
Neural, Parallel, and Scientific Computations 24 (2016) 463-472

SYMBOLIC ITERATIVE SOLUTION OF VOLTERRA INTEGRAL

EQUATIONS

HAMID SEMIYARI AND DOUGLAS S. SHAFER

Mathematics Department, James Madison University

Harrisonburg, Virgina 22807, USA

semiyahx@jmu.edu

Mathematics Department, University of North Carolina at Charlotte

Charlotte, North Carolina 28223, USA

dsshafer@uncc.edu
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1. Introduction and Preliminaries

Volterra integral equations of the second kind,

(1.1) y(t) = ϕ(t) +

∫ t

a

K(t, s, y(s)) ds,

lend themselves to solution by successive approximation using Picard iteration, al-

though the process can break down when quadratures that cannot be performed in

closed form arise. In this article we offer a method for introducing auxiliary variables

in (1.1) in the case that K factors as K(t, s, z) = f(t)k(s, z) in such a way that (1.1)

embeds in a vector-valued polynomial Volterra integral equation, thus extending the

method of auxiliary variables, as expounded in [6] by Parker and Sochacki in the case

of initial value problems, to the setting of integral equations. We thereby obtain a

computationally efficient method of symbolic rather than numerical computation for

closely approximating solutions of (1.1). Of course the problem of impossible inte-

grations could also be addressed by replacing ϕ, f , and k by initial segments of their

power series expansions about a; the method presented here seems to be an attrac-

tive alternative in some situations, among others those that involve denominators,

like Example 3.1 below, or those that involve powers of functions, like Example 3.2
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below. It is equally easy to apply when the unknown function y(t) appears in the

argument of a transcendental function, as in Example 3.4.

For reference we state the following generalization to the vector-valued case of

Theorem 2.1.1 of [4]. The proof in [4] goes through with the obvious modifications.

We only note that the proof is based on an application of the Contraction Mapping

Theorem. By way of notation, for a subset S of R
m we let C(S, Rn) denoted the set

of continuous mappings from S into R
n.

Theorem 1.1. Let I = [a, b] ⊂ R and J = {(x, y) : x ∈ I, y ∈ [a, x]} ⊂ I × I.

Suppose ϕϕϕ ∈ C(I, Rn) and K ∈ C(J × R
n, Rn) and that K is Lipschitz in the last

variable: there exists L ∈ R such that

|K(x, y, z) − K(x, y, z′)|sum 6 L|z − z′|sum

for all (x, y) ∈ J and all z, z′ ∈ R
n. Then the integral equation

(1.2) y(t) = ϕϕϕ(t) +

∫ t

a

K(t, s,y(s)) ds

has a unique solution y(t) ∈ C(I, Rn).

Because the theorem was proved by means of the Contraction Mapping Theorem

we immediately obtain the following result.

Theorem 1.2. Under the hypotheses of Theorem 1.1, for any choice of the initial

mapping y[0](t) the sequence of Picard iterates

y[k+1](t) = ϕϕϕ(t) +

∫ t

a

K(t, s,y[k](s)) ds

converges to the unique solution of the integral equation (1.2).

2. The Method

Now let a Volterra integral equation

(2.1) y(t) = ϕ(t) +

∫ t

a

f(t)k(s, y(s)) ds

be given, where ϕ ∈ C([a, b], R), f ∈ C([a, b], R), k ∈ C([a, b] × [a, b], R), and k

satisfies a Lipschitz condition in y. Introduce auxiliary variables v1, . . . , vr in such

a way that ϕ = P (v1, . . . , vr), f = Q(v1, . . . , vr), and k = R(y, v1, . . . , vr) (i.e.,

ϕ(t) = P (v1(t), . . . , vr(t)), and so on), where P , Q, and R are polynomials and the

variables v1, . . . , vr satisfy a system of first order polynomial ordinary differential

equations

(2.2)

v′

1 = P1(v1, . . . , vr)

...

v′

r = Pr(v1, . . . , vr).
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To illustrate, suppose we wish to approximate the solution of y(t) = 1−
∫ t

0
sin y(s) ds.

The integrand indicates introducing v1 = v1(t) = sin y(t). Since v′

1(t) = cos t y′(t)

we are then led to introduce v2 = v2(t) = cos y(t), for which v′

2 = −v1 y′. From the

integral equation itself we have y′(t) = − sin y(t) = −v1(t), so no additional auxiliary

variables are needed; (2.2) is v′

1 = −v2v1 and v′

2 = v2
2, and the integral equation is

y(t) = 1−
∫ t

0
v1(s) ds. (In more complicated situations some ingenuity can be required

for this step. There are no known cases for which it has proved impossible when the

functions involved are analytic. See [2] for a fuller discussion.)

The initial value problem obtained by adjoining to (2.2) the initial conditions

given by the values of v1 through vr at t = a has a unique solution, which is the

unique solution of the vector-valued Volterra integral equation

(2.3)

v1 = v1(a) +

∫ t

a

P1(v1(s), . . . , vr(s)) ds

...

vr = vr(a) +

∫ t

a

Pr(v1(s), . . . , vr(s)) ds,

gotten simply by applying the Fundamental Theorem of Calculus to (2.2). Adjoin to

(2.3) the original Volterra equation in the form

y(t) = P (v1(t), . . . , vr(t)) +

∫ t

a

Q(v1(s), . . . , vr(s))R(y(s), v1(s), . . . , vr(s)) ds

to obtain

(2.4)

y = P (v1(t), . . . , vr(t)) +

∫ t

a

Q(v1(s), . . . , vr(s))R(y(s), v1(s), . . . , vr(s)) ds

v1 = v1(a) +

∫ t

a

P1(v1(s), . . . , vr(s)) ds

...

vr = vr(a) +

∫ t

a

P1(v1(s), . . . , vr(s)) ds.

System (2.4) satisfies the hypotheses of Theorem (1.1), hence has a unique solution, as

does the original Volterra integral equation. Since v1, . . . , vr are completely specified

by (2.2) and (2.3), the y component of the solution of the augmented Volterra integral

equation (2.4) must be the solution of (2.1). But by Theorem 1.2 the Picard iteration

scheme applied to (2.4), say with y[0](t) ≡ ϕ(a) and v
[0]
j (t) ≡ vj(a), converges and is

computationally feasible, so we obtain a computable approximation to the solution

of (2.1).
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3. Examples

In this section we illustrate the method by means of several examples which

include both linear and nonlinear Volterra integral equations.

Example 3.1. In [3] Effati and Skandari introduced the linear Volterra integral

equation of the second kind

(3.1) y(t) = et sin t +

∫ t

0

2 + cos t

2 + cos s
y(s) ds.

The form of ϕ(t) leads us to introduce v1 = et and v2 = cos t, and since v′

2 = − sin t,

also v3 = sin t. The integrand is then (1 + v2(t))(1 + v2(s))
−1y(s); the denominator is

the issue. To express the integrand as a polynomial function of several variables, name

the denominator v4 = 1+v2 and its reciprocal v5 = 1/v4 so that the integral equation

is y(t) = v1(t)v2(t) + v4(t)
∫ t

0
v5(s)y(s) ds. Taking the derivatives of the auxiliary

variables introduced so far shows that no more are needed, so one appropriate choice

of auxiliary variables is

v1 = et, v2 = cos t, v3 = sin t, v4 = 2 + v2, v5 =
1

v4
,

which satisfy the system of first order ordinary differential equations

v′

1 = v1, v′

2 = −v3, v′

3 = v2, v′

4 = v′

2 = −v3, v′

5 =
−v′

4

v2
4

= v3v
2
5,

which in turn is equivalent to

v1(t) = v1(0) +

∫ t

0

v1(s) ds

v2(t) = v2(0) −

∫ t

0

v3(s) ds

v3(t) = v3(0) +

∫ t

0

v2(s) ds

v4(t) = v4(0) −

∫ t

0

v3(s) ds

v5(t) = v5(0) +

∫ t

0

v3(s)v
2
5 ds.

The initial values of the auxiliary variables are determined by their definition. The

initial value y(0) of the solution of the integral equation (3.1) is found simply by

evaluating that equation at t = 0 to obtain y(0) = 0. Thus the iteration scheme is

y[k+1](t) = v
[k]
1 v

[k]
3 + v

[k]
4

∫ t

0

v
[k]
5 y[k]ds

v
[k+1]
1 (t) = 1 +

∫ t

0

v
[k]
1 ds
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v
[k+1]
2 (t) = 1 −

∫ t

0

v
[k]
3 ds

v
[k+1]
3 (t) =

∫ t

0

v
[k]
2 ds

v
[k+1]
4 (t) = 3 −

∫ t

0

v
[k]
3 ds

v
[k+1]
5 (t) =

1

3
+

∫ t

0

v
[k]
3 (v

[k]
5 )2ds

We can initialize as we please, but it is reasonable to choose y[0](t) ≡ y(0) and

v
[0]
j (t) ≡ vj(0), i.e., (y[0], v

[0]
1 , v

[0]
2 , v

[0]
3 , v

[0]
4 , v

[0]
5 )(t) ≡ (0, 1, 1, 0, 3, 1

3
).

The exact solution of (3.1) is

y(t) = et sin t + et
(

2 + cos t
)(

ln 3 − ln
(

2 + cos t
)

)

,

whose Maclaurin series, with its coefficients rounded to five decimal places, begins

y(t) = 1.00000t + 1.50000t2 + 0.83333t3 + 0.16667t4 − 0.03333t5

− 0.02593t6 − 0.00529t7 + O(t8).

The eighth Picard iterate with its coefficients rounded to five decimal places is

y[8](t) = 1.00000t + 1.50000t2 + 0.83333t3 + 0.16667t4 − 0.03333t5

− 0.02593t6 − 0.00529t7 + O(t8).

The absolute value of the error in the approximation of the exact solution by y[8](t)

is practically zero up to about t = 0.4, then increases monotonically to about 0.00057

at t = 1.

Example 3.2. In [1] Biazar and Eslami introduced the nonlinear Volterra integral

equation of the second kind

(3.2) y(t) =
1

2
sin 2t +

∫ t

0

3

2
y(s)2 cos(s − t) ds.

To fit this into the framework of (2.1) we begin by applying the cosine difference

identity cos(t − s) = cos s cos t + sin s sin t, obtaining

y(t) =
1

2
sin 2t +

3

2

(

cos t

∫ t

0

y(s)2 cos s ds + sin t

∫ t

0

y(s)2 sin s ds
)

.

Introducing the auxiliary variables v = cos t and w = sin t, which solve the system

v′ = −w, w′ = v,

upon integration we obtain the equivalent system of integral equations

v(t) = v(0) −

∫ t

0

w(s) ds
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w(t) = w(0) +

∫ t

0

v(s) ds.

The initial values of the auxiliary variables are determined by their definition. The

initial value y(0) of the solution of the integral equation (3.2) is found simply by

evaluating that equation at t = 0 to obtain y(0) = 0. Thus the iteration scheme is

y[k+1](t) = w[k]v[k] +
3

2

(

v[k](t)

∫ t

0

v[k](s)(y[k])2(s) ds + w[k](t)

∫ t

0

w[k](s)(y[k])2(s) ds

)

w[k+1](t) = 0 +

∫ t

0

v[k](s) ds

v[k+1](t) = 1 −

∫ t

0

w[k](s) ds.

We initialize with

y[0](t) ≡ y(0) = 0

w[0](t) ≡ sin 0 = 0

v[0](t) ≡ cos 0 = 1.

The exact solution of (3.2) is y(t) = sin t, whose Maclaurin series, with its coefficients

rounded to five decimal places, begins

y(t) = 1.00000 t− 0.16667 t3 + 0.00833 t5 − 0.00020 t7 + O(t9).

The eighth Picard iterate with its coefficients rounded to five decimal places is

y[8](t) = 1.00000 t− 0.16667 t3 + 0.008333 t5 + 0.00000 t7 + O(t9).

The absolute value of the error in the approximation of the exact solution by y[8](t)

is practically zero up to about t = 0.4, then increases monotonically to about 0.001

at t = 1.

Example 3.3. As a somewhat more elaborate example consider the nonlinear Volterra

integral equation of the second kind given by

(3.3) y(t) = tan t −
1

4
sin 2t −

1

2
t +

∫ t

0

1

1 + y2(s)
ds.

This is a corrected version of an integral equation given by Kamyad et al in [5].

Because the integral part is independent of t, (3.3) is equivalent to an initial value

problem, namely

y′(t) = sec2 t −
1

2
cos 2t −

1

2
+

1

1 + y2(t)
, y(0) = 0.

Of course by means of the identity cos2 t = 1
2
(1 + cos 2t) the differential equation can

be more compactly expressed as

(3.4) y′(t) = sec2 t − cos2 t +
1

1 + y2(t)
,
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which will be important later.

To approximate the unique solution of (3.3) we introduce the auxiliary variables

v1(t) = sin t, v2(t) = cos t, v3(t) =
1

v2

, v4(t) = 1 + y2, v5(t) =
1

v4

.

Note that in contrast with the previous examples the unknown function y(t)

figures into the definition of some of these variables, but in a polynomial way. Thus

when we compute their derivatives y also appears. Thanks to (3.4), it does so in a

polynomial way, since by that identity y′ = v2
3 − v2

2 + v5 and we have additionally

v′

1 = v2, v′

2 = −v1, v′

3 = v1v
2
3, v′

4 = 2y(v2
3 − v2

2 + v5), v′

5 = −2yv2
5(v

2
3 − v2

2 + v5).

This system of ordinary differential equations, together with the equation satisfied

by y′ and the known initial values of all the variables involved, is equivalent to the

system of integral equations

y(t) = v1v3 −
1

2
v1v2 −

1

2
t +

∫ t

0

v5(s) ds

v1(t) =

∫ t

0

v2(s) ds

v2(t) = 1 −

∫ t

0

v1(s) ds

v3(t) = 1 +

∫ t

0

v1(s)v
2
3(s) ds

v4(t) = 1 + 2

∫ t

0

y(s)(v2
3(s) − v2

2(s) + v5(s)) ds

v5(t) = 1 − 2

∫ t

0

y(s)v2
5(s)(v

2
3(s) − v2

2(s) + v5(s)) ds.

Setting up the obvious iteration scheme based on these integral equations, and ini-

tializing with the constant functions y(t) ≡ y(0) and vj(t) ≡ vj(0), the Picard iterate

y[12](t) with coefficients rounded to five decimal places is

y[12](t) = 1.00000 t + 0.33333 t3 + 0.13333 t5 + 0.05397 t7 + 0.02187 t9

+ 0.00886 t11 + O(t13).

The exact solution is y(t) = tan t, whose Maclaurin series, with coefficients rounded

to five decimal places is

y(t) = 1.00000 t + 0.33333 t3 + 0.13333 t5 + 0.05397 t7 + 0.02187 t9

+ 0.00886 t11 + O(t13).

On the interval [0, 0.10] the error in the approximation of the exact solution by y[28](t)

increases monotonically from zero to about 3.5 × 10−14.
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Finally, we consider the Volterra equation already looked at in Section 2, showing

how the method applies easily even when the unknown function is in the argument

of a transcendental function.

Example 3.4. The Volterra equation

(3.5) y = 1 −

∫ t

0

sin y(s) ds

has solution y(t) = 2arccot(cot(1
2
)et) whose Maclaurin series with coefficients rounded

to five decimal places is

y(t) = 1.00000 − 0.84147 t + 0.22732 t2 + 0.05836 t3 − 0.06154 t4 + 0.00791 t5

+ 0.01180 t6 − 0.00629 t7 − 0.00078 t8 + 0.00202 t9 + O
(

t10
)

.

Introducing auxiliary variables as described for this example in Section 2 we obtain

the recursion

y[k+1](t) = 1 −

∫ t

0

v
[k]
1 (s) ds

v
[k+1]
1 (t) = sin 1 −

∫ t

0

v
[k]
2 (s)v

[k]
1 (s) ds

v
[k+1]
2 (t) = cos 1 +

∫ t

0

(v
[k]
1 )2(s) ds.

The tenth Picard iterate with its coefficients rounded to five decimal places is

y[10](t) = 1.00000 − 0.84147 t + 0.22732 t2 + 0.05836 t3 − 0.06154 t4 + 0.00791 t5

+ 0.01180 t6 − 0.00629 t7 − 0.00078 t8 + 0.00202 t9 + O
(

t10
)

.

The absolute value of the error in the approximation of the exact solution by y[10](t) is

practically zero up to about t = 0.5, then increases monotonically to about 6.5×10−4

at t = 1.

4. Conclusion

After noting the extension to the vector-valued case of a well-known theorem on

existence of solutions of Volterra equations of the second kind, we have observed that

the method of proof by means of the Contraction Mapping Theorem guarantees that

Picard iterates will converge to the solution. We have then described a method for

introducing auxiliary variables into Volterra equations of the form

y(t) = ϕ(t) +

∫ t

a

f(t)k(s, y(s)) ds,

in such a way that such an equation embeds in a vector-valued polynomial Volterra

integral equation. We have thus extended the method of auxiliary variables for sur-

mounting the obstacle of impossible quadratures that can arise in Picard iteration,
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well known in the case of initial value problems, to the setting of integral equations.

We have thereby obtained a computationally efficient method of symbolic rather than

numerical computation for closely approximating solutions of Volterra equations of

this type, whether linear or nonlinear in the unknown solution y, and even when y

appears in the argument of transcendental functions. We have illustrated the ease of

use, broad applicability, and efficiency of the method with examples.
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