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ABSTRACT. We consider stability analysis and control of an HIV model. The stability analysis

helps us to get additional insight into the model problem as well as design appropriate controls.

The dynamics of the control problem is an impulsive ordinary differential equation. The objective

of the control problem is to find an optimal control to guide the system to the basin of attraction

of LTNP (Long term Non-Progressor) equilibrium point while the cost of treatment is minimal and

the viral load is undetectable and CD4+T cell count is at an acceptable level. Simulation results

are presented and discussed.
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1. INTRODUCTION

There are two immune responses in the human body: the humoral immune re-

sponse and the cellular immune response [1]. The humoral immune response employs

antibodies produced by B cells to attack antigens in body fluids, while the cellular

immune response employs CD4+T cells to destroy body cells that have been infected

with virus [2]. When an alien enters our system T-helper cells (CD4 +T) identify

it and alert our body’s defense system so that the body forms some kind of defense

mechanism. Unlike many other common diseases HIV virus attacks CD4+T cells.

By killing, and converting the T-cells to hosts of the virus, the disease weakens our

immune mechanism. Eventually when the CD4+ T cell count is not high enough the

patient shows symptoms of AIDS.

Even after the patient develops AIDS our body defense systems do not stop

fighting the disease. As the virus enters T-cell and changes it to a host; it will

be attacked by CTLes (cytotoxic T-Lymphocytes effectors) which are deployed by

CTLPS (cytotic T-lymphocytes precursors) which are coded to memorize the disease

and convert to CTLes cells which kill the infected CD4+T cells [2].

Controlling HIV virus needs intervention by medication. The medication kills

HIV virus and helps in generation of CTLps and CTLes cells. This in turn can cause

the number of healthy CD4+T cells, number of infected CD4+T cells, number of
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CTLes and number of CTLps to eventually reach a steady state. The steady state we

want to reach is one with low unhealthy CD4+T cell count, high CD4+T cells and

high CTLPs count [17].

We start by considering mathematical model presented in [3] and [4]. We follow

the same argument given by [2]. Both models use cell counts of uninfected, infected,

CTLP and CTLe cells to study ”Long Term Non-Progressor” (LTNP). Although it is

usual for HIV infected patients to progress to AIDS after a certain latent period, less

than 1% of them still have a sufficient amount of T-helper cells and never develop

AIDS. Thus, their immune system is able to fight off other diseases in spite of the

HIV infection. They are called long-term non-progressors (LTNP) and may provide

clues to the control of HIV without continued drugs [2].

As function of medication the model has at least two equilibrium points in the

state space where both of them are asymptotically stable. One of them corresponds

to AIDS and the other to LTNP. Without medication it is a common phenomenon

for the system to end up in the basin of attraction of AIDS. Hence we rely on drug

treatment. The drug treatment helps to guide the system to enter into the basin of

attraction of LTNP and once it is there we terminate the medication [2].

In [3] and [4] such possibility has been suggested by the use of the structured treat-

ment interruption, which is basically a switching scheme between zero and maximum

medication. Since then, this problem has been dealt with by various methodologies

such as model predictive control [5], [6], [7], optimal control [8], [9], and an approxi-

mation method [10]. On the other hand, a control theoretic approach has been used

to determine when to initiate HIV therapy [11], and to estimate the parameters of

HIV models [12], [13].

As a function of drug dose; there are four equilibrium points for the model.

Three of them have biological meaning but not the fourth one. The organization of

this paper is: in section 2 we discuss stability analysis of the equilibrium point of

the model. This section help us to design our control system. The main body of this

paper is in section 3. In this section we formulate a control problem to guide our

system to the basin of attraction of the LTNP equilibrium point and that is the main

reason why we include section 2 in this paper.

2. Stability Anaylysis Of An HIV-Infection Mathematical Model

In this section we present an HIV-infection mathematical model, determine the

equilibrium points and present the stability analysis of the model.

2.1. HIV Infection Mathematical Model. An HIV infection mathematical model

with drug treatment is [2]

ẋ = λ − dx − (1 − ηu)βxy
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ẏ = (1 − ηu)βxy − ay − pyz

ẇ = cxyw − cqyw − bw

ż = cqyw − hz(1)

where,

x is number of healthy CD4+T cells.

y number of unhealthy CD4+T cells.

w number of CTLP cells (memory cells).

z number of CTLe cells.

The term (1 − ηu), possibly 0 ≤ 1 − ηu ≤ 1, η gives us the maximal effect of the

drug. The drug is 100% efficient if ηu = 1 and completely inefficient if ηu = 0. For

simplicity of notation we use the notation η∗ = 1 − ηu.

2.2. Stability Of Equilibrium Points Of The Model. In this section we de-

termine the equilibrium points of model (1) as a function of drug dose η∗. We set

ẋ = ẏ = ẇ = ż = 0 to have the equilibrium points. We do have four equilibrium

points as a function of drug dose where three of them have biological meaning but

not the fourth one.

1. HIV free equilibrium point XA(η∗) = (xA, yA, wA, zA).

(2) xA =
λ

d
, yA = wA = zA = 0.

2. AIDS stage XB(η∗) = (xB, yB, wB, zB).

(3) xB =
a

η∗β
, yB =

λβ − da

aη∗β
, wB = zB = 0.

3. Long term non-progressor XC(η∗) = (xC , yC, wC , zC). Let K := [c(λ + dq) −
bη∗β]2 − 4c2λqd

xC =
[c(λ + dq) − bη∗β] +

√
K

2cd
, yC =

b

c(xC − q)
, wC =

hzC

cqyC

,

zC =
η∗βxC − a

p
.(4)

4. The fourth equilibrium point XD(η∗) = (xD, yD, wD, zD).

xD =
[c(λ + dq) − bη∗β] −

√
K

2cd
, yD =

b

c(xD − q)
, wD =

hzD

cqyD

,

zD =
η∗βxD − a

p
.(5)

We consider the following two sets of assumptions for the purpose of our analysis.

1. Assumption 1:

d < a.(6)
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b < h.(7)

q <
λ

d
.(8)

c >
4abd

(λ − dq)2
.(9)

β <
c(
√

λ −
√

dq)2

b
.(10)

β >
ac(λ + dq) −

√

a2c2(λ + dq)2 − 4a2cd(ad + cqλ)

2(ab + cqλ)
.(11)

2. Assumption 2:

The basic reproductive ratio [18] is less than unity by the application of drug,

i.e., η∗ λβ

ad
< 1.

We need the following values for stability analysis

η∗

1 :=
ad

βλ
.(12)

η∗

2 :=
ac(λ + dq) −

√

a2c2(λ + dq)2 − 4a2cd(ad + cqλ)

(2(ab + cqλ)β)
.(13)

η∗

3 :=
ac(λ + dq) +

√

a2c2(λ + dq)2 − 4a2cd(ad + cqλ)

2(ab + cqλ)β
.(14)

Theorem 2.1. Under Assumption 1 we have the following.

1. XA(η∗) is locally exponentially stable if η ∈ [0, η∗

1) and unstable if η ∈ (η∗

1, 1].

2. XB(η∗) is locally exponentially stable if η ∈ (η∗

1, η
∗

2) ∪ (η∗

3, 1] and unstable if

η∗ ∈ (0, η∗

1) ∪ (η∗

2, η
∗

3).

3. XC(η∗) is locally exponentially stable if η∗ ∈ (η∗

2, 1] and unstable if η ∈ (0, η∗

2).

Corollary 2.2. Transcritical bifurcation occurs at η∗

1, η∗

2 and η∗

3.

3. Control Analysis Of An HIV Treatment Model

Consider the HIV treatment model (1) with cost

J(c̄1, c̄2, . . . , c̄n) =
n

∑

i=1

R
c̄2
i

2
+ Sx

(xf+1(tf+1) − xf )
2

2
+ Sy

(yf+1(tf+1) − yf)
2

2

+ Sw

(wf+1(tf+1) − wf )
2

2
+ Sz

(zf+1(tf+1) − zf )
2

2
(15)

Here R is the cost associated with the intake of the drug, which includes the cost of

the drug as well as the amount of damage to the health due to the drug taken, where,

xf , yf , wf , zf are chosen so that if the system is left without further medication after

this point, it converges to the desired equilibrium point which is high healthy cell

count and low unhealthy cell count.
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1. Consider the optimal control problem in the last interval [tn−1, tn]. Let the

objective function in this interval be

Jn(c̄1, c̄2, . . . , cn) =

n
∑

i=1

R
c2
i

2
+ Sx

(xf+1(tf+1) − xf )
2

2
+ Sy

(yf+1(tf+1) − yf)
2

2

+ Sw

(wf+1(tf+1) − wf)
2

2
+ Sz

(zf+1(tf+1) − zf )
2

2
(16)

Let Jn = Jn(c̄1, c̄2, . . . , cn). The control problem is

min
cn

Jn

Subject to

Ẋn(t) = fn(Xn(t)), tn−1 < t < tn

Xn(tn−1) = X̄n−1(tn−1) + hn(X̄n−1(tn−1))cn

hn(Xn(t)) = diag(0 0 0 0 1)(17)

The variation of the dynamics with respect to variation of the optimal impulsive

control c̄n is

d

dt
δXn = fn,Xn

(Xn(t))δXn

δXn(t+n ) = hn(X̄n−1(t
−

n ))δcn

Let Ln(t, tn−1) be fundamental matrix solution of the following linear ODE

d

dt
Ln(t, tn−1) = fn,Xn

(Xn)Ln(t, tn−1)

Ln(tn−1, tn−1) = I

Then,

(18) δXn(t) = Q̃n(tn−1)Ln(t, tn−1)δcn

where,

Q̃n(tn−1) = hn(tn−1)

Variation of the cost Jn with respect to variation of the optimal impulsive control

c̄n is

(19) δJn = ΘXn
(Xn(t))δXn(t)

Using (20) the variation of the cost is

(20) δJn = ΘXn
(Xn(tn))Ln(tn, tn−1)Qn(tn−1)δcn

Then the derivative of the cost is

(21) δJn = Θxn
(tn)Ln(tn, tn−1)Qn(tn−1)δcn
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2. Moving one step backward to interval [tn−2, tn−1]. The cost is

Jn−1(c̄1, c̄2, . . . , c̄n−1, cn−1, c̄n) =

n
∑

i=1

R
c2
i

2
+ Sx

(xf+1(tf+1) − xf )
2

2
+ Sy

(yf+1(tf+1) − yf)
2

2

+ Sw

(wf+1(tf+1) − wf )
2

2
+ Sz

(zf+1(tf+1) − zf )
2

2
(22)

We let Jn−1 = Jn−1(c̄1, c̄2, . . . , c̄n−1, cn−1, c̄n). In this interval the control problem

is

min
cn−1

Jn−1

Subject to

Ẋn−1(t) = fn−1(Xn−1(t)), tn−2 < t < tn−1

Xn−1(tn−1) = X̄n−2(tn−2) + hn−1(X̄n−2(tn−2))cn−1

hn−1(X̄n−1(t)) = diag(0 0 0 0 1)

The variation of the dynamics is

d

dt
δXn−1 = fn−1,Xn−1

(X̄n−1(t))δXn−1(t)

δXn−1(t
+
n−2) = hn−1(X̄n−2(t

−

n−1))δcn−1

Let Ln−1(t, tn−2) be fundamental matrix solution of the following linear ODE

d

dt
Ln−1(t, tn−2) = fn,Xn

Ln−1(t, tn−2)

Ln−1(tn−1, tn−2) = I

We know that the dynamics in interval [tn−1, tn] is affected by the perturbation

of c̄n−1. Consider the following linear ODE in interval [tn−1, tn]

d

dt
Ln(t, tn−1) = fn,Xn

(Xn)Ln(t, tn−1)(23)

Ln(tn−1, tn−1) = I

Let Ln(t, tn−1) be fundamental matrix solution (25) and

(24) δXn(t) = IδXn−1(tn−1)

Also,

(25) δXn−1(tn−2) = Q̃n−1(tn−2)δcn−1,

where Q̃n−1(tn−2) = hn−1 = h. Then the Gâteaux derivative of the cost is

(26) δJn−1 = ΘXn
(tn)Ln(tn, tn−1)ILn−1(tn−1, tn−2)Qn−1(tn−2)δcn−1
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3. Continuing the same way, at the ith interval [tn−(i+1), tn−i]. The control problem

is

min
cn−i

Jn−i

Subject to

Ẋn−i(t) = fn−i(Xn−i(t)), tn−(i+1) < t < tn−i

Xn−i(tn−(i−1)) = hn−i(X̄n−(i−1)(tn−(i−1)))cn−i + X̄n−(i+1)(tn−(i+1))(27)

hn−i(Xn−i(t)) = diag(0 0 0 0 1)

where,

Jn−i = Jn−i(c̄1, c̄2, . . . , c̄n−(i+1)), cn−i, c̄n−(i−1, . . . , c̄n).

The variation of the dynamics is

d

dt
δXn−i(t) = fn−i,Xn−i

(Xn−i(t))δXn−i(t)

δXn−i(tn−(i−1)) = hn−i(X̄n−(i−1)(tn−(i−1)))δcn−i(28)

The perturbation of c̄n−i affects the dynamics in the succeeding intervals. The

variation of the dynamics in those affected intervals is

dLn−i(t, tn−(i+1)) = fn−i,Xn−i
(Xn−i(t))Ln−i(t, tn−(i+1))dt(29)

i = 0, 1, 2, . . . , i − 1

Let fundamental matrix solution of the systems in (29) be Ln−i(t, tn−(i+1)),

where, i = 0, 1, 2, . . . , i − 1. Then the variation of the cost is

(30) δJn−i = ΘXn
(tn)Ln−i(t, tn−(i+1))Q̃n−i(tn−(i+1)) · · ·Ln(tn, tn−1)δcn−i.

The Gâteaux derivative of the cost is

(31)

δJn−i(c̄1, c̄2, . . . , c̄n) = ΘXn
(tn)Q̃n−i(tn−(i+1))Ln−i(t, tn−(i+1)) · · ·Ln(tn, tn−1)δcn−i.

3.1. Numerical Computation And Simulation. We use four intervals [t0, t1],

[t1, t2], [t2, t3], [t3, t4] where t3 = tf for the simulation. With impulsive controls

applied at t1, t2 and t3. That means we do have four impulsive control problems one

in each interval. The fourth interval is included to give the system enough time to

come closer to the intended cell count. The dynamics in interval [ti−1, ti] is given by

ẋ1 = λ − dxi − (1 − ηui)βxiyi

ẏi = (1 − ηui)βxiyi − ayi − pyizi

ẇi = cxiyiwi − cqyiwi − bwi

żi = cqyiwi − hzi

u̇i = −ui
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Xi(ti−1) = Xi−1(ti−1) + h(Xi−1(ti−1))ci

i = 1, 2, 3, 4.

Also we have

X1(t0) = (2, 0.4, 0.22, 0.1)t

X4(t3) = (2, 2, 0.4, 0.25)t

The cost is

J(c̄1, c̄2) =
R

2
((c̄1)

2 + (c̄2)
2) + Sx

(x4(4) − 2)2

2

+ Sy

(y4(4) − 2)2

2
+ Sw

(w4(4) − 0.4)2

2
+ Sz

(z4(4) − 0.25)2

2

The next step is to determine the fundamental matrix solutions, L1, L2, L3, and L4.

The Li’s are determined from the following equation

dLi

dt
= fi,Xi

(X̄i(t))Li(t)

Li(ti−1) = I

ti−1 < t < ti

i = 1, 2, 3, 4.

Also,

1. in the interval [t3, t4] Q̃4 is defined by Q̃4 = (diag(0, 0, 0, 1))t

2. in the interval [t2, t3], [t1, t2], [t0, t1] Q̃3, Q̃2, Q̃1 are defined by Q̃3 = Q̃2 = Q̃1 = I4

The numerical simulation we are going to carry out is based on the state equations

and the impulsive controls. We use steepest descent method for optimization purpose.

The parameters value we use are [4] λ = 1, e = 0.1, d = 0.1, a = 0.2, η = 0.5,

β = 0.42, p = 1, b = 0.1, h = 0.1, q = 0.5, and the initial amount of medicine in the

body chosen to be u0(0) = 0. The numbers Sx, Sy, Sw, Sz are measures of importance

attached to the difference between the final cell numbers and desired cell counts.

These values are all chosen to be 2.

3.1.1. Conclusion. Taking R = 0.1, we have the following cost and optimal impul-

sive values:

Cost = 0.042833315801935, c1 = 0.523975314189902, c2 = 0.349153540962085.

Table 1 gives us the cell counts for the first three and last three iteration of our

simulation.
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Table 1

Healthy cells Unhealthy cells Memory cells Effectors Control

3.411988 0.9208089 0.3096524 0.1031824 0.1120595

3.063783 1.203528 0.3222986 0.1078693 0.9651733

2.799905 1.417936 0.3290286 0.1113703 0.8556089

2.024841 2.038927 0.3335831 0.1216719 0.5363530

2.024838 2.038922 0.3335830 0.1216724 0.5363640

2.024835 2.038917 0.3335829 0.1216729 0.5363750
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Figure 1. Cell count of the simulation.
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What we showed here is that by applying the optimal amount of medication, we

guided our system to go from the given cell count (2, 0.4, 0.22, 0.1) to a cell count

(2.024835, 2.038917, 0.3335829, 0.1216729) which is closer to the target cell count

(2, 2, 0.4, 0.25). Our conclusion is that if the patient’s cell count is not below thresh

hold cell count, then it is possible to guide the system to basin of attraction of equilib-

rium point XB which is LTNG starting from the existing cell count by giving optimal

amount of medication in a finite time horizon with minimum cost and minimum side

effect.
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