.5]2 , f (x, y) = −14 + 10x2 + 10y2, and g (x, y) = 1− x2 − y2. The

exact solution is u (x, y) = 1 − x2 − y2. Numerical results by CS-RBFs and DBFs

are provided in Tables 4–7. The number of collocation points is twice as that of
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center points, i.e., N = 2K. In the calculation, we let Nb = 100. For the two-level

approach, K1 + K2 = K with K2 corresponding to the basis of the smaller scaling

factor. According to Table 2, the approximate radii of support for the DBFs I10,4

and I20,6 are respectively 0.473 and 0.319. For comparison purpose, we first choose

α1 = 0.473 and α2 = 0.319 for the CS-RBF ϕ4,2 collocation method, and we show the

results in Table 4. The results by I10,4 and I20,6 are displayed in Table 5. The DBF

method shows much better acuracy. The results of CS-RBF method are improved

when we use CS-RBFs ϕ4,2 with much larger scaling factors (see Table 6). Although

CS-RBF ϕ5,3 is of higher differentiability, it only produces slightly better results

than ϕ4,2 (see Table 7). In the CS-RBF one-level collocation, the basis functions of

larger scaling factors attain better accuracy compared with those with smaller scaling

factors. We notice that the combination of CS-RBFs of two different scaling factors

(α = 0.8, α = 1.0) in Tables 6–7 helps improve the solution. They, however, do not

outperforme DBFs.

Table 4. Example 2 results of one-level and two-level CS-RBFs

K 150 300 450

E by ϕ4,2, α = 0.473 3.6E-01 3.0E-01 2.3E-01

E by ϕ4,2, α = 0.319 8.9E-01 5.4E-01 4.9E-01

(K1, K2) (50, 100) (100, 200) (100, 350)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 5.1E-01 3.1E-01 2.5E-01

Table 5. Example 2 results of one-level and two-level DBFs

K 150 300 450

E by I10,4 3.3E-04 5.1E-04 5.0E-04

E by I20,6 2.0 E-02 1.4E-05 2.4E-07

(K1, K2) (50, 100) (100, 200) (100, 350)

E by I10,4&I20,6 6.6E-04 1.6E-07 1.9E-07

Table 6. Example 2 results of one-level and two-level CS-RBFs of

larger scaling factors

K 150 300 450

E by ϕ4,2, α = 1.0 2.9E-02 4.0E-02 1.3E-02

E by ϕ4,2, α = 0.8 7.5E-02 9.4E-02 4.3E-02

(K1, K2) (50, 100) (100, 200) (100, 350)

E by ϕ4,2, α1 = 1.0, α2 = 0.8 1.0E-02 5.1E-03 2.2E-03
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Table 7. Example 2 results of one-level and two-level CS-RBFs of

higher smoothness

K 150 300 450

E by ϕ5,3, α = 1.0 2.2E-02 2.6E-02 5.4E-03

E by ϕ5,3, α = 0.8 7.0E-02 7.5E-02 2.6E-02

(K1, K2) (50, 100) (100, 200) (100, 350)

E by ϕ5,3, α1 = 1.0, α2 = 0.8 1.3E-02 1.2E-03 4.6E-04

When choosing a value for the scaling factor of a CS-RBF, we need to be aware

of the trade-off principle as pointed out in [3]. When the scaling factor α is too small,

the error is large; when α is too large, the matrix is dense and the computation is not

efficient. Here, in order to get acceptable results by CS-RBFs collocation method, the

value of α has to be very large which defeats the purpose of getting a sparse matrix.

Example 4.3. Since Franke’s function is often used as a benchmark problem [6, 19,

23], we let f and g in (4.3)–(4.4) be given such that the exact solution is the rescaled

Franke’s function on Ω = [−0.5, 0.5]2 ,

u (x, y) =
3

4
exp

(
−

(9x + 2.5)2 + (9y + 2.5)2

4

)
+

3

4
exp

(
−

(9x + 5.5)2 + (9y + 5.5)2

49

)

+
1

2
exp

(
−

(9x − 2.5)2 + (9y + 1.5)2

4

)
−

1

5
exp

(
− (9x + 0.5)2 − (9y − 2.5)2) .

The source function f is highly oscillative with a large amplitude over the domain Ω.

We list in Table 8 the one-level, two-level, and three-level results with scaling factors

α1 = 1.0, α2 = 0.8, and α3 = 0.6 by CS-RBFs ϕ3,1, ϕ4,2 and ϕ5,3 respectively. The

one-level and two-level results by DBFs I10,4, I30,9, I40,12, and I50,14 are given in Table

9. The numbers of interior collocation points are 100, 600, and 1200 respectively for

one-level, two-level, and three-level collocation methods, and Nb = 200 for all cases.

In Table 8, the CS-RBFs with higher order smoothness help improve the accuracy of

the numerical solution. With the same number of center points, the three-level CS-

RBFs collocation method achieves slightly better accuracy than its two-level method.

For the two-level DBF method in Table 9, the approximate radii of support for the

pair of I10,4 and I30,9 are 0.473 and 0.286, which are much smaller compared with

α1 = 1.0 and α2 = 0.8 for the CS-RBFs. No useful results can be obtained when

0.473 and 0.286 are used for α1 and α2 in CS-RBFs. Note that when using the pair of

I10,4 and I50,14, their approximate radii are only 0.473 and 0.243. Although a larger

shape parameter M involves more terms to construct the delta-shaped basis, their

effectiveness in capturing oscillative details pays off as shown in Table 9.
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Table 8. Example 3 results of one-level, two-level, and three-level CS-RBFs

K K1 K2 K3 E by ϕ3,1 E by ϕ4,2 E by ϕ5,3

100 100 0 0 2.8E-02 2.7E-01 2.0E-01

400 100 300 0 7.3E-02 5.0E-03 2.3E-03

900 100 800 0 1.2E-02 4.2E-04 9.1E-05

900 100 300 500 5.2E-03 2.9E-04 7.2E-05

Table 9. Example 3 results of one-level and two-level DBFs

K K1 K2 E by I10,4&I30,9 E by I10,4&I40,12 E by I10,4&I50,14

100 100 0 2.1E-01 2.1E-01 2.1E-01

400 100 300 4.1E-04 1.7E-04 7.8E-05

900 100 800 1.2E-05 3.0E-07 2.1E-08

5. CONCLUDING REMARKS

The globally supported radial basis functions often results in a dense and highly

ill-conditioned matrix. The compactly supported RBFs and the approximately com-

pactly supported DBFs have the computational advantage of a less dense and less

ill-conditioned matrix. This paper compares DBFs with CS-RBFs and provides some

results of these basis functions for solving elliptic boundary value problems. An

optimal α of CS-RBFs should balance the accuracy and computational efficiency.

However, in the CS-RBFs collocation for the elliptic problems, the values of α have

to be very large in order for us to get reasonable results. For large α, the matrix

is nearly dense. The DBFs collocation in general produces a much more acurate

solution, which is especially true for situations that require a large number of basis

functions and collocation points.
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